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Abstract—To enhance image encryption efficiency, this paper

proposes a bit-level multi-image encryption algorithm based on
composite chaotic systems. It necessitates merely a single
encryption operation to encrypt an arbitrary number of images,
with the computational expense being on par with that of
encrypting just one image. Firstly, utilizing Sine and Tent
mappings, we introduce an innovative composite chaotic system
termed 1D-SATM. The new composite chaotic system has a
larger chaotic space and better randomness, than the original
two one-dimensional chaotic maps. When encrypting, the first
step is to overlay multiple color images to form a single overlay
image. Secondly, the color overlay image is segmented into a
three-channel matrix. Then the Binary Bit Plane Decomposition
(BBD) technique is used to decompose each channel into 8-bit
planes, which are subsequently divided into two groups. Again,
perform the right cyclic shift and XOR operations on the two
groups of bit planes for diffusion. Perform XOR operations on
the chaotic sequence generated by 1D-SATM with the diffusion
result again, to further obfuscate the data. Finally, the
optimized Josephus permutation algorithm is applied, to
produce an encrypted color composite image. The experimental
results and algorithm analysis indicate that this algorithm has
good encryption effectiveness, high security, and fast running
speed.

Index Terms—Composite chaotic system, Image encryption,
Bit plane, Scrambling, diffusion

I. INTRODUCTION

MAGE encryption is one of the most important methods
for providing security and ensuring the confidentiality of

image information [1]. Image encryption is a technique that
uses mathematical transformations to obfuscate the pixel
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positions of ordinary images, making the content of the
image difficult to identify. In the 1970s, chaos theory was
established and applied to various research fields [2]. At first,
Matthews [3] proposed that chaotic systems could be used in
cryptography. Chaotic systems are very suitable for image
encryption due to their sensitivity to initial values,
pseudo-randomness, ergodicity, and unpredictability [4]-[5].
The fundamental idea of chaotic cryptography is based on
scrambling and diffusion [6]. Scrambling refers to the
redistribution of pixel positions in a planar image,
eliminating the high correlation between adjacent pixels, to
obtain an image that is visually disruptive and unidentifiable
[7]-[8]. Diffusion involves using chaotic mappings to
disperse the redundancy in a planar image across a diffused
image, thereby altering the pixel values [9]-[10]. People often
integrate scrambling and diffusion to improve security and
the effectiveness of encryption [11].

In the early days, people only used one-dimensional or
two-dimensional chaotic systems for image encryption.
Although low-dimensional chaotic systems have a simple
structure, their chaotic behavior is limited, the key space is
small, and the security is weak [12]-[13]. To improve the
security of image encryption, a high-dimensional (≥ 3D)
chaotic system is used for image encryption [14]. However,
due to the complex structure and multiple control parameters
of high-dimensional chaotic systems, their computational
complexity is higher. To address the shortcomings of
low-dimensional and high-dimensional chaotic systems,
researchers have proposed a new type of hybrid chaotic
system. It consists of multiple interconnected chaotic
subsystems, which can make the system more complex and
less predictable [15]. This improvement enhances the
system's security, increasing its ability to resist attacks or
breaches [16]. By adjusting the coupling mode and strength
between subsystems, it is possible to customize the behavior
of the system, making it more suitable for specific encryption
or chaotic applications [17]. This type of chaotic system can
compensate for the deficiencies of low-dimensional chaos.
Compared to high-dimensional chaos, this system is not only
simpler, but also easier to implement.

In practical applications, there are many requirements to
encrypt multiple images in one computation to improve
computational efficiency. Zhang et al. [18] proposed a
multi-image encryption algorithm based on DNA encoding.
Zhang's solution is to arrange multiple images into a large
image. Then, a general image encryption algorithm is applied
to encrypt this large image. Using this method, it is possible
to encrypt multiple images through a single encryption
computation, the computational cost is almost equivalent to
encrypting each image separately; K. A. K. Patro et al. [19]
proposed a multi-image encryption technique. In this work, a
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set of images is divided into non-overlapping blocks of size 2
× 2 pixels. Then these blocks are arranged in separate arrays.
Finally, the block array is permuted and diffused using the
PWLCM system. Due to the division of images into
non-overlapping blocks, for large-sized images, the
encryption efficiency of this method is not as high as that of
single-image encryption schemes.

