
  

Abstract—While current tracking methods excel in following 

large objects with predictable movement, they face limitations in 

complex backgrounds, extensive object movement ranges, and 

scenarios involving rapid camera motion. Moreover, many 

existing tracking models heavily rely on scale-space 

transformation techniques for feature extraction, often leading to 

the loss of vital spatial information. To tackle these challenges, we 

introduce a novel model named multi-kernel layered aggregation 

and enhancement based-yolo, which stands out as a single-stage 

object tracking model. This model incorporates a multi-kernel 

context enhancement module to widen the receptive field and 

enhance the capture of global contextual information, thereby 

elevating tracking accuracy. Additionally, we have introduced a 

multi-link downsampling module to mitigate potential spatial 

information loss resulting from scale transformation. 

Furthermore, our approach employs a dual association process 

integrating Kalman filters and the Hungarian algorithm for both 

low and high-score detection boxes, effectively mitigating target 

loss caused by temporary detection failures. Experimental results 

on the SportsMOT dataset demon-strate that our model exhibits 

superior performance in tracking irregularly moving objects, 

especially in detecting and tracking small objects. It outperforms 

most existing object tracking models with a DetA score of 84.6 

and a HOTA score of 68.5. 

Index Terms—Object Detection, Multiple Object Tracking, 

Multi-Link Downsampling, Multi-Kernel Context Enhancement 

I. INTRODUCTION 

n t recent years, multiple object tracking (MOT) [1] has 

garnered significant attention in the field of computer vision, 

with the simultaneous estimation of position and identity of 

different objects in camera-captured visual scenes posing a 
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key challenge[2]. MOT has been extensively studied and 

applied in areas such as animal tracking[3], pedestrian 

behavior analysis[4], vehicle analysis[5], and driving 

scenarios[6],[7], [8]. However, its application in the more 

challenging sports scenes is still underdeveloped[9]. Tracking 

movement trajectories in sports allows coaches to deeply 

analyze their own team's tactical layout and gain insights into 

the opponent's strategies. Further data analysis can reveal 

which athletes need to increase training intensity or adjust 

their positions on the field to more effectively implement 

tactical strategies[10]. 

In deep learning-based MOT tasks, object detection 

networks and tracking algorithms are two crucial stages. In the 

object detection phase, scale-space transformation techniques 

like max pooling are widely employed to reduce image size. 

However, reliance solely on max pooling poses challenges. 

Specifically, since it only selects the maximum value within 

each window, other pixel value information is not considered 

in the computation, potentially leading to the loss of important 

spatial information or subtle features, thus impacting tracking 

accuracy. 

The YOLO series of models are classic single-stage 

network models[11], with the SPP module first introduced in 

YOLOv3[12]. However, the SPP module falls short in 

extracting contextual information and spatial dimension 

information, especially in complex backgrounds and fast-

moving objects. As sports scenes mainly involve small and 

medium-sized objects, specific solutions tailored to these 

targets are required to improve the performance of object 

detection networks. 

The main contributions of this paper are as follows: 

We propose a image-feature-free cross-drone multi-target 

association method. It remains robust in the face of unreliable 

image features and variable shooting angles. We propose a 

TMR-based re-association approach using cost evaluation that 

can further optimize the preliminary results. Extensive 

experiments on airsim-based dataset verify state-of-the-art 

performance of our proposed method. 

(1) we introduce a single-stage object tracking model which 

named multi-kernel layered aggregation and enhancement 

based-yolo (MuKLYOLO). 

(2) Introduction of a novel multi-link downsampling (MLD) 

module, which reduces the size of feature maps while 

retaining their most significant information, successfully 

addressing the challenges that max pooling might face in 

capturing complex spatial relationships and processing fixed 

structures. 
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(3) Design of a multi-kernel context enhancement (MKCE) 

module aimed at enhancing detection performance. This 

module dynamically adjusts the spatial receptive field, 

improving the network model's understanding of global 

contextual information. Depending on different detection 

scenarios, the network can adaptively adjust the perception 

range of the feature map, thereby obtaining more accurate 

detection results. 

II. RELATED WORK 

Object tracking, an extension of the object detection task, 

constitutes a significant undertaking within the realms of 

computer vision and image processing. Object tracking is a 

critical area of research in computer vision, and numerous 

methodologies have been proposed according to different 

research focuses[13]. Among these, object tracking networks 

based on deep learning methods have gained popularity 

among researchers. In this approach, object detection serves as 

the foundation for multi-object tracking, with many prevalent 

models emerging from research based on object detection 

networks. Tracking networks based on the detection paradigm 

separate object detection and tracking into two distinct steps. 

They initially detect objects in video frames and then track 

these objects across successive frames to produce tracking 

results[14]. This method has gained widespread popularity in 

recent years. Based on the existing detection paradigm 

tracking networks, they can be categorized into networks 

based on single-stage models, dual-stage models, and 

Transformer network models. A multitude of methods focus 

on leveraging these given detection results to enhance tracking 

performance. 

