
 

  
Abstract—In order to mitigate the computational complexity 

of the GSM system, a low-complexity sub-optimal detection 
algorithm based on group detection and Minimum Mean 
Square Error (MMSE) detection was proposed in this paper. 
Firstly, the antenna combinations after group selection were 
rearranged based on the sorting results of each group of 
antenna sequences obtained through the sorting algorithm. 
Subsequently, the MMSE equalization processing detection was 
applied to the sorted antenna combinations. Then, the 
modulation symbols obtained after processing were further 
optimized by combining them with the partial ML algorithm. 
Finally, the optimal transmit antenna combination and symbols 
were estimated using the ML algorithm. The simulation results 
show that the BER performance of the proposed algorithm is 
comparable to that of the ML algorithm, especially in M-PSK 
symbol modulation. The BER simulation curve is closer to that 
of the ML algorithm, while the algorithm’s computational 
complexity is much lower than that of the ML detection 
algorithm. 
 

Index Terms—Generalized spatial modulation (GSM), group 
detection, transmit antenna combination (TAC), bit error rate 
(BER), computational complexity. 
 

I. INTRODUCTION 
ith the rapid development of wireless communication 
technology, a new type of Multiple-Input 

Multiple-Output (MIMO) technology, Spatial Modulation 
(SM), has been proposed [1]-[4]. In an SM system, only one 
transmit antenna is activated in each time slot, and the 
antenna itself carries extra information in addition to the 
transmitted symbol information. This can effectively 
overcome the issues of Inter-Channel Interference (ICI), 
Inter-Antenna Synchronization (IAS), and multiple RF links 
in traditional MIMO systems. Thus, the introduction of SM 
technology cleverly combines encoding, modulation, and 
multi-antenna transmission to achieve high spectral 
efficiency and low complexity wireless transmission. SM 
technology has been widely recognized as an effective 
solution for next-generation massive MIMO communication 
[5]-[6]. 

Although the SM system has many advantages, its spectral 
efficiency is lower than that of spatial multiplexing. To 
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address this, Generalized Spatial Modulation (GSM) 
technology has been proposed [7]-[8]. GSM activates more 
than one antenna to transmit data in each time slot, with 
modulation symbols mapped to the combinations of activated 
antennas. When the activated antennas transmit the same 
symbol simultaneously, spatial diversity is achieved, which 
can effectively mitigate ICI to a certain extent. If the 
activated antennas transmit independent symbols, the 
spectral efficiency is further improved, along with the 
transmission rate. Therefore, GSM technology overcomes the 
limitations of traditional SM systems regarding the number 
of transmit antennas by flexibly selecting the number of 
transmit antennas and activated antennas in each time slot. 
By utilizing independent data transmission and spatial 
multiplexing methods, GSM can achieve the same or even 
higher spectral efficiency compared to SM systems. 

The signal demodulation algorithms at the receiver of the 
GSM system include the optimal detection algorithm and the 
sub-optimal detection algorithms. The optimal detection 
algorithm is the Maximum Likelihood (ML) detection 
algorithm, as proposed in [9]. Its main idea is to traverse all 
possible combinations of transmit antenna and symbols. 
However, as the number of antenna combinations and 
modulation orders increases, the computational complexity 
of the algorithm also increases exponentially. To address this 
issue, various sub-optimal detection algorithms have been 
proposed in [10]-[20]. 

A sub-optimal detection algorithm based on the Zero 
Forcing (ZF) detector is proposed in [10]. This algorithm 
eliminates mutual interference between signals by applying 
pseudo-inverse matrix operations to separate and demodulate 
signals. The Ordered Block Minimum Mean Square Error 
(OB-MMSE) detection algorithm, proposed in [11], sorts all 
antenna combinations using pseudo-inverse operations to 
calculate weights, and then employs the MMSE criterion to 
achieve the optimal signal estimation. This approach offers 
advantages in suppressing multipath fading and resisting 
noise interference. A novel grouping idea has been proposed 
in [12]-[13]. The Group Maximum Likelihood (GML) 
detection algorithm presented in [12] takes into account the 
mapping table of transmit antenna combinations and applies 
the ML detector to the established groups, achieving optimal 
partitioning to the vectors to be detected. This results in good 
performance and ultra-low complexity for the system under a 
fixed wireless channel. [13] introduces a Nested Maximum 
Likelihood Group (NMLG) detection algorithm, which 
continuously utilizes the ML detector in a nested manner for 
equalized received signals and offers significant performance 
advantages. Additionally, [14] introduces a low-complexity 
detection algorithm implemented in a grouped manner. This 
algorithm groups the transmit antenna based on the number 
of activated antennas and performs corresponding group 
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serial detection at the receiver. Simulations demonstrates the 
algorithm’s good performance. 