This paper proposes a multi-image encryption algorithm
based on the composite chaotic system 1D-SATM and bit
planes. Unlike previous image encryption schemes, this
method is a batch image encryption algorithm, that requires
only one encryption calculation to encrypt any number of
images, and the computational cost is equivalent to
encrypting a single image. Firstly, by using Sine and Tent
maps, a new composite chaotic system called 1D-SATM is
constructed. The new composite chaotic system has a larger
chaotic space and better randomness, compared to the
original two one-dimensional chaotic maps. In multi-image
encryption, the stacking method is adopted instead of
arranging multiple images into a large image.

II. CORRELATION THEORY

A. Sine Chaotic Map
The Sine map is also a classic one-dimensional chaotic

map [20], which has similar chaotic characteristics to the
Logistic map. The mathematical formula is shown in (1).

1 sin( ) / 4i ix a x  (1)

Among them, the parameter (0.87,1]a . The bifurcation
diagram of the Sine map is shown in Fig 1.

Fig. 1. Bifurcation diagram of Sine map

B. Tent Chaotic Map
The Tent map is named for its function graph resembling a

tent and is a one-dimensional piecewise map [21]. Its
mathematical expression is shown in (2).

1
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Parameter (0, 4]u . The bifurcation diagram of the Tent
map is shown in Fig 2.

C. 1D-SATM Chaotic Map
This chapter proposes a new composite chaotic system, the

fundamental concept of which is to perturb one chaotic map
with another, as shown in (3).

1 (( ( ( )) ( )) ) mod1
  i main seed i seed ix f f x f x r (3)

Among them, mainf and seedf are both classical
one-dimensional chaotic maps and the calculation result of
seedf is used as the input of mainf . r is used to better

distribute state variables in phase space, and the choice of the
exponential value r is a trade-off between chaos and
computational speed.

Despite iterating only two chaotic maps, the output of the
proposed chaotic system is influenced by the dynamic
characteristics of three different maps (the main map, the
seed map, and the modified seed map). Therefore, compared
to the method using only two chaotic maps, the proposed
scheme exhibits more complex chaotic characteristics, and its
computational complexity is significantly reduced compared
to chaotic systems utilizing three maps. Based on the
definition of the proposed chaotic system, we combine the
Sine map with the Tent map, and its mathematical definition
is shown in (4).
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Among them,  =14, (0.87,1]a . i is the number of
iterations, and in this article, 23000i . The bifurcation
diagram of 1D-SATM is shown in Fig 3. In addition, the
output performance of the 1D-SATM was analyzed using the
NIST SP800-22 testing standard. The test results are shown
in Table Ⅰ.

Fig. 2. Bifurcation diagram of Tent map

Fig. 3. Bifurcation diagram of 1D-LATM

D. Binary Bit Plane Decomposition (BBD)
In grayscale images, each pixel value is a decimal number

between 0-255, which can be represented by an 8-bit binary
sequence 1 1 0( ,..., , )nx x x , as shown in (5).

0 1 1
0 1 1

1
2 2 2 ... 2

0





    

 i i
i i

n
N x x x x

i
(5)
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TABLE Ⅰ
STATISTICAL RANDOMNESS TEST RESULTS

Test P-value Result

Single-bit frequency test 0.4728 √

In-block frequency test 0.7074 √

Run test 0.4434 √

Test for longest run of ones in a block 0.1307 √

Binary matrix rank test 0.7712 √

Discrete Fourier (spectral) test 0.3304 √

Non-overlapping template matching test 0.4237 √

Overlapping template matching test 0.3539 √

Maurer’s “Universal Statistical” test 0.8618 √

Linear complexity test 0.3543 √

Sequence test 0.4163 √

Approximate entropy test 0.7081 √

Cumulative sums and test 0.8650 √

Random travel test 0.7743 √

Random travel variant test 0.3329 √

BBD can divide grayscale images into 8 binary bit planes,
with each bit plane representing the information of a single
bit [22]. Usually, the highest bit plane contains the highest
weight, representing the most significant image information.
The lowest bit plane contains the lowest weight,
representing the finest details. Fig 4 shows the grayscale
image of the House and its decomposed 8-bit plane images.
As seen from the figure, the image information becomes
increasingly clearer from the 1-bit plane to the 8-bit plane.