In the paradigm of single-stage network models for object 

tracking, Ma et al. [15] employed the K-means clustering 

algorithm to perform cluster analysis on candidate object 

boxes. They selected appropriate numbers of Anchor Boxes 

and added feature extraction layers in the shallow network 

layers to extract more refined vehicle features. This innovation 

improved the feature representation capability of the tracking 

model, though the model's effectiveness in handling occluded 

objects needs enhancement. FairMOT [16] seamlessly 

integrates object detection and re-identification tasks by 

sharing the backbone network and employing multi-task 

learning to achieve efficient multi-object tracking, 

demonstrating good adaptability to complex scenes. Wang et 

al. [17] proposed a hierarchical single-branch network built on 

a single-stage framework, which generates detection results 

and tracking features for objects in a single inference process. 

However, its tracking accuracy may be affected under extreme 

conditions, such as rapid movement or occlusion. Duan et al. 

[18] introduced CenterTrack, which predicts the center points 

of each object in consecutive frames and estimates the 

displacement between these centers to associate targets across 

frames, achieving object tracking. Yet, it faces challenges in 

handling prolonged occlusions. Generally, single-stage 

tracking algorithms are more lightweight and offer faster 

tracking speeds, making them highly regarded among 

researchers. 

In the paradigm of dual-stage network models for object 

tracking, Fischer et al. [19] proposed QDTrack, a method that 

adopts a feature matching strategy. It computes and matches 

descriptors for almost every pixel in the image, not just for 

detected objects. This comprehensive feature analysis strategy 

enhances the tracking network's capability in handling 

occlusions and dynamic, fast-moving objects, though 

improvements are needed when dealing with objects of highly 

similar appearances. Chen et al. [20] introduced a tracking 

network that uses a Siamese network in the first stage for 

rough localization of objects, along with scale and ratio 

estimation. The second stage employs a segmentation network 

to precisely distinguish between the object and background, 

providing rotated bounding boxes for objects, which is 

effective for irregularly shaped or occluded objects. Leng et al. 

[21] proposed a template updating module to address the issue 

of tracking accuracy decline in SiamRPN when there are 

significant appearance changes in the object. This method 

updates the object in real-time during the second stage using 

this module to adapt to changes in the object's appearance. 

However, compared to single-stage models, dual-stage 

tracking frameworks are more computationally intensive in the 

field of visual object tracking. 

In the paradigm of transformer-based network models, the 

Transformer architecture, widely applied in the field of deep 

learning, has been recently introduced to the domain of object 

tracking by researchers. Zhou et al. [22] proposed the GTR 

model, a network capable of directly processing multi-frame 

data to output object trajectories. This approach circumvents 

the complex trajectory association steps of traditional multi-

object tracking methods, thus enhancing overall efficiency and 

accuracy. However, the model's limited feature extraction 

capability requires improvement in handling small and 

medium-sized objects. Nijhawan et al. [23] introduced the 

TransTrack model, ingeniously leveraging the Transformer 

architecture. It uses the object features from the previous 

frame as queries for the current frame and introduces a set of 

learned object queries (for newly appearing targets) to detect 

newly emerged objects. This method achieves object detection 

and association in a single process. Similar to dual-stage 

network models, Transformer-based models are also 

computationally intensive. 

III.  METHODOLOGY 

Object tracking, an extension of the object detection task, 

constitutes a significant undertaking within the realms of 

computer vision and image processing. The MuKLYOLO-

Byte network model adheres to a detect-track paradigm, as 

illustrated in Figure 1. In the detection phase, the input data 

initially passes through the backbone network, where 

preliminary extraction of top and middle layer features is 

performed using Focus, CBS, and residual modules. Lower 

layer features are then extracted through the MKCE module 

and MLD module. Subsequently, the neck of the model 

processes these features, facilitating the fusion of different 

hierarchical feature maps. This integration provides a richer 

and more distinctive blend of lower, middle, and upper layer 

information for subsequent object localization and 

classification tasks. The decoupled head handles the tasks of 

object detection localization and category classification 

separately. It localizes targets on a category-independent basis  
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Fig. 1. Overview of the MuKLYOLO-Byte network. 

 

and outputs categories through an independent network, 

thereby simplifying the detection task and enhancing detection 

performance. In the object tracking phase, we propose a 

combined optimization strategy using Kalman filters and the 

Hungarian algorithm to decide on the detection boxes. 

A. Multi-link downsampling 

Scale-space transformation techniques are widely utilized to 

reduce image size for extracting local feature information. 

However, this approach has a notable drawback: the loss of 

detail information, which adversely affects the detection of 

small and medium-sized objects. In various ball sports, the 

required amount of contextual information varies depending 

on the characteristics of the game scene. 

For instance, in volleyball and basketball games, due to the 

relatively small camera angles and players being distributed 

around various corners of the camera's field of view, global 

contextual information becomes particularly crucial. In soccer 

matches, where the field is larger and the camera angle more 

extensive, with concurrently smaller target sizes, acquiring 

and analyzing global contextual information becomes even 

more vital. This demonstrates the prominent role of remote 

modeling in feature content within ball game scenarios. 