[15] proposed a Projection-Based List Detection (PBLD) 
algorithm, which generates a series of candidate transmission 
signals through multi-step detection. These candidates are 
then sorted based on the proximity of their data vectors to one 
of the possible subsets of vectors. The algorithm employs a 
quality metric to select the best candidate items and a list 
length metric to manage the size of the list. In [16], a 
Fully-Generalized Spatial Modulation (F-GSM) system is 
described. This system is characterized by an increase in data 
transmission rate as the number of transmit antennas 
increases, providing a faster data transmission rate compared 
to the previous GSM systems.  

To approximate the bit error rate (BER) performance of the 
ML detection algorithm while significantly reducing 
computational complexity, we propose a sub-optimal low- 
complexity detection algorithm for GSM systems 
transmitting independent signals — the Group Partial 
Maximum Likelihood detection algorithm based on 
Minimum Mean Square Error (GP-MMSE). In this group 
detection algorithm, ‘grouping’ refers to the optimal division 
of all known transmit antennas into groups, with each group 
containing the same number of antennas. Subsequently, a 
specific number of antennas within each group are activated 
for data transmission, effectively reducing system complexity. 
For demodulating symbols in SM systems, two detection 
algorithms are introduced: the HL-ML and LC-ML detection 
algorithms. Their modulation process is independent of the 
modulation order M [17] - [18]. The main contributions of 
this paper are as follows. 

1) To reduce the computational complexity of ML detector 
in GSM systems, an improved grouping strategy is employed 
to narrow down the search range of potential antenna 
combinations. 

2) To achieve optimal detection performance, we employ 
the group partial ML detection algorithm combined with the 
MMSE algorithm to estimate the transmit antenna 
combination. Additionally, we utilize the hard-limited ML 
algorithm to estimate the modulation symbols. 

The remainder of this paper is organized as follows. 
Section II presents the system model of GSM. Section III 
introduces an improved low complexity sub-optimal 
detection algorithm. Section IV provides experimental 
simulation analysis, including the calculation and analysis of 
the computational complexity of the corresponding algorithm. 
Finally, Section V concludes the paper. 

Notation: ( ) 1−⋅ , ( )T⋅ , ( )H⋅ and ( )†⋅ represent the inverse, 
transpose, conjugate transpose and pseudo-inverse of a 
vector or a matrix, respectively. ⋅   denotes the floor 
operation, which rounds a real number down to the nearest 
integer. || ||⋅ F  is the Frobenius norm of a vector or a matrix. 

2|| ||⋅  represents the 2 -norm of a matrix or a vector. | |⋅  
stands for the absolute value of a real or complex number, or 
the cardinality of a given set. ( )ℜ ⋅  and ( )ℑ ⋅  are the real and 
imaginary parts of a complex-valued variable, respectively. 

( )⋅round  indicates the operation of rounding a real number to 
the nearest integer. mod( , )⋅ ⋅  is the modulo operation. min( )⋅  

and ( )max ⋅  represent the minimum and maximum values, 

respectively. 
( )

!
! !

=
−

k
n

nC
k n k

 denotes the binomial 

coefficient, which represents the number of ways to choose 
k elements from a set of n elements.  represents the field 
of complex numbers. 

II. SYSTEM MODEL 
Assuming a GSM system has tN  transmit antenna and 

rN  receive antennas, and only pN  transmit antennas are 
activated in each time slot, each of which simultaneously 
transmits modulation symbols. The modulation mode 
employed is M-QAM or M-PSK constellation modulation. 
Therefore, there are a total of = p

t

N
NN C  possible 

combinations of transmit antennas. However, according to 
the mapping principle of the GSM system, the number of 
available antenna combinations must be an integer power of 2. 
So, the actual number of effective activated antenna 

combinations is 2  log
2

 
  =

N
N

p
t

C

cN . The GSM system splits the 
binary information bit stream into two parts: one part is used 
to specify the transmit antenna combination for the ongoing 
data transmission, and the other part is used to choose the 
modulation symbol. When cN  activated antenna 
combinations transmit independent modulation symbol 
vectors 1 2[ , , ]s = 

p

T
Ns s s , 1 2, , ∈，

pNs s s S , the length of the 

information bit sequence for specifying the activated antenna 
combination is 21 log 

 = p

t

N
NCR , and the length of the 

information bit sequence for choosing the modulation symbol 
is 2 2log= pR N M , where M  represents modulation order, 
S  denotes the set of modulation symbols. The length of the 
information bits transmitted by the GSM system per time slot 
can be expressed as follows. 