Fig. 4. Image House and its 8-bit planes

E. Josephus Permutation Algorithm
The Josephus permutation algorithm is a classic

scrambling algorithm, commonly used to scramble an
ordered list or sequence randomly. Usually, this algorithm is
employed to generate random shuffle orders to enhance
randomness or to safeguard data privacy. The traditional
Josephus permutation algorithm sets a fixed starting position,
start_position, and a fixed jumping distance, skip_distance.

This paper has made improvements by utilizing a dynamic
Joseph loop. After each jump, the start_position and
skip_distance are randomly generated. Each jump starts only
from the start_position and ends at the last position of the
sequence. The matrix traversal-info is employed to record
the start_position and skip_distance of each traversal.
During decryption, the matrix traversal_info is utilized to
restore the image.

The traditional method and the improved method were
used, to scramble the color Baboon image with a size of 256
× 256 (500 rounds). Fig 5 shows the result of using the
traditional Joseph algorithm, and the result after optimizing
the algorithm.

(a) Baboon image (b) Traditional method (c) Improved
Fig. 5. Baboon and two types of scrambled images

From the above figure, the traditional Josephus
permutation algorithm still reveals certain features in the
image, and it also exhibits a specific linear variation
characteristic. By utilizing the algorithm optimized from the
traditional algorithm for scrambling, the scrambling effect
can be significantly enhanced, resulting in each pixel
appearing more disordered after scrambling. Simultaneously,
the two scrambling methods were timed to encrypt the image.
For a color image of size 256×256 encrypted for 500 rounds,
the traditional method took 209 seconds, whereas the
improved method only required 9 seconds.

III. DESIGN AND IMPLEMENTATION OF ALGORITHMS

A. Image Encryption
The flowchart of the proposed image encryption

algorithm is shown in Fig 6. Firstly, multiple color images
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are overlaid to obtain the overlaid image 0S . Secondly,
using BBD to decompose the stacked image into 8 bit planes.
These 8 bit planes are divided into two groups, with the four
higher-bit planes forming one group, denoted as 1A ; and the
four lower-bit planes forming another group, denoted as 2A .
Thirdly, 1A and 2A are cyclically shifted to the right to
obtain 11A and 22A . Fourthly, the chaotic system
1D-SATM is used to generate a chaotic sequence X , which
is decomposed into bit planes 1 8x x . Similarly, plane A is
divided into two groups, denoted as 1( 1, 3, 5, 7)b x x x x and

2( 2, 4, 6, 8)b x x x x . Fifthly, XOR 2A , 11A , and 1b to
obtain 1B . Simultaneously, using the chaotic system
1D-SATM to generate the chaotic sequence 1P , XOR 1P
and 1B again to obtain 1'B . Similarly, XOR 22A , 1'B ,
and 2b to obtain 2B . Simultaneously using the chaotic
system 1D-SATM to generate a chaotic sequence 2P , XOR

2P with 2B again to obtain 2 'B . Sixthly, the improved
Joseph scrambling algorithm for 1'B and 2 'B yields 11B
and 22B . Seventhly, reshape the matrices 11B and 22B
into new matrices 1E and 2E , and then split the matrices 1E
and 2E into bit planes 11E and 22E . Subsequently, 8 bit
planes are extracted from 11E and 22E , each stored in
variables from 1e to 8e . Next, these 8 bit planes are
combined to form a new matrix called ee . Finally, a switch
statement is introduced to replace the values of different
channels (red channel, green channel, or blue channel),
based on the value of the channel. After the loop ends, the
three encrypted red, green, and blue channels are merged to
obtain the encrypted color image.