The backbone network of YOLOX [24] includes the Focus 

module, CBS module, CSPLayer compound residual module, 

and the SPP module. The SPP module, as shown in Figure 2, 

employs multiple scale max-pooling layers to capture 

contextual information for each pathway, then flattens the 

results and concatenates them into a feature vector. For small 

objects, SPP can lead to the dilution or loss of important 

features. Even with pooling at various scales, key features of 

small objects can become blurred. Therefore, this paper 

proposes a MLD module, as depicted in Figure 3, to address 

these issues. 
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Max
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Max
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Concat CBS

 
 

Fig. 2. Overview of the SPP. 
 

As the feature map passes through this module, it initially 

traverses the CBS (convolution, batch normalization, and Silu) 

module. Subsequently, it flows through three main pathways, 

utilizing convolutional kernels of sizes 5 5 , 9 9 , and 

13 13 , respectively named as 1main , 2main , and 3main . 

Each main pathway is further divided into three sub-pathways, 

named 1branch , 2branch , and 3branch . To achieve optimal 

results, unique feature extraction methods are employed for 

each branch to derive their outcomes. The results from the 

three sub-pathways are then used to compute the output of 

each main pathway. Ultimately, the outputs of the three main 

pathways are concatenated to form a channel re-calibrated 

feature map, which once again passes through the CBS 

module, resulting in the output of the multi-link 

downsampling process. The three sub-pathways are central to 

channel re-calibration, enabling them to learn different 

channel information based on their respective convolutional  
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Fig. 3. Overview of the MLD. 

 

cat cat

Conv BN RELU Linear GELU Dropout Sigmoid Channel Max Channel Avg

Large Feature
K=5

K=7
K=2 K=1

Output Feature

 
 
Fig. 4. Overview of the MKCE. 

 

kernel sizes. The specific derivation process for each main 

pathway is as follows: 

Initially, this module processes the feature outputs from two 

sub-pathways. For an input feature map x , 1branch  utilizes a 

concatenation of max pooling and convolution to generate its 

output, as illustrated in equations (1) and (2). In these 

equations, i and j  denote the coordinates in the feature map 

F ,  

while m  and n  represent the local coordinates within the 

pooling window. / 2p k=     signifies the stride, with 1s =  

indicating the stride of the padding, and k  representing the 

size of the convolutional kernel. 

 0 ,0
([ , ]) max (

)

[ : ,  

: ]

h k w k
x ij s i s hM pi

j s j s w p

   
= + −

+ −

 


 (1) 

where M  indicates the output result after the maxpool. 

 
1( ) ( ( ( ( ))))b x BN conv M x=  (2) 

where   denotes the ReLU activation function, and BN  

signifies the batch normalization operation. 

The second sub-pathway, denoted as 
2 ( )b x , establishes a 

dual convolutional structure to extract feature information, as 

indicated in equation (3). Subsequently, the enhanced 

semantic information is obtained through an addition 

operation of 
1( )b x  and 

2 ( )b x , as illustrated in equation (4). 

 
2 ( ) ( ( ))b x conv conv x=  (3) 

 
1 2( ) ( ) ( )b x b x b x= +  (4) 

Finally, to preserve the original spatial information, the 

module ensures that primary details are retained even when 

the feature is processed in deeper layers of the network. 

Therefore, a residual connection approach is utilized. The 

input feature x  is residually fused with the output of ( )b x . 

This results in the production of an enhanced sub-pathway 

summarized feature map output ( )G x , demonstrating the 

effectiveness of the residual fusion in maintaining spatial 

details. 

 ( ) ( )G x x b x= +  (5) 

In summary, the MLD module employs a multi-sub-

pathway design in a strategic manner, integrating convolution 

and residual connections to capture a diverse array of local 

information. This approach effectively mitigates the issue of 

detail loss that may arise from max pooling. Convolution 

operations are utilized to capture advanced local features 

within each channel, such as edges and detailed information, 

while max pooling reduces the spatial dimensions of the data, 

retaining key features. When processing multi-channel inputs, 
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the combined use of different sizes of convolutional kernels 

for pooling and convolution operations offers certain 

advantages, as it allows for complex, multi-level integration of 

feature information. Integrating this module enhances 

comprehensive feature extraction and bolsters the model's 

understanding of complex data structures. Specific ablation 

study analyses are presented in Table 4. 

B. Multi-kernel context enhancement 

The MKCE structure is depicted in Figure 4.4. The MKCE 

module is composed of a feature linear layer, a dual 

aggregation layer, and a feature recalibration layer. Initially, 

the feature linear layer uses convolutional kernels of varying 

sizes on a large feature map to capture multi-scale local 

features. Small kernels focus on extracting fine-grained 

features, while large kernels emphasize broad contextual 

information. Subsequently, the dual aggregation layer models 

the concatenated feature map along the channel direction, 

aiming to capture the intricate details and contextual 

relationships between channels. In this process, MKCE 

calculates both the maximum and average value weights. 

These weights are then used to effectively integrate the 

relevant information into the local feature map. Finally, the 

feature recalibration layer merges the weighted features with 

the initial features, resulting in a more refined and 

comprehensive global feature map (Output Feature). The 

specific computational process is as follows: 

In the first step, the feature linear layer employs an 

expanded convolution sequence with larger convolution 

kernels and increased dilation coefficients to construct a more 

extensive kernel convolution sequence. Specifically, for the 

m th−  depth convolution in the sequence, the kernel size k , 

dilation parameter d , and receptive field RF  are defined as 

shown in equations (6).  