GSM 2 2= log + logp

t

N
N pR C N M 

                      (1) 

The modulation symbol vector s  is transmitted through 
the channel gain matrix H ×∈ t rN N , and the system model of 
the received signal y  can be represented as follows. 

y Hx n= +                                   (2) 
Where H  follows a complex Gaussian distribution with a 
mean of 0 and a variance of 1, each element ,i jh  represents 
the channel gain between the -thi  transmit antenna and the 

-thj  receive antenna. 1x ×∈ tN  represents the transmit 
signal vector, 1y ×∈ rN  represents the received signal vector, 

and 1n ×∈ rN  represents the additive noise vector. each 
element of n  is independent of each other and follows a 
complex Gaussian distribution with a mean of 0 and a 
variance of 2σ . The transmit signal vector x  can be 
represented as: 

 1 2[0, ,0, ,0, ,0, ,0 ,0, ,0, ]x =    

p

T
Ns s s       (3) 

In Eq. (3), the non-zero elements represent independent 
transmit symbols, each originating from different activated 
antennas. The positions of these non-zero elements within the 
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vector correspond the indices of the active antennas. The total 
number of these non-zeros elements is equal to the number of 
activated antennas, denoted as pN .  

Assuming that the -thI  antenna combination in the 
current time slot is used to transmit modulation symbols, the 
received signal vector y  in Eq. (2) can be considered 
equivalent to 

1

y h s n H s n
=

= + = +∑
N p

i

l l I
l i

                  (4) 

1 2, , ,

pNi i i  represent the indices of pN  activated antennas in 

the antenna combination with sequence I , l  is the index of 
one of the activated antennas, { }1,2, ,∈  cI N . hl  is the 

-thl  column of the channel gain matrix H , and 

( )1 2
, , ,H ×= ∈ 

r p

N p

N N
I i i ih h h  is a submatrix of the channel 

matrix H  corresponding to the current -thI  transmit 
antenna combination. 

In the GSM system, the ML detection algorithm 
exhaustively searches for all possible combinations of 
transmit antennas and their corresponding modulation 
symbols. It compares the Euclidean distance between each 
possible combination and the received signal vector y , and 
performs joint detection across all sets of transmit antenna 
combinations and modulation symbols. The vector that 
corresponds to the minimum Euclidean distance is 
considered the final detection result. The ML detector can be 
mathematically represented as follows: 

( ) 2
2,

ˆ ˆ, arg min || ||s y H s
∈ ∈

= − II Q s S
I                    (5) 

where ˆ∈I I  denotes the final estimated activated antenna 
combination in the current time slot, { }1 2, , ,∈ = 

cNI Q I I I  

denotes the set of possible activated antenna combinations, ŝ  
denotes the modulation symbols transmitted by the activated 
antennas, and H I  denotes the sub-matrix of the channel 

matrix H  corresponding to the ˆ-thI  activated antenna 
combination. 

From Eq. (5), it can be observed that for GSM systems 
transmitting independent signals, the ML algorithm requires 
performing pN

cN M  traversal search. Although the ML 
algorithm exhibits the optimal BER performance and the 
highest accuracy in estimating the transmit antenna 
combination and modulation symbols, its computational 
complexity is extremely high, making it challenging to 
implement in large-scale antenna GSM systems. 

 

III. GP-MMSE DETECTION ALGORITHM 
The group detection technique is inspired by the GML 

detection algorithm [12]. To enhance the performance of 
GSM systems, this section incorporates the grouping idea 
from the GML algorithm into GSM systems and further 
increases the grouping size. Additionally, a low-complexity 
GP-MMSE detection algorithm is proposed, which combines 
the MMSE equalized processing detection algorithm with the 
partial ML detection algorithm. 

First, the tN  transmit antennas are divided into pN  
groups, with only one antenna activated in each group. The 
pseudo-inverse of each column of the channel matrix is used 
to preprocess the received signals, and to sort the indices of 
the transmit antennas within each group. Subsequently, all 
possible transmit antenna combinations are reordered based 
on the sorted indices of antennas within each group. Next, 
these sorted combinations are sequentially demodulated 
using the MMSE equalization processor for symbol 
demodulation. A judgment threshold is then introduced to 
further narrow down the search range. If no judgment 
condition is met, the ML detection is ultimately employed to 
obtain the minimum Euclidean distance, thereby estimating 
the required activated antenna combination and transmit 
symbols. Finally, the set of adjacent constellation points that 
minimizes the estimated symbol constellation distance is 
identified. Subsequently, the partial ML algorithm is applied 
for demodulation and re-detection, enhancing the accuracy of 
the symbol decision result [21]. The specific steps of this 
algorithm are as follows. 

Step 1: In a GSM system with tN  transmit antennas, we 
activate pN  transmit antennas for transmitting modulation 
symbols in each time slot. All antennas can be divided into 

pN  groups, each consisting of t pN N N=  antennas. When 
information is transmitted, only one antenna from each group 
can be selected for transmission. Therefore, there are a total 
of ( ) pN

t pN N  types of transmit antenna combinations. 
However, since the number of available antenna 
combinations can only be a power of 2, the effective number 

of antenna combinations is 2log ( )2 p t pN N N
cN   = . Figure 1 

illustrates the grouping rules of the transmit antenna for the 
scenario of 6, 3t pN N= = . 
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Fig. 1.  Grouping rules of the transmit antennas for 6, 3t pN N= = . 