Assuming there are k color images of size M × N to be
encrypted, we stack these color images into a single stacked
image. Subsequently, we will perform an image encryption
operation on this stacked image. The following outlines the
specific encryption process and method:

(1) Overlay image
For color image iS , there are:

11 12 1

21 22 2

1 2

  ... 

  ...  
,  1, 2,...,

...   ...   ...  ...
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(6)

For the stacked image 0S , there are:
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(7)
M and N are the height and width of the superimposed

image, respectively. ,
iS
p qa represents the pixel value in ( , )p q

of the i-th color image.
To separate each color image from the stacked image

during the decryption process, we use image matrices
iS

M

and
0S

M to calculate the weight matrix  ( 1, 2,..., )iW i k for

each color image ( 1, 2,..., )iS i k . The weight matrix is
defined as shown in (8).
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(8)

Wherein, 0
, , ,/i iS S S
p q p q p qw a a , 1, 2,...,p M , 1, 2,...,q N .

(2) Separate the three channels of the color image in
accordance with (9)

0

0

0

(:,:,1)
(:,:, 2)

(:,:,3)


 
 

redChannel S
greenChannel S
blueChannel S

(9)

(3) Loop through the image data of three channels
Extract the data from each channel, and store it in the

variable dS . Then, extract the pixel values bit by bit
according to (10) and store them in 1 8S S .

1

2

3

4

5

6

7

8

mod( ,2)
mod( ( / 2), 2)
mod( ( / 4), 2)
mod( ( / 8), 2)
mod( ( /16), 2)
mod( ( / 32), 2)
mod( ( / 64), 2)
mod( ( /128), 2)


 
 



 
 



 

d

d

d

d

d

d

d

d

S S
S floor S
S floor S
S floor S
S floor S
S floor S
S floor S
S floor S

(10)

(4) Create bit plane matrices 1A , 2A
1A contains the four lower-bit planes 1 4( )S S , while

2A contains the four higher-bit planes 5 8( )S S .
(5) Generate a key stream sequence
Assuming the size of the image to be encrypted is M × N,

we iterate the 1D-SATM chaotic system R+M × N times
according to (3), then discard the R-value. This yields a
sequence of X , 1 2{ , ,..., } MNX x x x with a length of M × N.
Convert ( )X i to an integer sequence 1( )X i using (11).

14
1( ) mod( ( ( ) 10 ), 256) X i floor X i (11)

The range of elements in 1( )X i is from 0 to 255. This
paper uses BBD to decompose X into 8 bit planes, so there
are eight binary sequences. Then, this paper flexibly divides
the sequence into two groups on average. The four odd-bit
planes form one group, and the four even-bit planes form
another. This paper converts these two groups into two
binary sequences 1b and 2b , respectively, to obtain the
binary key stream sequence.

(6) Diffusion
Use the chaotic sequences for cyclic shifts and XOR

operations on 1A , 2A . Storing the results in 1B , 2B .
Step 1: Calculate the sum of all elements in 2A using

(12).

1 1
2( )


 L

i
sum A i (12)

Among them, L is the size of 1A and 2A , 4L MN .
Step 2: Perform a right cyclic shift of 1A by 1sum
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positions to obtain 11A .
Step 3: Encrypt the first element in 11A by using the last

element in 11A and the first element in 2A and 1b , as
shown in (13).

1(1) 11(1) 11( ) 2(1) 1(1    ）B A A L A b (13)
When 2i , there are:

1( ) 11( ) 11( 1) 2( ) 1(     ）B i A i A i A i b i (14)
When 1 i i , continue to execute formula (14) until
i L .
Step 4: Generate chaotic sequence P . Firstly, define a

block size _block size , which determines the division of the
chaotic sequence into multiple blocks for processing. Use a
loop to generate the chaotic sequence to ensure it is long
enough. The loop starts from the second position, and the
starting and ending positions of each block are determined
by _block start and _block end . Within each block,
values in the chaotic sequence are generated by calling the
1D-SATM function.

Step 5: As shown in (15), perform an XOR operation
between the chaotic sequence P and 1B to further
obfuscate the data. This operation is performed in blocks to
ensure that the confusion is sufficiently uniform.