 
1 ( 1)m m m mRF RF d k−= + −  (6) 

where 
1m mk k−  ，

1 1d = ，
1 1m m md d RF− −  ，

1 1RF k= . 

Two depth convolutions, 1Conv  and 2Conv , are selected, and 

a linear transformation is added after each convolution to 

capture richer contextual relationships within the feature map, 

as indicated in equations (7) and (8).  

 
1 ( ( ( 1( ))))out inY Drp GELU LN Conv x=  (7) 

 
2 ( ( ( 2( ))))out inY Drp GELU LN Conv x=  (8) 

where Drp  represents the dropout operation, and LN  stands 

for the linear layer. The parameters for the two depth 

convolutions ( 1Conv  and 2Conv ) are set as 1 1d = , 2 3d = , 

1 5k = , 2 7k = , 1 2p = , 2 9p = , with 
inY , 

1outY , and 
2outY  

representing the input and outputs, respectively. 

To assimilate a broader range of channel information, the 

feature linear layer concatenates the results from different 

convolution kernels, as demonstrated in equation (9).  

 
1 2( , )out out outY cat Y Y=  (9) 

where cat  denotes the concatenation operation. 

In the second step, the information aggregation layer 

merges the central tendency and peak characteristics of the 

data, thereby aiding in enhancing the learning efficacy. This 

layer utilizes spatial channel information to compute the mean 

Ymean  and maximum Ymax  values along the channel 

dimension, capturing the overall characteristics and most 

distinctive features of the data, as shown in equations (10) and 

(11).  

 
,1, , , , ,

1

1 C

b h w b i h w

i

Ymean Y
C =

=   (10) 

 ,1, , , , ,maxb h w c b c h wYmax Y=  (11) 

where Y  represents the input tensor, and C  denotes the 

number of channels.  

The enhanced output 
outq  is obtained by concatenating 

Ymean  and Ymax  along the first dimension, as indicated in 

equation (12). The process involves further information 

extraction from 
outq  using convolution to enhance the inter-

channel relationships, as seen in equation (4.13). 

 ,1, , ,1, ,[ , ]out b h w b h wq cat Ymean Ymax=  (12) 

 ( ) ( ( ( ( ))))i out outW q BN conv q= ReLu  (13) 

where ( )i outW q  represents the different selection masks for 

two channels,   signifies the sigmoid activation function, the 

convolution kernel size is 2k = , and i  represents different 

channels. 

In the third step, within the feature recalibration layer, the 

outputs from the two deep convolutions (
iConv ) of the feature 

linear layer are multiplied by the different channel weights 

( )i outW q  obtained from the information aggregation layer. 

This is demonstrated in equation (14). 

 ( )i i out iS W q Conv=   (14) 

where {1,2}i  . 

Subsequently, the resulting Si is concatenated, and 

convolution is used to increase the dimensionality of the 

feature, resulting in the output S, as shown in equation (15). 

 ( ( ( [ ])))iS BN Conv cat S=ReLu  (15) 

Finally, S  is multiplied with the original input to produce 

the weighted output, as shown in equation (16). 

 
inO x S=   (16) 

C. Object tracker 

In traditional object tracking strategies, models often rely on 

detection boxes with high confidence for object association 

and tracking, as these high-confidence boxes are more likely 

to represent actual objects and are therefore given higher 

priority. However, detection boxes with low confidence might 

represent false detections but could also indicate real objects. 

Merely ignoring or discarding these low-confidence boxes can 

lead to missed real targets. The MuKLYOLO-Byte tracker, 

inspired by the BYTE [25] algorithm, adopts a different 

approach, utilizing dual association through Kalman filters 

and the Hungarian algorithm, integrating low-confidence 

detection boxes for association matching. This algorithm 

enhances the overall tracking performance. However, target 

tracking networks based on the detect-track paradigm still 

require high-performance object detection networks to reduce 

the number of undetected negatives. 

Unlike most object tracking algorithms, which traditionally 

discard low-scoring prediction boxes, our method retains 
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nearly all detection boxes, dividing them into high-scoring and 

low-scoring groups. As a result, targets are not prematurely 

ignored due to low detection scores, even in cases of occlusion, 

motion blur, or changes in target size. 

The MuKLYOLO-Byte object tracker, as illustrated in 

Figure 1 (Track), takes an object detector and a video 

sequence as inputs and sets two thresholds, =0.40  and 

=0.10 . By comparing these thresholds with the confidence 

p  of the detector's output, detection boxes are classified: 

boxes with p   are categorized as high-confidence, and 

those with p    as low-confidence, while boxes with 

p   are discarded. 