 
Step 2: Process the received signal vector y  using the 

pseudo-inverse of each column of the channel matrix H  to 
measure the activation possibility of all transmit antennas, 

resulting in
T

1 2, , ,
tNz z z =  z , where kz  is represented as: 

2

H
†

2 H( )k
k

k k
kz = =

h y
h

yh
h

                   (6) 

where kh  represents the -thk  column of the channel matrix 

H , 
H

†
H( ) k

k
k k

=
h

h
h h

 represents the pseudo-inverse operation 

on the vector of channel matrix H , {1,2, , }t pk N N∈  . 
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Step 3: Sort the transmit antennas within each group based 
on their corresponding z  value. The sorted groups are 
illustrated in Figure 1. In this example, there are three groups 
of transmit antennas, with each group containing two 
transmit antennas. Within each group, the antennas are 
arranged in ascending order according to their  z  values. In 
the first set, there are: 

[ ] ( )1 2 1ar, gk k sort= z                         (7) 
In group 1, the antennas are ordered based on their activation 
possibility, with 1k  and 2k denoting the indices of the 
antennas in this order. Specially, 1k  represents the index of 
the antenna with the highest possibility of activation with the 
group, and 2k  represents the index of the antenna with the 

second highest possibility of activation. [ ]1 1 2, Tz z=z  is the 
submatrix of vector z . Correspondingly, the sort results for 
the antennas in the other two groups are given by Eqs. (8) and 
(9), respectively: 

[ ] ( )3 4 2ar, gk k sort= z                       (8) 

[ ] ( )5 6 3ar, gk k sort= z                       (9) 

where  [ ] [ ]T T
2 3 4 3 5 6, , ,z z z z= =z z . 

Next, we generalized this example to a general case. 
Assuming that in a GSM system, there are tN  transmit 
antennas and pN  activated antennas, the sub-matrixes of 
vector z  are as follows. 

T

1 1 2

T

2 2
1 2

T

( 1) 1 ( 1) 2

, , ,

, , ,

, , ,

t

p

t t t

p p p

p t t t
p p

p p

N
N

N N N
N N N

N N N N
N N

N N

z z z

z z z

z z z

+ +

− + − +

  
  =
   
    =
   



 
 =
   

z

z

z









    (10) 

The sort result of each antenna set is as follows: 

1 2 1

2 21 2

( 1) ( 1)
1 2

, , , arg ( )

, , , arg ( )

, , , arg ( )

t

p

t t t

p p p

p t p t t p

p p

N
N

N N N
N N N

N N N N N N
N N

k k k sort

k k k sort

k k k sort

+ +

− −
+ +

 
  =
  
 
  =

  


   =  

z

z

z









 (11) 

where 1 ( 1)1 1
, , ,

t p t

p p

N N N
N N

k k k −
+ +
 are the indices of the antennas 

with the highest activation probability in each group. 
Step 4: Reorder all activated antenna combinations 

according to the sorting results of each group of transmitting 
antennas in Step 3. Firstly, determine the order of the first 
activated antenna in the first antenna set. Then, reorder the 
antenna combinations containing 1 2, , ,

t pN Nk k k  antenna 

indices according to the order determined in Step 3. 
Assuming that the sorting result of group 1's [ ]1 2,k k  in 
Figure 1 is [2,1], the sorting result of the antenna combination 
is shown in Figure 2. 
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Fig. 2. The first step sorting rules of the transmit antennas for 

6, 3t pN N= = . 

 
Step 5: Without affecting the order of the first activated 

antenna, we rearrange the second activated antenna in the 
order of index 21 2

, , ,
t t t

p p p

N N N
N N N

k k k
+ +

  in the second antenna set. 

If the sorting result of [ ]3 4,k k  in group 2 is [4,3], we should 
first prioritize the transmit antenna combinations that include 
antenna index 4, and then proceed to rank the combinations 
that include index 3. The sorting rule is illustrated in Figure 3. 
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Fig. 3. The second step sorting rules of the transmit antennas for 
6, 3t pN N= = . 

 
Step 6: According to the above sorting rules, the antenna 

indices in group 3, as well as those in group pN , are further 
sorted until all tN  transmit antennas have been properly 
sorted. 

When this sorting rule is generalized to the general case, 
there are pN  activated antennas, and all tN  transmit 
antennas are divided into pN  groups. In the specific case 
where only one antenna is activated in each group, there are 
( ) pN

t pN N  possible combinations. The transmit antenna 
indices will be sorted as shown in Figure 4, where the 
combinations of activated transmit antennas are arranged 
from left to right. 

