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Abstract—In view of the problem of low parameter estimation
accuracy in triple diode photovoltaic (PV) modules under dy-
namic weather conditions, a novel enhanced grey wolf optimizer
(FCGWO) is proposed. It incorporates the fitness-distance
balance (FDB) selection method into the chaos learning strategy
to improve convergence performance and population diversity.
Firstly, based on the ergodicity and randomness of the improved
Tent chaotic map, search range of the algorithm is expanded
to explore more potential areas. Secondly, the chaos learning
employs the guiding approach to make the average position
of population gradually approach optimal solution, thereby
enhancing the global exploitation performance. Thirdly, the
FDB selection method considers both the fitness and distance
of solutions, strikes a balance between global exploration and
local exploitation, and increases the probability of escaping
from local optima. Then, FCGWO is compared and evaluated
with eight other algorithms on CEC2022 test suite. Finally,
FCGWO is employed to estimate the parameters of an actual
PV module (Shell ST40) modeled by triple diode under dynamic
weather state. Experimental results demonstrate that FCGWO
attains the best estimation accuracy under different irradiance
and temperature conditions, indicating its great potential for
application in PV modules.

Index Terms—Photovoltaic module, parameter estimation,
chaos learning strategy, fitness-distance balance, grey wolf
optimizer

I. INTRODUCTION

IN the context of today’s growing energy demand and in-

creasingly urgent environmental protection, photovoltaic

(PV) power generation has become the focus of the global

energy field with its clean and renewable advantages [1, 2].

Whereas, the stable operation, performance evaluation and

optimization of PV systems cannot be achieved without

accurate parameter estimation of PV models [3]. As time

progresses, the natural environment is constantly changing.

Weather factors such as fluctuations in irradiance intensity

and temperature make the operating state of the PV system

extremely complicated [4]. Consequently, researching the

estimation of PV model parameters under dynamic weather

conditions holds substantial practical significance [5].

Currently, the methods for estimating PV model param-

eters can be classified into analytical methods [6], numer-

ical optimization methods, and meta-heuristic algorithms

[7]. Analytical methods solve the PV model parameters by
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constructing the explicit equations of the PV model based

on a few physical data provided by PV module manufac-

turers or obtained through actual measurement. This method

features low computational complexity and simplicity, yet

it has low accuracy and is susceptible to key data and

noise [8]. Numerical optimization methods, on the other

hand, accurately extract model parameters by minimizing the

root mean square error (RMSE) between the simulated and

measured I-V curves. Common methods include the Newton-

Raphson method, pattern search method, etc. These types

of methods are sensitive to initial values and have poor

reliability [9]. Meta - heuristic algorithms, on the other hand,

possess several notable advantages. They are characterized

by straightforward calculations, show little sensitivity to

initial values, and can achieve high optimization precision.

In recent years, a plethora of novel meta-heuristic algo-

rithms have emerged, such as multi-strategy whale optimiza-

tion algorithm (MSWOA) [10], dual-population firefly algo-

rithm based on gender differences (DFAGD) [11], improved

seagull optimization algorithm with elite reserve (ISOAE)

[12], white shark optimizer (WSO) [13], improved particle

swarm optimization algorithm (SCOPSO) [14]. Among them,

numerous meta-heuristic algorithms have found applications

in the PV models parameter estimation, such as coyote

optimization algorithm (COA), which was used to estimate

9 unknown parameters of KC200GT and MSX-60 modules

established by triple diode model (TDM) [15]. In [16],

Harris hawks optimization (HHO) was utilized to extract the

parameters of multi-crystal KC200GT and monocrystalline

CS6K280M built by TDM. Da Wang et al. [17] put forward a

novel heterogeneous differential evolution algorithm (HDE),

which enhanced the exploration and exploitation process

of HDE by introducing two novel variation strategies and

an information exchange mechanism, experimental results

confirm the effectiveness of HDE. Mahmoud A. Soliman

et al. [18] designed equilibrium optimizer algorithm (EOA)

to identify the parameters of a TDM PV module model.