The object tracker involves a two-step association process 

[19]. After classification through thresholds, the first step 

involves associating high-score detection boxes with current 

track fragments. If some track fragments fail to match with 

high-score boxes, they are then associated with low-score 

boxes. This dual association process aims to prevent target 

loss due to temporary detection failures. Specific analyses of 

these two tracking steps are as follows: 

In the first association, Kalman filters are used to predict the 

positions of each high-confidence detection box in the current 

frame, marked as ( )Tra update . Detection boxes that are not 

associated are set as new trajectories, ( )Tra new . During this 

process, the intersection over union (IOU) between high-

confidence boxes and trajectories is calculated to assess the 

association degree. The Hungarian algorithm is then utilized to 

match similarities and achieve the optimal “detection box-

trajectory” correspondence. Finally, unmatched track pools, 

UnTra , are retained. 

In the second association, low-confidence detection boxes 

are matched with trajectories marked as UnTra. To maintain 

long-term association consistency, all track pools not matched 

in the second association, ( )Tra out , are retained, with each 

trajectory's duration limited to 30 frames. If a trajectory 

reappears in ( )Tra out  in subsequent associations, it will be 

rematched; if it does not appear within the specified number of 

frames, the trajectory is deleted. 

D. Loss Function 

The loss function of MuKLYOLO-Byte comprises 

coordinate loss, confidence loss, and classification loss. The 

coordinate loss employs the intersection over union (IoU) loss 

function, while the confidence loss and classification loss use 

the cross-entropy loss function. 

For a more accurate measurement of the overlap between 

predicted and actual bounding boxes, Generalized IoU Loss 

(GIoULoss) is utilized, represented as 
bboxL  in equation (17). 

 1 2( , )bbox

I C U
L A A

U C

−
= −  (17) 

where 
1A  and 

2A  are two bounding boxes, I  is their 

intersection, U  is their union, and C  denotes the smallest 

enclosing rectangle containing both 
1A  and 

2A . 

The classification loss primarily evaluates the discrepancy 

between the predicted class probabilities of the model and the 

actual classes. For this purpose, the cross-entropy loss 

function is employed, represented as 
classL  in equation (18).  

 
1 1

1
ˆlog( )

N C

cls ij ij

i j

L y y
N = =

= −   (18) 

where N  indicates the total number of samples, and C  the 

number of classes. ijy  is the one-hot encoding of the true class 

j  for the i th−  sample, where the specific class value is 1, 

and all other class values are 0. ˆ
ijy  represents the model's 

predicted probability that the i th−  sample belongs to class j . 

The confidence loss is typically used to measure the 

discrepancy between the model's predicted confidence and the 

actual confidence, for which the binary cross-entropy loss 

function is applied, represented as objL  in equation (19).  

 
1

1
ˆ ˆ( log( ) (1 ) log(1 ))

N

obj i i i i

i

L z z z z
N =

= − + − −  (19) 

where 
iz  is the actual confidence of the i th−  sample, and ˆ

iz  

is the model's predicted probability of the existence of the 

i th−  sample. 

The overall loss function of the model is the sum of 

coordinate loss, confidence loss, and classification loss, as 

shown in equation (20). 

 bbox cls objLoss L L L= + +  (20) 

IV. EXPERIMENTS 

A. Evaluation Index 

Evaluation metrics in deep learning play a pivotal role in 

research and applications. They quantify model performance 

and provide researchers with an objective and comparable 

means of assessment. Currently, multi-object tracking 

primarily employs metrics such as HOTA, MOTA, IDs, AssA, 

DetA, and Frag, which are also adopted in this study. 

The IDs metric primarily reflects the performance of an 

object tracking network in terms of continuity and association 

accuracy. A lower IDs value indicates better continuity and 

association. 

AssA is an assessment metric for multi-object tracking 

performance. This metric involves two main types of error 

scenarios: 1) Predicted targets may be incorrectly associated 

with non-corresponding real targets; 2) A real target may be 

erroneously segmented into multiple predicted outcomes. 

Through such quantification, AssA accurately evaluates the 

algorithm's performance in target association. The specific 

calculation steps can be referred to in equations (21), (22), and 

(23). 

 ( )
C

C C C

TPA
c

TPA FNA FPA
 =

+ +
 (21) 

 
{ }

1
( )

c TP
AssA c

TP
 


=   (22) 

 
1

0
AssA AssA d =   (23) 

where ( )c  represents the probability of measuring the 

association between predicted trajectories and actual label 
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trajectories, with {0.05,0.1...0.9,0.95}   denoting the 

baseline for localization similarity. 
cFNA  represents the 

number of instances where some real targets are not correctly 

associated with predicted targets, 
cTPA  indicates the number 

of correct associations between predicted and real targets, and 

cFPA  denotes the number of instances where predicted targets 

are wrongly associated with other real targets. 

The DetA metric evaluates the accuracy of target detection 

in multi-object tracking networks. Specifically, it quantifies 

the degree of match between the targets detected by the 

network and the actual targets. DetA integrates recall and 

precision to comprehensively assess the network's detection 

performance. The calculation process is as shown in equation 

(24) and (25).  

 
TP

DetA
TP FN FP

 =
+ +

 (24) 

 
1

0
DetA DetA d =   (25) 

where FN represents false negatives, FP denotes false 

positives, and TP stands for true positives. 