As shown in Figure 4, the antenna combination 

1 ( 1)1 1
, , ,

t p t

p p

N N N
N N

k k k −
+ +

 
 
 
 

  located at the leftmost position is 
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the most likely one to be activated. 
Step 7: Sequentially perform the block MMSE 

equalization processing on each of the reordered transmit 
antenna combinations, as defined in Eq. (12): 

( ) ( )
1H H

2
k k kj j jj I I Iσ

−
 = + 
 

s H H I H y         (12) 

where js  is the detected symbol in the -thj  antenna 
combination in the new ordered set, I  is the p pN N×  

identity matrix, and r p

k j

N N
I

×∈H   consists of the column 

vectors of all antenna indices corresponding to the -thj  
antenna combination 

jkI  in the channel matrix H  after 

ordering. 
Step 8: Symbol demodulation for M-QAM and M-PSK 

constellations is performed for the symbol js  obtained in 
-thj  antenna combination 

jkI , respectively. 

For the M-QAM constellation, if the modulation signal S , 
with | |S M= , forms a square or rectangular lattice 

constellation, then the constellation can be regarded as the 
Cartesian product of two sets 1 1-PAMS N=  and 

2 2 -PAMS N= , where the values of 1N  and 2N  are given by 
-PAM { 1, 3, , 1,1, , 3, 1}N N N N N= − + − + − − −  . N  is 

the positive integer powers of 2. The real and imaginary parts 
of the modulation symbol js  are quantized separately, as 
illustrated in Eqs. (13)-(14). Subsequently, these quantized 
real and imaginary parts are recombined using Eq. (15) to 
achieve M-QAM constellation modulation. 

( ) ( )
1 1

1
min max 2 1, 1 , 1

2
j

j round N N
ℜ +

ℜ = ∗ − − + −
   

        

s
s



 

(13) 

( ) ( )
2 2

1
min max 2 1, 1 , 1

2
j

j round N N
   ℑ +
   ℑ = ∗ − − + −

      

s
s



 

  (14) 
( ) ( )j j jj= ℜ + ℑs s s                     (15) 

In an M-PSK constellation, the constellation points are 
located on a unit circle with an amplitude of 1, each 
representing a unique phase. The quantization of the 
modulation symbol js  is different from that of the M-QAM 
constellation. Assuming θ  is the angle between js  and the 
positive real axis of the complex plane, the quantization 
symbol js  after the -thj  antenna combination correction 
can be represented by Eqs. (16)-(18).  

2j
Mθϕ
π

=                              (16) 

( )( ) 2ˆ mod ,j jround M
M
πϕ ϕ= ∗                (17) 

ˆ ˆcos sinj j jjϕ ϕ= +s                         (18) 
Step 9: After quantizing the modulation symbols js , a 

judgment threshold is introduced to constrain the possible 
conditions of the both transmit antenna combinations 

jkI  and 

the transmit symbols js , with the aim of reducing the 
computational complexity,. If the condition specified by Eq. 
(19) is satisfied, the output is ( , )

jk jI s . 
2

th
2

V
k jj I jd = − ≤y H s              (19) 

where thV  is a preset threshold for judging whether the 

detected signal meets the condition. The judgment threshold 
thV  is set to 22 rN σ . If the current detected result satisfies the 

condition given by Eq. (19), it is considered that the detector 
has successfully found the optimal estimates Î  and ŝ . If 

th> Vjd  is obtained for the current detection, it is deemed 
that group ( , )

jk jI s  is not the optimal estimation result. 

Hence, the detector updates 1j j= +  and proceeds to detect 
whether the next group satisfies the condition. 

Step 10: If no candidate ( , )
jk jI s  meets the condition given 

by Eq. (19), the optimal result is estimated using the ML 
detection algorithm. 

{ }
2

ˆ ˆ

2
,ˆ

ˆ

arg m 1in arg 2min ,, ,

ˆ,

k jI jj j

j j

cNj j

I I

 = = ∈

 =

−

=

y H s d

s s                   

      

(20) 

where 
2

2k jI j−y H s  in ML detection is the set of jd , which 

is denoted as matrix 1 cN×∈d  . Then, the currently detected 
ˆ ˆ( , )I s  is deemed as the optimal estimate. 
Step 11: The obtained modulated symbols ĵs  are 

re-detected using partial ML. The set of adjacent 
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Fig. 4. The sorting rule of antennas in general. 
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constellation points with the smallest Euclidean distance to 
the detected symbol ĵs , specifically those whose Hamming 

distance is 1, is identified. Figures 5-6 illustrate the sets of 
constellation points closest to ĵs  using 16QAM and 8PSK 

modulation, respectively. 
As illustrated in Figure 5, in 16-QAM modulation, 

adjacent constellation points can differ by values of 2, 3, or 4. 
For instance, if the modulation symbol ĵs  is 1101, then its 

adjacent constellation points are 0101, 1100, 1001, and 1111. 
However, in Figure 6, only two adjacent constellation points 
are present for each constellation symbol in M-PSK 
modulation. 