1( _ 1)
1( _ 1) _ ( )

 
   
B block start i
B block start i chaos block i (15)

Among them, _block length is the length of the block,

 1, _i block length . _chaos block is the corresponding
block extracted from the chaotic sequence.

Additionally, if the chaotic sequence is not long enough to
handle the entire 1B array, a part of the chaotic sequence
needs to be regenerated to ensure sufficient confusion.

Step 6: Similarly, use (16) to calculate the sum of all
elements in 1B ; Perform a right cyclic shift on 2A by 2sum
positions to obtain 22A ; then obtain 2( )B i through (17).

2 1
1( )


 L

i
sum B i (16)

2( ) 22( ) 22( 1) 1( ) 2(     ）B i A i A i B i b i (17)
XOR the value of the chaotic sequence with the value of
2B to confuse 2B . If the chaotic sequence is not long

enough to handle the entire 2B array, a part of the chaotic
sequence will be regenerated.

(7) Scrambling
Use the improved Josephus permutation algorithm for

1B , 2B . Simultaneously, use the matrix traversal_info to
record the start_position and skip_distance of each traversal.
Use the matrix traversal_info to reconstruct the image
during decryption. Call the improved Josephus permutation
function (Josephus_Traverse) as shown in (18).

11
_ ( 1, _ , _ )

22
_ ( 2, _ , _ )




 


B
josephus traverse B start position skip distance
B
josephus traverse B start position skip distance

(18)
Among them, start_position is the starting position

traversed by the Josephus traversal, and skip_distance is the
jumping distance traversed by the Josephus traversal. The

values of start_position and skip-distance are obtained from
(19).

_ ( )
_ ([1, 1])


  

start position randi value
skip distance randi value cnt

(19)

Among them, the value of value is M × N. 1cnt is a
variable used to record the index, its purpose is to track the
number of elements that have been processed. 1value cnt
represents the number of elements remaining unprocessed.
This ensures that the skip_distance does not exceed the
range of unprocessed elements.

To achieve a better scrambling effect, This paper
performs two rounds of the improved Joseph permutation.

(8) Obtain the encrypted image
Reshape the two matrices 11B and 22B into new

matrices 1E and 2E . Then, split the matrices 1E and 2E into
bit planes 11E and 22E . Subsequently, 8 bit planes were
extracted from 11E and 22E , with each bit plane stored in a
variable from 1e to 8e . Next, combine these 8 bit planes to
form a new matrix called ee . Finally, introduce a switch
statement to replace the values of different channels (red,
green, or blue) based on the value of the channel. After the
loop ends, merge the three encrypted red, green, and blue
channels to obtain the encrypted color image.

Fig. 6. Image encryption flow chart

B. Image Decryption
Image decryption is the inverse operation of the

encryption algorithm. The flowchart of the image decryption
is shown in Fig 7.

Firstly, separate the red, green, and blue channels from the
encrypted image and decrypt each channel. Secondly,
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separate the bit planes from 1e to 8e separately and
combine them into 1E and 2E , and reshape 1E and 2E into

11B and 22B . Thirdly, perform the inverse operation of the
improved Josephus permutation algorithm on 11B and 22B
respectively, to obtain 1'B and 2 'B . Use the chaotic system
1D-SATM to generate chaotic sequences 1P , 2P , perform
an XOR operation between 1P and 1'B to obtain 1B , and
perform an XOR operation between 2P and 2 'B to obtain

2B . Fourthly, use the chaotic system 1D-SATM to generate
a chaotic sequence X , and decompose X into bit planes

1 8x x . Similarly, divide the bit plane 1 8x x into two
groups, denoted as 1( 1, 3, 5, 7)b x x x x and 2( 2, 4, 6, 8)b x x x x .
Fifthly, perform the inverse XOR operation on 1'B , 2B and

2b to obtain 22A . Perform the reverse cyclic shift
operation on 22A to obtain 2A . Perform the inverse XOR
operation on 2A , 1B and 1b to obtain 11A . Perform the
reverse cyclic shift operation on 11A to obtain 1A . Sixthly,
merge 1A and 2A into the bit plane to obtain a
superimposed image. Finally, separate the stacked images
and obtain n decrypted images.