In [19], marine predators algorithm (MPA) is employed to

extract the electrical parameters of PV module models of

KC200GT and Solarex MSX-60 PV panels established by

TDM. Kunjie Yu et al. [20] presented an improved JAYA

optimization algorithm (IJAYA) by adding adaptive weights

and experience-based learning strategies to enhance the per-

formance. IJAYA has been applied to deal with the parameter

identification problem of single diode model (SDM), double

diode model (DDM) of PV cells and PV module. Mohamed

Abdel-Basset et al. [21] introduced the rank-based general-

ized normal distribution optimization (RGNDO) algorithm.

This algorithm uses a precocity convergence approach and
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a sort-based update method to speed up convergence, and

its effectiveness is verified on the STP 6-120/36, KC200GT,

RTC cell, and Ultra 85-P built with TDM. Mohamed Abd

Elaziz et al. [22] introduce an improved opposition-based

whale optimization algorithm (OBWOA), which uses reverse

learning strategy to broad the search space of WOA. It has

been demonstrated in SDM, DDM and TDM of PV cells.

An improved teaching-learning-based optimization (ITLBO)

algorithm was used to extract the parameters of SDM,

DDM and TDM of PV modules [23]. In the teacher stage,

teachers choose distinct teaching strategies according to the

learners’ specific levels. During the learner stage, a novel

learning strategy was put forward to strike a balance between

exploration and exploitation. Experimental results indicated

that ITLBO outperformed the comparative algorithms in

terms of accuracy. Lemin Peng et al. [24] proposed an

information sharing search boosted whale optimizer with

Nelder-Mead simplex (ISNMWOA). WOA can conduct a

global search for PV model parameters. The information

sharing search strategy conducts a rough local search on

the generated feasible solutions. Moreover, the Nelder-Mead

simplex can conduct a more refined local search near the

optimal parameters. The results demonstrate that ISNMWOA

outperforms the comparison algorithms in terms of results

obtained from SDM, DDM, TDM of PV cells and PV module

models. An enhanced adaptive butterfly optimization algo-

rithm (EABOA) was used to identify parameters of PV mod-

els [25]. The algorithm proposes a position search equation

and a good-point set to balance exploration and exploitation,

and identify unknown parameters of SDM, DDM and PV

module models. When compared with other algorithms, the

results show that EABOA has higher accuracy.

The above literature shows that many algorithms have

made substantial contributions to the estimation of PV pa-

rameters. However, it is difficult to estimate the parameters of

PV module models constructed using TDM under dynamic

weather conditions, and there are few relevant literatures. In

recent years, the grey wolf optimizer (GWO) has attracted

considerable attention due to its effectiveness in addressing a

wide range of optimization problems. For instance, Sharma et

al. [26] employed GWO in the automatic generation control

of a multi-area ST–thermal power system, demonstrating

the algorithm’s capability in optimizing classical controllers.

Jayabarathi et al. [27] a hybrid GWO for economic dispatch,

emphasizing the algorithm’s potential in tackling complex

optimization scenarios. Gupta et al. [28] introduced a novel

random walk GWO, expanding the algorithm’s capabilities in

random search processes. Evidently, GWO has been proven

to be a flexible and efficient optimization approach with

successful applications across multiple domains. Notably,

however, there have been few reports on its application

in PV model estimation. This complex problem and the

practical method of GWO are worthy of further discussion

and combination. Therefore, this paper proposes an enhanced

grey wolf optimizer (FCGWO).

The main contributions of this paper are as follows.

(1) An enhanced grey wolf optimizer is proposed and

applied to the parameter estimation of a TDM PV module

under dynamic weather conditions.

(2) We integrate the fitness-distance balance selection

method into the chaos learning strategy and apply it to the

population position update of GWO, which improves the

convergence performance and population diversity of GWO.

(3) The performance of FCGWO is assessed by using

CEC2022 benchmark set and compared with 8 well - estab-

lished algorithms. The outstanding performance of FCGWO

is confirmed by non-parametric test and statistical analysis.