Step 12: The ML detection algorithm is once again applied 
to the set of constellation points, with the aim of correcting 
the modulation symbol ĵs  . The constellation point ĵs  with 

the minimum Euclidean distance from the receiver vector y  
is selected as the output, as shown in Eq. (21). 

2

ˆ 2

ˆ

arg min
j j

j

Ij =


=

−y H s

s s







 
                   (21) 

where ˆ
r pN N

I
×∈H



  is composed of column vectors 
corresponding to the indices of the detected optimal activated 
antenna combination Î  in channel matrix H , and js  
represents the set of constellation symbol ĵs  and adjacent 

constellation points with the smallest distance from ĵs .  
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Fig. 5. Adjacent constellation points for 16QAM. 
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Fig. 6. Adjacent constellation points for 8PSK constellation. 

 

Finally, both the optimal activation antenna combination 
Î  and the transmit modulation symbols js  have been 

successfully detected. The ML algorithm, by detecting only a 
subset of the constellation points and avoiding a full search 
through all possible points, significantly reduces its 
computational complexity compared to the ML algorithm 
that employs exhaustive search.  

The proposed GP-MMSE detection algorithm can be 
described in Table I. 

 
TABLE I 

PROPOSED GP-MMSE DETECTION ALGORITHM  

1: Input: 2
th, , , , V, 2t r p rN N N N σ=y H    . 

2: Divide the tN  transmit antennas into pN  groups, with each group 

containing t pN N  antennas; 

3: Process the received signals y  using each column of channel matrix H  

to obtain vector 1 2  , , ,
t

T

Nz z z =  z  : 
H 2

†

2
H( )k k
k

k k

z = =
y

h
y hh

h
; 

4: Use Eq. (10) to group z  into pN  sets, and then sort the transmit antennas 

within each set according to their corresponding values as determined by 
Eq. (11); 

5: Reorder the transmit antenna combinations in the order of jk , and while 

maintaining the order of the previous active antenna, further sort the 
indices in subsequent antenna set until the process is repeated pN  times, 

resulting in a new ordering of the antenna combinations; 
6: Initialize 1j = ; 

7: while cj N≤  

8:     do ( ) ( )
1H H

2
k k kj j jj I I IQ σ

−  = +     
s H H I H y ，

2

2k jj I jd = −y H s ; 

9:              if   thVjd ≤  

                         ˆ ˆ,
jk jI I= =s s ,break; 

10:            else 

                         1j j= + ; 

11:            end if 

12: end while 

13: if  cj N>  

{ }
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14: end if 

15: Identify the constellation symbol ĵs  and determine the adjacent 

constellation point that has the smallest Euclidean distance from ĵs  to 

form the set js ; 

16: The modulation symbols are corrected using ML: 
2

ˆ 2
arg min

j

Ij jj =

 =

−y H s

s s









   

17: Output the final result ( )ˆ,I s . 

 

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 1125-1134

 
______________________________________________________________________________________ 



 

IV. SIMULATION RESULTS AND COMPUTATIONAL 
COMPLEXITY ANALYSIS 

To verify the BER performance and computational 
complexity of the proposed GP-MMSE algorithm, as well as 
the ML and OB-MMSE algorithms, simulations were 
conducted using both M-QAM modulation and M-PSK 
modulation schemes. Assuming a GSM system where 
activated antennas transmit independent signals, the BER 
performance of these three algorithms was compared at 
various signal-to-noise ratios (SNRs). The simulations were 
performed in a quasi-static Rayleigh flat fading channel, with 
additive Gaussian white noise following a complex Gaussian 
distribution having a mean of 0 and a variance of 1. 

A. BER performance with M-QAM modulation 
Figure 7 provides a comparison of the BER performance 

of ML, OB-MMSE, and GP-MMSE algorithms under 
16QAM modulation simulation scenarios in GSM systems 
with 8tN = , 12rN = , and 2pN = . The horizontal axis 
represents the SNR, and the vertical axis represents the BER 
performance. It can be observed that the BER performance of 
the GP-MMSE algorithm is superior to that of the 
OB-MMSE algorithm, and its BER performance is closer to 
the ML algorithm. 

 

 
Fig. 7. Comparison of BER performance of ML, OB-MMSE, and 
GP-MMSE algorithms with 8tN = , 12rN = , 2pN = for 16QAM 

constellation. 
 

Figure 8 shows a comparison of the BER performance of 
ML, OB-MMSE, and GP-MMSE algorithms under the 
condition of 6tN = , 10rN = , 3pN = , 16M = . As shown 
in Figure 8, the BER performance of the GP-MMSE 
algorithm is superior to that of the OB-MMSE algorithm, and 
its BER performance is closer to the ML algorithm. 