Multiple object tracking accuracy (MOTA) [26] is a critical 

metric for assessing the accuracy of multi-object tracking 

algorithms. It provides an overall performance score for 

tracking algorithms by integrating false positives, missed 

detections, and identity switches. The MOTA metric 

intuitively expresses the overall effectiveness of a tracking 

algorithm, as illustrated in equation (26). At i th−  time, 
ia  

represents the number of missed detections, 
ifp  the number of 

false positives, 
iae  the number of incorrect matches, and gt  

the number of true targets. 

 
( )

1
i i ti

ii

a fp ae
MOTA

gt

+ +
= −




 (26) 

Higher order tracking accuracy (HOTA) [27] is an 

evaluation metric that measures the overall performance of 

object tracking networks. It integrates the accuracy of both 

detection and association into a single metric. Compared to 

other metrics, HOTA provides the most comprehensive 

assessment of tracking network performance and is currently 

the most accurate metric for evaluating object tracking. The 

calculation process of HOTA is demonstrated in equations (27) 

and (28). 

 
{ }

( )
c TP

c
HOTA

TP FN FP





=
+ +


 (27) 

 
1

0

1

19
HOTA HOTA d HOTA  

=    (28) 

Frag is a metric used to quantify the performance of multi-

object tracking networks. It evaluates the continuity and 

consistency of an object trajectory over time. Specifically, it 

calculates the frequency of state transitions between an object 

trajectory being successfully tracked and losing tracking. This 

is represented in equation (29),  

 1

1

n

i i

i

Frag t t −

=

= −  (29) 

where n  denotes the total number of frames and {0,1}it   

indicates the state of an object being successfully tracked in 

frame i . 

B. Experiment setting 

The MuKLYOLO-Byte network model was designed and 

implemented using the Pytorch deep learning framework. Our 

training and testing were conducted on an A100 graphics card. 

We utilized the stochastic gradient descent algorithm to 

optimize training parameters, with a momentum parameter set 

to 0.90 and a weight decay parameter of 5e-04. The maximum 

epoch was set to 40, with an initial learning rate of 3.0e-05. In 

the final 10 epochs, the learning rate was reduced to 50% of its 

initial value. The MuKLYOLO-Byte network model applied 

various image enhancement techniques, including image 

cropping, random flipping, mix-up augmentation, Mosaic, and 

RandomAffine, and set the training input image dimensions 

accordingly. 

C. Baseline model 

We selected six state-of-the-art (SOTA) models for baseline 

comparison with the MuKLYOLO-Byte model, detailed as 

follows: 

CenterTrack [18]: This method innovates in the detection 

aspect, not by simply detecting objects independently in each 

frame, but by tracking the center points of objects. This 

approach reduces the computational load without 

compromising detection performance. For the tracking aspect, 

CenterTrack learns the 2D offset between two adjacent frames 

to predict the next frame. 

ByteTrack [25]: This method proposes a simple, effective, 

and universal multi-object tracking method. Its core idea is to 

associate almost every detection box in the video, not just the 

high-scoring ones. For low-scoring detection boxes, it uses 

their similarity to trajectories to recover true objects and filter 

out the background. 

GTR [22]: This method introduces a Transformer-based 

global multi-object tracking network model. In object 

detection, it accepts continuous video frames to encode object 

features and effectively integrates these features into complete 

trajectories using trajectory querying technology. In object 

tracking, GTR introduces a global tracking module that 

operates over the entire video sequence to ensure continuous 

and accurate object tracking. 

MixSort-Byte [28]: This Transformer-based object tracking 

network optimizes object association by generating a mixed 

similarity matrix. This association strategy not only considers 

the appearance features of objects but also their motion 

trajectories, thereby achieving more accurate multi-object 

tracking. 

FairMOT [16]: The FairMOT multi-object tracking method 

differs from traditional methods that treat object detection and 

re-identification as two independent tasks. Based on an 

anchor-free object detection architecture, FairMOT achieves a 

balanced integration of detection and re-ID within the same 

network, resolving the competition between detection and re-

ID and ensuring balance in a single network. 
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Fig. 5. Sample images from the SportsMOT dataset of basketball, volleyball, and soccer. 

 

QDTrack [19]: This network employs a "Quasi-Dense 

Similarity Learning" strategy, densely sampling and 

conducting contrastive learning in object regions of an image. 

This strategy utilizes most information areas within the image 

to enhance tracking accuracy. 

D. Dateset 

To validate the effectiveness of MuKLYOLO-Byte, we 

utilized the large-scale SportsMOT [28] dataset. This dataset 

comprises a total of 240 video sequences, including 45 

training videos, 45 validation videos, and 150 test videos. It 

encompasses videos of three types of sports: basketball, 

volleyball, and soccer. 
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Fig. 6. Proportional division of the SportsMOT dataset. 

 

As shown in Table 1, the dataset details the average number 

of frames per video category, the average number of detection 

boxes per frame, the number of tracking IDs (Track IDs), and 

the track gap length. The SportsMOT dataset presents three 

major challenges. Due to the dynamic nature of sports 

scenarios, object association in multi-object tracking becomes 

complex. The fast and variable-speed movements in sports 

scenarios pose challenges to trackers. Although MOT trackers 

primarily rely on the appearance of objects, similar uniforms 

make differentiation difficult. As illustrated in Figure 5, the 

first row of images shows the challenges of dynamic scenes, 

the second row displays challenges due to fast and variable-

speed movements, and the third row reveals the issue of 

similar appearances among team members. 