(4) FCGWO is utilized to estimate the parameters of an

actual PV module (Shell ST40) established by TDM under

dynamic weather conditions.

The subsequent parts of this paper are arranged as follows.

• Section II details the problem description of PV model.

• Section III describes the proposed FCGWO.

• Section IV shows the evaluation of FCGWO based on

CEC2022.

• Section V demonstrates the parameters estimation results

of PV modules established by TDM under dynamic weather.

• Section VI discusses the conclusions and future work.

II. PROBLEM DESCRIPTION OF PV MODULE MODEL

A. PV module model

PV modules are assembled through the series and parallel

connection of PV cells [29]. Typically, PV cells have SDM,

DDM, and TDM. Compared to SDM and DDM, TDM can

more comprehensively characterize all the losses in 3 regions

of a PV cell [30]. There, we choose TDM to build PV module

model, and its equivalent circuit diagram is shown in Fig. 1.

The output current Io of the circuit is calculated as Eq.(1).

Io =Np ∗ Iph − Vo/Ns +Rs ∗ Io/Np

Rp/Np

−Np ∗ Isd1 ∗
[
exp(

q ∗ (Vo/Ns +Rs · Io/Np)

n1 ∗ kB ∗ TK
)− 1

]

−Np ∗ Isd2 ∗
[
exp(

q ∗ (Vo/Ns +Rs · Io/Np)

n2 ∗ kB ∗ TK
)− 1

]

−Np ∗ Isd3 ∗
[
exp(

q ∗ (Vo/Ns +Rs · Io/Np)

n3 ∗ kB ∗ TK
)− 1

]
(1)

Among them, Np and Ns denote the quantities of PV

cells connected in parallel and in series, respectively. Iph
is the photogenerated current, Isd1, Isd2 and Isd3 signify the

reverse saturation current of the three diodes, respectively.

Moreover, n1, n2 and n3 are the ideal factors corresponding

to the three diodes respectively. q stands for the electronic

charge, with a value of 1.60217646*10−19C. kB refers to

Boltzmann’s constant, which is 1.3806503*10−23J/K. Vo is

the output voltage of the circuit, TK represents the cell tem-

perature in Kelvin unit. Additionally, Rs and Rp represent

the series and parallel resistance, respectively.

B. Objective function

RMSE is often used as the objective function for esti-

mating the parameters of PV cell and module models [31].

Similarly, this paper also employs (RMSE) to represent the

total difference between the actually measured and estimated

values, which is expressed as follows.

RMSE =

√√√√ 1

M

M∑
i=1

(Iio,act − Iio,est(x))
2 (2)

Where M is the number of measured data, Io,act is

supplied by manufacturers or actually measured. Accord-

ing to Eq.(1), there are 9 unknown parameters of the
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Fig. 1: PV module model by TDM.

PV module model established by TDM, which are x =
Iph, Isd1, Isd2, Isd3, Rs, Rp, n1, n2, n3. Io,est(x) will be es-

timated by FCGWO to achieve the minimum RMSE value.

III. THE PROPOSED FCGWO

In this part, we commence by presenting grey wolf op-

timizer (GWO). Subsequently, we incorporate the fitness-

distance balance (FDB) selection method into the chaos

learning strategy. This integrated approach is then applied

to the position update process of GWO, aiming to enhance

both its convergence performance and population diversity.

A. Grey wolf optimizer

Grey wolf optimizer (GWO) is a meta-heuristic optimiza-

tion algorithm inspired by the social hierarchy and hunting

behavior of grey wolf populations in the natural world [32].

In this algorithm, wolves are divided into four levels, α wolf

serves as the pack leader and corresponds to the best solution

obtained so far; β wolf is the second best solution; δ wolf

is the third best solution; ω wolf stands for other solutions.

Initializing: N wolves are randomly distributed in the

boundary [lb, ub], and this process is formulated as Eq.(3).