Fig. 7. Image decryption flow chart

IV. EXPERIMENTAL RESULTS AND ANALYSIS

All simulation experiments were implemented using
MATLAB R2017a. The programs were run on a computer
with an Intel (R) Core (TM) i5-7200 CPU @ 2.50GHz. The
images used in this section are from the USC-SIPI image
library (http://sipi. usc. edu/database/). This section will
analyze the security performance of the algorithm through a
series of experiments, including runtime, key space analysis,
correlation analysis, histogram analysis, sensitivity analysis
(key sensitivity and plain sensitivity), information entropy
analysis, and robustness analysis (noise addition and data
loss).

A. Experimental Result
This paper selects Lena, Pepper, Baboon, and House color

images with a size of 256 × 256 for encryption, as shown in
Fig 8. This paper utilizes the proposed overlay algorithm to
overlay the images, and the resulting overlay image is shown
in Fig 8 (e). The stacked image is encrypted to produce the
encrypted image as shown in Fig 8 (f).

Fig. 8. Plain, overlay and encrypted images

B. Running Speed
The stacked images were encrypted 100 times. Table Ⅱ

compares their average running time with other literature
algorithms. The experiment shows that this algorithm has a
short running time and good encryption and decryption
efficiency.

C. Key Space Analysis
The key space contains all valid keys [56]. As the key

space increases, it becomes increasingly difficult to crack it
using exhaustive search and other attack methods. The size
of the key space should be greater than 2002 . In this paper,
the initial values and parameters of the chaotic system
1D-SATM are used as the system keys. Assuming a
double-precision calculation accuracy of 1610 , the key
capacity of this algorithm can be obtained as 16 8 128 24510 2   ,
which meets the system requirements. If an exhaustive
search attack takes seconds to perform, then cracking this
encryption system by brute-forcing the keys would require

128/(3.15 107) 12010 3.175 10  years. The size of the key space
of the algorithm in this paper and its comparison with other
literature algorithms are shown in Table Ⅲ.

D. Correlation Analysis
This paper randomly selects 5500 pairs of adjacent pixels

( , )i ix y in the vertical, horizontal, and diagonal directions,
from the stacked original image and its cipher image with a
size of 256 × 256. As shown in Fig 9, the distribution of

(a) Lena 256 (b) Baboon 256

(c) Pepper 256 (d) House 256

(e) Overlay image (f) Encrypted image

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 1104-1114

 
______________________________________________________________________________________ 



adjacent pixels in the original image is relatively
concentrated, indicating a strong correlation. In contrast, for
the encrypted images, the distribution of pixel values is
relatively uniform, which means that there is no correlation
between adjacent pixels.

For the stacked images, this paper estimated the
correlation coefficients between adjacent pixels of their
plain images, and their corresponding cipher images, and the
results are shown in Table Ⅳ. Table Ⅳ compares the results
in this paper with some other algorithms. The correlation
coefficient between adjacent pixels in the plain image is
close to 1, indicating a high degree of correlation between
the plain images. The correlation coefficient of the pixels in

the cipher image is close to 0, which is approximately
uncorrelated. This indicates that the algorithm can resist
statistical analysis attacks.

E. Histogram Analysis
The histogram of the cipher image should be uniformly

distributed. Figures 10 (a) - (c) show the histograms of the
R , G , and B channels of the superimposed image,
respectively. Fig 10 (d) - (f) show the histograms of the
encrypted overlay image in three channels, respectively. As
can be seen from Fig 10, the histograms of the stacked cipher
images are very uniform, which means that this algorithm
can resist statistical analysis attacks.