We categorized the detection boxes in the training and 

validation sets of the SportsMOT dataset into large, medium, 

and small targets. Specifically, large targets have an area 

greater than 96x96 pixels, while medium and small targets 

range from 0 to 96x96 pixels in area. Following this criterion, 

we also classified the targets in the SportsMOT dataset 

accordingly. As depicted in Figure 6, it is evident that medium 

and small detection targets constitute over 60% of the total in 

both the training and validation sets. 

 
Table 1 

Detailed statistics of the three categories in the SportsMOT dataset. 

Labels Frames Track IDs Bboxs 
Track 

gap len 

soccer 845 10 9 69 

basketball 360 12 11 38 
volleyball 674 21 13 116 

 

V. DISCUSSION 

A. Contrast Experiment 

To validate the effectiveness of the MuKLYOLO-Byte, 

various recent tracking paradigm models were selected as 

baselines for comparison, with experiments conducted on the 

official SportsMOT dataset test set. The comparative results 

are presented in Table 2, where a downward arrow (↓) 

indicates that lower scores denote better performance, an 

upward arrow (↑) signifies that higher scores indicate better 

performance, and bold text highlights the best performance. 

Compared to FairMOT, CenterTrack, and ByteTrack, which 

employ detect-associate single-stage object tracking methods, 

the MuKLYOLO-Byte achieved improvements of 19.2 points, 

5.8 points, and 4.4 points, respectively, in the HOTA metric. 

In the DetA metric, it showed improvements of 14.4 points, 

2.5 points, and 6.0 points, respectively, and in the AssA metric, 

it improved by 11.9 points, 7.6 points, and 3.3 points, 

respectively. 
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Table 2 

Comparative table of the MuKLYOLO-Byte model, where a downward arrow (↓) indicates that a lower metric is better, an upward arrow (↑) signifies that a 

higher metric is better, and bold text represents the best performance. 

 HOTA↑ MOTA↑ AssA↑ IDs↓ DetA↑ Frag↓ 

FairMOT[16] 49.3 86.4 43.7 9928 70.2 21673 

GTR[22] 54.5 67.9 45.9 9567 64.8 14525 

QDTrack[19] 60.4 90.1 47.2 6377 77.5 11850 

CenterTrack[18] 62.7 90.8 48.0 10481 82.1 5750 

ByteTrack(YOLOX-s) [25] 64.1 95.9 52.3 3089 78.6 4216 

MixSort-Byte[28] 65.7 96.2 54.8 2472 78.8 4009 

MuKLYOLO-Byte (ours) 68.5 93.5 55.6 3548 84.6 4020 

 
Table 3 

Object detection results of the MuKLYOLO-Byte, using the validation set of the SportsMOT dataset for experimental results. 

 MAP↑ HOTA↑ APLarge↑ APmedium↑ APSmall↑ 

ByteTrack(YOLOX-s) 97.4 70.3 98.5 97.4 86.7 

MuKLYOLO-Byte (ours) 97.7 74.0 98.7 97.8 89.0 

 
Table 4 

Sub-pathway ablation experiment table, where a check mark (√) indicates the inclusion of a specific computational scheme, and a dash (-) denotes its absence. 

branch1 branch2 branch3 HOTA↑ DetA↑ 

- - - 70.3 83.9 

√ - - 71.3 86.2 

- √ - 71.9 86.1 

- - √ 71.6 85.9 

√ √ - 72.3 86.4 

- √ √ 72.7 86.3 

√ - √ 72.5 86.3 

√ √ √ 73.4 86.6 

 

    

    

    

    

Fig. 7. Visualization results for basketball tracking. 
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Fig. 8. Visualization results for volleyball tracking. 

    

    

    

    
 

Fig. 9. Visualization results for soccer tracking. 

 

Table 5 

Ablation experiment table for the Multi-Kernel Context Enhancement module. 

Max Avg branch1 branch2 branch3 HOTA↑ DetA↑ 

√ - √ √ √ 72.6 86.2 

- √ √ √ √ 72.4 86.3 

√ √ √ √ √ 74.0 87.1 
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Against QDTrack, which uses a detect-embed dual-stage 

object tracking method, the MuKLYOLO-Byte improved by 

8.1 points in HOTA, 7.1 points in DetA, and 8.4 points in 

AssA. When compared with Transformer-based tracking 

models GTR and MixSort-Byte, the MuKLYOLO-Byte 

showed improvements of 14.0 points and 2.8 points in 

HOTA, 19.8 points and 5.8 points in DetA, and 9.7 points 

and 0.8 points in AssA, respectively. These results 

demonstrate that the MuKLYOLO-Byte network model 

holds competitive performance amongst recent mainstream 

object tracking networks. 

When compared with Transformer-based tracking models 

GTR and MixSort-Byte, the MuKLYOLO-Byte showed 

improvements of 14.0 points and 2.8 points in HOTA, 19.8 

points and 5.8 points in DetA, and 9.7 points and 0.8 points 

in AssA, respectively. These results demonstrate that the 

MuKLYOLO-Byte network model holds competitive 

performance amongst recent mainstream object tracking 

networks. 