Xi,j = rand ∗ (ubj − lbj) + lbj , i ∈ [1, N ] , j ∈ [1, D] (3)

Where D is the dimension, Xi,j is the j-th dimension

of the i-th wolf. During the t-th iteration, the position of

the i-th wolf is denoted as Xt
i = {xi,1, xi,2, · · · , xi,D}. For

PV model parameter estimation, the fitness value (RMSE) is

calculated by Eq.(2).

Encircling: Based on their fitness values, these grey wolves

compete and cooperate with other individuals to find the

optimal solution. The mathematical model of how wolves

surround their prey is as follows.

Xt+1 = Xt
p −A ∗ |C ∗Xt

p −Xt| (4)

Where Xt+1 denotes the wolf’s position at the next

iteration, Xt
p represents the position of the prey during the

t-th iteration. Additionally, A and C are coefficient vectors,

and their calculation methods are follows.

A = a ∗ (2 ∗ r1 − 1) (5)

C = 2 ∗ r2 (6)

Where, r1 and r2 are random vectors that lie within the

interval [0,1] and obey uniform distribution.

a = 2 ∗ (1− t/T ) (7)

Here, t denotes the current iteration number, while T
represents the maximum number of iterations.

Hunting: The position of the i-th grey wolf at the (t+1)-th

iteration is calculated as follows.

Xt+1
i−GWO = (Xt

i1 +Xt
i2 +Xt

i3)/3 (8)

Among them, Xt
i1, Xt

i2 and Xt
i3 is calculated as follows.

Xt
i1 = Xt

α −A1 ∗ |C1 ∗Xt
α −Xt

i |
Xt

i2 = Xt
β −A2 ∗ |C2 ∗Xt

β −Xt
i |

Xt
i3 = Xt

δ −A3 ∗ |C3 ∗Xt
δ −Xt

i |
(9)

Here, Xt
α, Xt

β , and Xt
δ respectively represent the positions

of the α wolf, β wolf, and δ wolf during the t-th iteration.
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B. FDB-based selection method

During the algorithm’s search process, choosing suitable

candidate solutions from the population directly impacts

the search direction and success [33]. This demands that

the candidate solutions contribute maximally to the search.

The FDB-based selection method doesn’t merely emphasize

the fitness value of a solution but also considers the dis-

tance factor between solutions [34]. This method stably and

effectively identifies one or more candidate solutions that

contribute most to the group search process, playing a crucial

balancing and guiding role in the algorithm. The FDB score

of an individual is defined as follows.

m
i=1∀Xi, SXi = w ∗ normFi + (1− w) ∗ normDi (10)

Here, the F -matrix is the fitness value matrix for indi-

viduals. The D-matrix represents the distance between each

individual within the population and the optimal solution

gbest. They are normalized to prevent them from dominating

each other, denoted as normF and normD. w is a weighting

coefficient and is taken as 0.5.

C. Chaos learning strategy with FDB-based selection

Although GWO is straightforward and can be applied to

various scenarios, it has several drawbacks. These include a

lack of sufficient population diversity, an imbalance between

exploitation and exploration, and a tendency to converge

prematurely. Additionally, GWO’s search mode is more fo-

cused on exploitation, making it likely to be trapped in local

optima [35]. Therefore, GWO requires a new optimization

and position mutation strategy. Xueyan Ru [36] creatively

proposed a chaotic learning strategy and integrated it into the

butterfly optimization algorithm, and the estimation results

of parameters for six types of PV cells and six types of

module models have confirmed the beneficial effects of this

strategy. To further enhance the performance of this strategy,

we incorporated the FDB selection method into it, named

it chaos learning strategy with FDB-based, abbreviated as

FC for short, and applied it to the population position

update of GWO to enhance the convergence performance

and population diversity. This process is shown in the dotted

box in Fig. 2, and is specifically described below.