TABLE Ⅱ
RUNNING EFFICIENCY AND COMPARISONS WITH OTHER ALGORITHMS

TABLE Ⅲ
KEY SPACE

TABLE Ⅳ
CORRELATION COEFFICIENTS

Fig. 9. Correlation analysis of superimposed image

Algorithm Our Ref. [23] Ref. [24] Ref. [25] Ref. [26] Ref. [27]
Run time 1.5346 3.3550 1.6403 3.9810 2.7501 3.5721

Algorithm Our Ref. [23] Ref. [24] Ref. [25] Ref. [26] Ref. [27]
Run time 12810 11110 16810 1321.4 10 16510 1223.31 10

Image Plain Cipher
Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Overlay image 0.9164 0.9075 0.96556 -0.0095 0.01159 0.01564
Ref. [23] 0.9673 0.9482 0.9827 0.00144 −0.00151 0.00795
Ref. [24] 0.9872 0.9886 0.9792 -0.00386 0.02407 0.011671
Ref. [25] 0.9719 0.9444 0.9163 -0.0002 0.0052 0.0018
Ref. [26] 0.9391 0.9637 0.9638 0.00019 -0.00092 0.0037
Ref. [27] 0.9373 0.9235 0.9426 0.00044 0.00172 0.00141

(a) Horizontal direction of the plain R (b) Vertical direction of the plain plain R (c) Diagonal direction of the plain R

(d) Horizontal direction of the cipher R (e) Vertical direction of the cipher R (f) Diagonal direction of the cipher R
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Fig. 9. Correlation analysis of superimposed image

F. Sensitivity Analysis
High levels of key sensitivity and plain sensitivity

contribute to preventing various cryptanalysis analysis
attacks and provide stronger data protection and
confidentiality. Therefore, both of these two attributes are
very important considerations in the design and evaluation
of encryption algorithms.

(1) Key sensitivity
Key sensitivity refers to the property in an encryption

algorithm, where even a slight change in the encryption key
used leads to a significant difference in the encryption result.
A good encryption algorithm should have high key
sensitivity, which means that even a tiny change in the key

(g) Horizontal direction of the plain G (h) Vertical direction of the plain plain G (i) Diagonal direction of the plain G

(j) Horizontal direction of the cipher G (k) Vertical direction of the cipher G (l) Diagonal direction of the cipher G

(m) Horizontal direction of the plain B (n) Vertical direction of the plain plain B (o) Diagonal direction of the plain B

(p) Horizontal direction of the cipher B (q) Vertical direction of the cipher B (r) Diagonal direction of the cipher B
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will result in vastly different encryption results, making it
difficult for attackers to crack the key by comparing the
encryption results under different keys. For the stacked
images, we obtain the values of NPCR and UACI using the
following formula. The test results and comparison with
different algorithms are shown in Table Ⅴ.

1 1

1 ( , )
M N

i j
NPCR D i j

M N  

 
  (20)

1 2

1 1

( , ) ( , )1 100%
255

M N

i j

C i j C i jUACI
M N  

  
 

  (21)

(2) Plain sensitivity
Plain sensitivity refers to the significant difference in

encryption results, caused by slight changes to the plain
(data to be encrypted) in encryption algorithms. Similar to
key sensitivity, plain sensitivity is an important attribute of
an encryption algorithm. If an encryption algorithm has high
plain sensitivity, even a slight change in the plain, the
encrypted result should be completely different. Plain
sensitivity helps to prevent attackers from using techniques
such as known-plain attacks, where attackers attempt to
crack the key or gain insights into the encrypted data, by
comparing the encryption results under different plain. For

the stacked images, we obtain the values of NPCR and
UACI through the equation. The test results and comparison
with different algorithms are shown in Table Ⅵ.

G. Information Entropy
Information entropy reflects the uncertainty of image

information. The higher the entropy, the greater the
uncertainty, and the less visible information. The formula
for calculating information entropy is shown in (21). The
theoretical value of information entropy is 8. The
information entropy of this algorithm compared to different
algorithms is shown in Table Ⅶ. From the table, it can be
seen that this algorithm is sufficiently secure to resist
information entropy attacks.

2
0

( ) log ( )
R

i
H p j p j



  (22)

H. Robustness Analysis
Robustness refers to the property that an algorithm

remains effective, even if the cipher image is subjected to
some attacks. This section evaluates the robustness of the
algorithm proposed in this paper through noise addition and
image cropping.