 

B. BER performance with M-PSK modulation 
Figure 9 provides a comparison of the BER performance 

of ML, OB-MMSE, and GP-MMSE algorithms under 16PSK 
modulation simulation scenarios in GSM system with 8tN = , 

12rN = , 3pN = . It can be observed that the BER 
performance of the proposed GP-MMSE algorithm closely 
approximates the simulation curve of the ML algorithm, 
demonstrating excellent simulation performance. When the 
SNR exceeds 10dB, the BER performance of the GP-MMSE 
algorithm matches that of the ML algorithm. In contrast, the 

simulation curve of the OB-MMSE algorithm is slightly 
inferior, with its performance being marginally lower than 
that of the GP-MMSE algorithm when the SNR is above 6dB. 

 

 
Fig. 8. Comparison of BER performance of ML, OB-MMSE, and 
GP-MMSE algorithms with 6tN = , 10rN = , 3pN =  for 16QAM 

constellation. 
 

 
Fig. 9. Comparison of BER performance of ML, OB-MMSE, and 
GP-MMSE algorithms with 8tN = , 12rN = , 3pN = for 16PSK 

constellation. 
 

 
Fig. 10. Comparison of BER performance of ML, OB-MMSE, and 
GP-MMSE algorithms with 6tN = , 10rN = , 3pN = for 16PSK 

constellation. 
 

Figure 10 provides a simulation when the number of 
activated antennas is increased to 3, with the condition of 

6tN = , 10rN = , 3pN = , 16M = . The simulation results 
indicate that the performance trends are similar to those 
observed when the number of activated antennas are 2, 
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suggesting that increasing the number of activated antennas 
does not significantly alter the overall performance. The 
GP-MMSE algorithm still shows a better BER performance 
compared to OB-MMSE, demonstrating its robustness and 
efficiency even in scenarios with a higher number of 
activated transmit antennas. 

Based on the above simulation results, we can conclude 
that the BER performance of the proposed algorithm under 
M-PSK constellation modulation is superior to that achieved 
under M-QAM constellation modulation. Specifically, the 
BER of the GP-MMSE algorithm under M-PSK modulation 
is very close to, and almost consistent with, the performance 
of the ML algorithm. In contrast, the OB-MMSE algorithm 
exhibits slightly inferior performance. 

C. Computational Complexity Analysis 
To analyze the computational complexity of the 

GP-MMSE algorithm, we compare it directly with the 
computational complexities of ML and OB-MMSE 
algorithms. Given that the computation time for real number 
addition and subtraction is significantly lower than that for 
real number multiplication and division, we focus solely on 
the number of real number multiplication and division 

operations in our complexity analysis. 2  log
2

N p
Nt

c

C
N

 
  =  

represents the number of all possible transmit antenna 
combinations in the GSM system, avgp  represents the 
average number of MMSE detections for each transmit 
antenna combinations in Eq. (12), and jL  represents the 
number of adjacent constellation points with the minimum 
distance between the constellation symbol ĵs  corresponding 

to the -thj  activated antenna in the GP-MMSE algorithm. 
When the symbol is M-PSK modulation, 3jL =  and M  is 
the modulation order. 

The computational complexity of the ML algorithm can be 
obtained by utilizing Eq. (5), where the total number of all 
possible transmit antenna combinations is denoted as 

2  log
2

N p
Nt

c

C
N

 
  = , 2log2 pN M  denotes the number of 

combinations where each antenna combination transmit 
different symbols, and for each combination r p rN N N+  
operations are required. 

Therefore, the computational complexity of the ML 
algorithm can be expressed as 

2log
ML 2 ( 1)pN M

r p cC N N N= +                   (22) 
The computational complexity of the OB-MMSE 

detection algorithm, as reported in [11], can be expressed as: 

( )2

OB-MMSE

3 2

2

(2 3 5 ) 6 1

r t c p

c p p p p r avg

C N N N N

N N N N N N p

= +

 + + − + +  

    (23) 

where the first part 2 r tN N  represents the computational 
complexity associated with processing the received signal 
vector y , i.e., specifically obtaining z . The second part 

c pN N  is the computational complexity involved in 
calculating  the weight value for each group of transmit 
antenna combinations; and the last part 

( )23 2(2 3 5 ) 6 1c p p p p r avgN N N N N N p + − + +  
 represents 

the computational complexity required to detect the MMSE 
for all the antenna combinations sequentially and compute 
the total number of computations required to determine 
whether the current combination satisfies the judgment 
threshold value. Calculating HH H  requires 

3 2(2 3 5 ) / 6p p pN N N+ −  operations [22], multiplying it with 

the matrix HH  requires 2
p rN N  operations, and multiplying 

it with the matrix y  requires p rN N  multiplication 
operations. 