(a) Chaos phase. Chaos is a prevalent nonlinear phe-

nomenon that uses mapping relationships to generate chaotic

sequences between [0,1] and then incorporates these se-

quences into the solution space of the problem under con-

sideration. This action induces perturbations to the positions

of the individuals [37]. The improved Tent chaotic mapping

has more extensive randomness and ergodicity, and it is

calculated by Eq.(11).

zi = sgn(0.5− rand) ∗ [(2 ∗ rand)mod1+ rand/(N ∗D)] (11)

Where sgn is the symbolic function used to regulate the

direction of the perturbation, and it supplies the Tent mapping

values within the range of [-1,1].

(b) Learning phase. In a population, gbest is supposed

to raise the average value of the population to a certain

degree, depending on the population’s capabilities. The mean

position of the population is expressed by Eq.(12).

Xm = (
1

N

N∑
i=1

Xi,1,
1

N

N∑
i=1

Xi,2, · · · 1

N

N∑
i=1

Xi,Dim) (12)

In the original chaos learning phase, only the gbest is

used for guidance. However, when the gbest falls into the

trap of local optima, it will cause the other solutions within

the population to gradually approach the gbest. Whether it

is the subsequent exploration or exploitation, the grey wolf

individuals will lose their vitality. Eventually, this will cause

the algorithm to converge to a local optimum. Therefore,

we utilize the FDB method to select candidate solutions that

make substantial contributions to the search as guidance to

lead the population. We define the process of the population

learning from the average position with respect to this

guidance as the learning step, which is presented in Eq.(13).

Xlearning =

{
zi ∗ (gbest−Xm) if rand < 0.5

zi ∗ (Xfdb −Xm) otherwise
(13)

Where, Xfdb is the highest-scoring individual in the

population calculated from Eq.(10).
Finally, the wolf individuals update their positions using

the learning step, which is expressed as Eq.(14).

Xt+1
i−CL = Xt

i + rand(1, Dim). ∗Xlearning (14)

To sum up, the chaos learning strategy utilizes the ergodic-

ity and randomness of the Tent chaotic mapping to increase

population diversity of GWO. It enables the algorithm to

quickly traverse to the promising search regions in the initial

stage, reducing invalid searches, thereby accelerating the

convergence speed and precision. The introduced FDB-based

selection method considers the influences of the fitness and

distance of solutions to improve the algorithm’s capacity to

break free from local optima and strikes a balance between

global exploration and local exploitation.

D. Structure of FCGWO
The pseudo-code and flowchart can visually demonstrate

the structure, as shown in Algorithm 1 and Fig. 2, separately.

Algorithm 1: The pseudo-code of FCGWO

Input: Initialize parameters.

Output: Optimal solution gbest.
1 Randomly initialize population using Eq.(3);

2 Evaluate fitnesses of X , get gbest, and update FEs;

3 T = �maxFEs/N�, t = 0;

4 while FEs <= maxFEs && t <= T do
5 t = t+ 1;

6 Define Xα, Xβ , and Xδ;

7 for i = 1 to N do
8 Calculate Xi1, Xi2 and Xi3 by Eq.(9);

9 Calculate Xi−GWO by Eq.(8);

10 Check boundaries and evaluate Xi−GWO;

11 Update Xi, gbest, and FEs;

12 end
13 for i = 1 to N do
14 Compute Xlearning by Eq.(13);

15 Compute Xi−CL by Eq.(14);

16 Check boundaries and evaluate Xi−CL;

17 Update Xi, gbest, and FEs;

18 end
19 end
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Fig. 2: Flowchart of FCGWO.

IV. EVALUATION ON CEC2022

In this section, CEC2022 benchmark test set [38] is

employed to validate the performance of FCGWO.

A. Benchmark functions and algorithms parameter setting
CEC2022 benchmark functions have become a widely

used test suite. There exist four distinct categories of func-

tions, which are presented in Table I. They are complex to

solve and extremely challenging, and can well evaluate the

comprehensive performance of algorithms.

TABLE I

CEC2022 BENCHMARK FUNCTIONS INFORMATION.