Fig. 10. Histograms of superimposed image

TABLE Ⅴ
KEY SENSITIVITY ANALYSIS AND COMPARISONS WITH OTHER ALGORITHMS

Algorithm Our Ref. [23] Ref. [24] Ref. [25] Ref. [26] Ref. [27] Theoretical
NPCR (%) 99.6081 99.6246 99.6401 99.6475 99.6090 99.6900 99.6094
UACI (%) 33.4614 30.5681 33.4775 31.2188 33.4649 33.4600 33.4635

TABLE Ⅵ
PLAIN SENSITIVITY ANALYSIS AND COMPARISONS WITH OTHER ALGORITHMS

Algorithm Our Ref. [23] Ref. [24] Ref. [25] Ref. [26] Ref. [27] Theoretical
NPCR (%) 99.6090 99.60501 99.6101 99.6510 99.6133 99.6800 99.6094
UACI (%) 33.4647 32.22662 33.6216 31.2179 33.4233 33.4600 33.4635

TABLE Ⅶ
Information entropy and comparisons with other algorithms

Algorithm Our Ref. [23] Ref. [24] Ref. [25] Ref. [26] Ref. [27] Theoretical
Information entropy 7.9975 7.9968 7.9970 7.9971 7.9971 7.9977 8

(a) Plain R (b) Plain G (c) Plain B

(d) Cipher R (e) Cipher G (f) Cipher B
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(1) Noise attack
Noise addition is typically a method used to test or

evaluate the robustness of data processing algorithms.
Adding known or simulated noise to data. To evaluate the
robustness of the algorithm in this chapter, 0.1% and 0.3%
salt-and-pepper noise were added to the cipher image,
respectively, and then the noisy cipher image was decrypted.
After decryption, it was still possible to recover the original
image information to a large extent, indicating the
effectiveness of the algorithm. Fig 11 shows the results of
adding noise to the cipher image and decrypting it.

(a) Add 0.1 salt and pepper cipher
image

(b) Add 0.3 salt and pepper cipher
image

(c) Decrypt Lena image from (a) (d) Decrypt Lena image from (b)

(e) Decrypt Baboon image from (a) (f) Decrypt Baboon image from (b)

(g) Decrypt Pepper image from (a) (h) Decrypt Pepper image from (b)

(i) Decrypt House image from (a) (j) Decrypt House image from (b)
Fig. 11. Noise experiment

(2) Data loss
Data loss refers to the accidental loss of part or all of the

data during data transmission, storage, or processing. The
cipher image after data loss is shown in Fig 12 (a), and the
decrypted image is shown in Fig 12 (b) - (e).

(a) The cipher image after data loss

(b) Decrypted Lena image (c) Decrypted Baboon image

(b) Decrypted Pepper image (c) Decrypted Pepper image
Fig. 12. Clip experiments

V. CONCLUSION

This paper proposes a multi-image encryption algorithm
based on a composite chaotic system (1D-SATM) and bit
plane. Unlike previous image encryption schemes, this
method is a batch image encryption algorithm that requires
only one encryption calculation to encrypt any number of
images, with the computational cost equivalent to that of
encrypting a single image. A new chaotic system,
1D-SATM, is obtained through coupling improvement,
which increases the range of the chaotic map. Firstly, the
stacked image is decomposed into 8 bit planes using Binary
Bit Plane Decomposition (BBD), and these 8 bit planes are
divided into two groups. Secondly, right cyclic shifts and
XOR operations are performed on the two sets of bit planes.
Among them, the chaotic sequence generated by the
1D-SATM chaotic system XOR with the diffusion result, to
confuse the data further. Finally, the optimized Joseph
scrambling algorithm is applied. Unlike the traditional
Joseph shuffling method, which sets a fixed starting position
and a fixed jumping distance, this algorithm has been
improved by randomly generating the starting position and
jumping distance after each jump. Through experimental
analysis of the seven indicators of the algorithm proposed in
this paper, it is found that the algorithm performs excellently,
effectively resisting exhaustive attacks, differential attacks,
and statistical attacks.
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