The GP-MMSE algorithm differs from the OB-MMSE 
algorithm in that its first part involves processing all received 
signals without the need to compute weight values. The 
computational complexity of this part is denoted as 

( )23 2[(2 3 5 ) 6 1 ]c p p p p r avgN N N N N N p+ − + + + 2 r tN N . 

The computational complexity of the GP-MMSE algorithm 
increases because it necessitates the application of a partial 
ML algorithm for the re-detection of modulated symbols and 
their adjacent constellation points. For M-QAM modulation, 

pMN  operations are required to identify the set of adjacent 
constellation points with the minimum Euclidean distance 
from the given modulation symbol, and then 

1

( 1)
pN

r j p
j

N L N
=

+∏  operations are needed to perform ML 

detection on this current set of constellation points. For 
M-PSK modulation, since there are only two fixed adjacent 
constellation points that are closest to each modulation 
symbol, ML detection needs to be performed on the current 
set of three constellation points, requiring 3 ( 1)pN

p rN N+  
operations. 

The computational complexity of the GP-MMSE 
algorithm under M-QAM modulation and M-PSK 
modulation is shown in Eqs. (24)-(25), respectively. 

( )23 2
M-QAM

1

(2 3 5 ) 6 1

           2 ( 1)    
p

c p p p p r avg

N

r t j p p
j

C N N N N N N p

N N L N MN
=

 = + − + +  
 

+ + + + 
  

∏
 

(24) 

( )23 2
M-PSK (2 3 5 ) 6 1

           2 3 ( 1)    p

c p p p p r avg

N
r t p

C N N N N N N p

N N N

 = + − + +  
 + + + 

 

(25) 
Figure 11 represents a comparison of the computational 

complexity of the ML, OB-MMSE and GP-MMSE 
algorithms when employing 16QAM modulation for 8tN = , 

12rN = , 2pN = . The horizontal axis represents the SNR 
and the vertical axis represents the computational complexity. 
As shown in Figure 11, the complexity of the ML algorithm is 
significantly higher than that of OB-MMSE and GP-MMSE 
algorithms. Furthermore, as the SNR increases, the 
complexity of both the GP-MMSE and OB-MMSE 
algorithms gradually decreases. At an SNR of 10dB, the ML 
algorithm exhibits a complexity of 147,456, whereas the 
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OB-MMSE algorithm has a complexity of approximately 
1,132. The GP-MMSE algorithm, with a complexity of 1,740, 
lies slightly above the OB-MMSE algorithm in terms of 
complexity, but is significantly lower than the ML algorithm. 

Figure 12 presents a comparison of the computational 
complexity of the ML, OB-MMSE, and GP-MMSE 
algorithms when using 64PSK modulation at 6tN = , 

10rN = , 3pN = . As the modulation order M increases, it 
becomes evident that the computational complexity of the 
ML algorithm is significantly higher than that of the 
GP-MMSE algorithm. Meanwhile, although the 
computational complexity of the GP-MMSE algorithm 
gradually increases with increasing SNR, this increase is 
negligible when compared to the computational complexity 
of the GP-MMSE algorithm. Specially, at an SNR of 10dB, 
the ML algorithm exhibits a computational complexity of 
786,432, whereas the GP-MMSE algorithm has a complexity 
of only 2,291, which is markedly lower. 
 

 
Fig. 11. The computational complexity comparison of ML, OB-MMSE, and 
GP-MMSE algorithms with 8,tN =  12,rN =  2pN =   for 16QAM 

constellation. 
 

 
Fig. 12. The computational complexity comparison of ML, OB-MMSE, and 
GP-MMSE algorithms with 6,tN =  10,rN =  3pN =   for 64PSK 

constellation. 
 

V. CONCLUSION 
In this paper, a GP-MMSE detection algorithm based on 

group strategy specifically tailored for GSM system is 
proposed. Firstly, after selecting the antenna groups, the 
combinations of these antennas are reordered based on the 
sorting result obtained by a specific sorting algorithm for 

each antenna sequence. Subsequently, MMSE equalization 
processing and detection are sequentially applied to the 
sorted antenna combinations. Following this, the resulting 
modulation symbols are further optimized by incorporating a 
partial ML algorithm, which enhances the accuracy of 
modulation symbol estimation. Ultimately, the ML algorithm 
is employed to estimate the optimal transmit antenna 
combinations and symbols. Simulation results demonstrate 
that the performance of GP-MMSE algorithm is comparable 
to that of the ML algorithm and significantly outperforms the 
OB-MMSE algorithm. In particular, under M-PSK 
modulation, while the performance of GP-MMSE algorithm 
remains almost identical to that of the ML algorithm, its 
computational complexity is considerably lower.  
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