Type No. fbest Function name

Unimodal f1 300 Shifted and full Rotated Zakharov

Basic f2 400 Shifted and full Rotated Rosenbrock’s

f3 600 Shifted and full Rotated Expanded Schaffer’s f6
f4 800 Shifted and full Rotated Non-Continuous Rastrigin’s

f5 900 Shifted and full Rotated Lévy

Hybrid f6 1800 Hybrid 1 (N=3)

f7 2000 Hybrid Function 2 (N=6)

f8 2200 Hybrid Function 3 (N=5)

Composition f9 2300 Composition 1 (N=5)

f10 2400 Composition (N=4)

f11 2600 Composition (N=5)

f12 2700 Composition (N=6)

* fbest: The best solution, search boundary: [-100,100].

To guarantee the fairness of the comparison, all exper-

iments were conducted within the MATLAB environment.

The Windows 11 operating system was selected, and the

PC used had 64.0G of memory and a 3.40GHz CPU. The

population size was configured as 30, and the maximum

number of evaluations for the 10-dimensional function was

2×105. The parameter settings of the comparison algorithms

used are presented in Table II.

TABLE II

COMPARISON ALGORITHMS AND PARAMETERS SETTING.

Algorithm Year Ref. Parameters setting

WOA 2016 [39] a=[0,2], b=1 A=[0,2], l=[-1,1], C=2*rand

EO 2020 [40] GP=0.5, V =1, a1=2, a2=1

CSA 2022 [41] ρ=1.0, PP=0.1, α=4.0, β=3.0, γ=2.0

WSO 2022 [42] R=0.1

FDBPPSO 2023 [43] vmax=0.5*dx, dx=ub-lb

NRBO 2024 [44] DF=0.6

GWO 2014 [32] a=[0,2], A=[0,2], C=2*rand

GGWO 2022 [45] r1=rand, r2=rand

FCGWO Present Present r1=rand, r2=rand

B. Qualitative analysis

In this section, the composition function f12 (with the

optimal value of 2700) is used to verify the performance of

FCGWO. For the convenience of observation, the dimension

is set to 2, the population size is set to 4, and the maximum

number of iterations is set to 50. The results are evaluated

by means of the average fitness value, search history and

convergence curve. The experimental results are shown in

Figs. 3 and 4. As can be observed from these figures, the

average fitness value of GWO fluctuates frequently and with

a large amplitude of change, and there is no convergence to

the optimal value even until the end of the iteration. However,

the average fitness value of FCGWO converges rapidly with

the progress of the iteration and successfully converges to

the optimal value around the 40-th iteration.

C. Comparative result analysis

We compare FCGWO with 8 advanced algorithms includ-

ing GWO and its variant GGWO. The results are shown in

Table III. From the table, the overall ranking of FCGWO

on CEC2022 test suite is 18, and its final ranking is the

first. It performs best on f1, f2, f4, f5, f6, f7, f8, and f12,

but does not perform well on f10 and f11. Nevertheless, it

still outperforms most of the compared algorithms. However,

When ranked based on the average value of all test functions,

FCGWO is still the one that performs the best.

D. Algorithm complexity analysis

Algorithm complexity is a crucial indicator for evaluat-

ing the efficiency of algorithms. We adopted the method

provided in Ref. [38] to conduct algorithm complexity

(Complexity=(T̂2-T1)/T0) tests on all the algorithms listed

in Table II. The running results are shown in Table IV.

Among them, the benchmark time T0 for the experimental

platform to execute specific programs is 0.007410200s. As

can be seen from the table, the complexity of FCGWO

is 186.6382769696, which is higher than that of GWO

(86.6090011066). This is because in FCGWO, the FDB-

based method has to calculate the FDB scores for every

individual. Meanwhile, the chaos learning strategy demands

information exchange among individuals. Compared with the

comparison algorithms, the increased complexity of FCGWO

is acceptable on the premise that its performance has been

significantly improved.
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TABLE III

RESULTS OF COMPARING METHODS ON CEC2022 BENCHMARK FUNCTION WITH D10.