The MuKLYOLO-Byte model has demonstrated 

improvements in object detection performance, 

subsequently enhancing tracking performance. This section 

presents an experimental analysis of the model's detection 

effectiveness, as detailed in Table 3. Since the SportsMOT 

dataset's test set is not publicly available, the validation set 

was used for the experiments. The experimental results of 

MuKLYOLO-Byte indicate a significant improvement in 

object detection performance compared to the ByteTrack 

model. MuKLYOLO-Byte exhibited superior capabilities in 

handling targets of various sizes. The improvement in the 

mAP (mean Average Precision) metric highlights a clear 

enhancement in the model's overall detection accuracy. The 

advancements in the APLarge, APMedium, and APSmall 

metrics, which respectively target large, medium, and small-

sized objects, further demonstrate MuKLYOLO-Byte's 

superiority in handling targets of varying sizes. 

Overall, MuKLYOLO-Byte not only shows an 

improvement in overall object detection accuracy but also 

displays a more balanced and efficient performance in 

handling targets of different sizes. This enables the model to 

provide more reliable and precise object detection results in 

complex sports scenarios. 

B. Data Visualization 

In basketball and volleyball videos, medium-sized targets 

are commonly seen within the camera's perspective, often 

exhibiting rapid movements coupled with occlusion 

challenges, posing difficulties for object tracking networks. 

Soccer videos typically feature larger scenes with an 

abundance of small targets. This demands that the network 

model adapt appropriately to targets of various sizes while 

ensuring tracking accuracy. The MuKLYOLO-Byte network 

model is capable of high-quality tracking of each target in 

scenarios involving rapid movement and occlusions. This 

section presents visual output results to showcase the 

network's exceptional performance, as illustrated in Figures 

7, 8, and 9, depicting visualization results for different 

sports categories. 

As observed from the figures, basketball movements are 

complex with frequent occlusions, and MuKLYOLO-Byte 

effectively handles such challenges, accurately detecting 

targets and ensuring smooth ID transitions. Volleyball 

players exhibit rapid movements and often face occlusions. 

MuKLYOLO-Byte performs excellently in handling these 

fast-paced and occluded scenarios. In soccer videos, targets 

are farther away and smaller in size. MuKLYOLO-Byte 

accurately detects target positions in these scenes while 

minimizing the number of ID switches. 

C. Ablation Experiment 

We conducted ablation experiments on the MuKLYOLO-

Byte network using the validation set of the SportsMOT 

dataset to demonstrate the effectiveness of each module. The 

setup for other parameters remained the same as in the 

training configuration. 

More sub-pathways lead to better performance. Therefore, 

the ablation experiment was divided into different ways of 

adding sub-pathways to demonstrate how the choice of 

different pathways in the multi-link downsampling module 

can affect the overall performance of the model. This 

ablation experiment did not include the MKCE module. As 

shown in Table 4, the first three rows, which only contain a 

single pathway, perform the worst. The fourth, fifth, and 

sixth rows show improved performance with different 

pathway addition methods. The best result was obtained 

when the maximum number of pathways was used, as in 

row seven, where the HOTA and DetA metrics improved by 

3.4 and 3.3 percentage points, respectively, compared to the 

first row. 

The MKCE module uses an information aggregation layer 

to obtain unique information from feature maps. The 

channel-level maximum (Max) and average (Avg) values 

focus on different aspects of feature information. Choosing a 

reasonable method for information learning can enhance the 

overall performance of the model. For this reason, in the 

ablation experiment, we tested three schemes: using only 

Max, using only Avg, and using both. As shown in Table 5, 

the model achieved the best performance when using both 

channel average and channel maximum values, with the 

HOTA and DetA metrics improving by 1.6 and 1.2 

percentage points, respectively, compared to the previous 

setup. 

Ⅵ. CONCLUSION 

We introduce the MuKLYOLO-Byte model, designed to 

address the issue of insufficient performance in current 

object tracking methods when dealing with rapidly moving 

small and medium-sized targets. The integration of the 

multi-link downsampling module aims to reduce the size of 

feature maps while preserving detailed information, 

effectively solving the problem of spatial information loss 

caused by scale-space transformation techniques. 

Additionally, the multi-kernel context enhancement module 

is employed. During the feature extraction process, this 

module dynamically adjusts the spatial receptive field to 

enhance the processing capability for global contextual 

information. This enables the network to adaptively adjust 

the perception field of the feature map, improving tracking 

accuracy for irregularly moving objects. Finally, the model 

utilizes a dual-association approach combining Kalman 

filters and the Hungarian algorithm for optimal selection of 

detection boxes. In evaluations on the SportsMOT dataset, 

the MuKLYOLO-Byte model demonstrates excellent 

performance. In future research, we plan to combine and 

innovate with existing object tracking methods to enhance 

accurate prediction of irregular target trajectories. We aim to 

further improve the model's applicability and generalization 
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capability, ensuring its robust performance in various 

complex scenarios. 
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