Fun Index WOA EO CSA WSO FDBPPSO NRBO GWO GGWO FCGWO

f1 Mean 6826.97845782 308.20896238 337.53822584 4025.85155846 608.66542803 907.08888933 1199.81842648 328.23219998 300.00000000

Std 3716.59649983 13.01589383 24.98225879 2107.89668590 1690.52039635 873.55503596 1608.68184284 8.39527152 0.00000000

Best 1407.04625289 300.00000663 308.26343394 944.74000837 300.00025222 373.41250337 307.11620131 314.18521954 300.00000000

Worst 14331.98459252 344.24738811 413.18779840 9510.61532050 9559.38159166 4119.64064559 7370.05525457 340.56670718 300.00000000

Rank 9 2 4 8 5 6 7 3 1

f2 Mean 422.26806712 411.31152574 407.22261672 465.39558891 423.76197626 459.20782246 420.55672664 408.35534604 403.17557532

Std 29.27710616 17.18946482 3.22414338 55.15183000 51.15353962 82.97389614 21.09862370 2.68804163 3.49436172

Best 400.06169241 400.01584955 400.40048356 410.01140251 400.00806105 412.80053109 400.37972726 402.57314651 400.01249697

Worst 484.88855660 475.66978588 410.01818238 635.07031876 668.95672602 774.06896178 470.90599871 411.85668460 409.05475689

Rank 6 4 2 9 7 8 5 3 1

f3 Mean 627.53526896 600.34223154 608.27036451 626.56065724 612.32220968 620.94162494 601.15453578 604.74871997 600.59933273

Std 11.84878342 1.27220814 6.06258642 8.57230051 6.25298520 8.84015283 1.43099219 1.18741380 0.25867905

Best 610.42779748 600.00024964 601.99504713 609.97768287 602.60733560 608.31037938 600.01087797 603.17271828 600.14901798

Worst 659.71470448 606.80676985 629.33486582 641.93698571 629.31325910 635.11338166 605.55140372 608.38945491 601.16782913

Rank 9 1 5 8 6 7 3 4 2

f4 Mean 836.12272375 812.65884810 822.77735435 838.63854673 819.51491978 828.13310627 814.81320500 818.93468140 805.80608043

Std 15.84286281 5.46905199 9.25127911 11.71557345 7.64449810 7.88036112 5.70930056 3.60816038 1.79581810

Best 811.94035197 803.97983624 810.27313808 823.27297455 805.68724148 811.68769636 806.58368653 809.40838252 803.28287786

Worst 886.56143009 825.86886996 842.76575088 865.03897932 832.28503915 847.32228982 827.77643803 824.31859656 810.93415568

Rank 8 2 6 9 5 7 3 4 1

f5 Mean 1216.86009401 900.29795942 907.08701129 1161.30734825 1172.41532631 1001.97511010 906.95197262 903.35479462 900.05963023

Std 213.22679152 0.46059117 13.24535260 118.79580571 193.85098809 112.78137404 12.61487891 0.86743289 0.08778122

Best 949.65281685 900.00000191 900.53032638 966.02217370 947.20476288 903.54717466 900.03025907 902.23038055 900.00337179

Worst 1596.44749007 901.44147790 964.93224560 1344.98635281 1662.17157284 1437.88360411 950.10647781 904.95931804 900.41567813

Rank 9 2 5 7 8 6 4 3 1

f6 Mean 3591.71153601 4944.34381342 5743522.71384283 4260.50192836 2816.04824854 3485.60603817 5628.61311315 12388.95508238 2043.12271762

Std 1741.75581588 2284.46994508 4350125.72333780 2209.78966177 2171.47661250 1485.36238362 2164.44997921 7562.30540164 174.18758177

Best 1880.39153034 2035.07323004 388029.23308304 1917.28341588 1812.91171185 1813.06372259 1913.95314387 2248.06084577 1882.70823360

Worst 8056.14445264 8200.63279635 20170869.77421270 8124.90901674 8069.37022178 7882.39122857 8128.13467716 33893.23761558 2773.55801055

Rank 4 6 9 5 2 3 7 8 1

f7 Mean 2054.81820391 2022.54292194 2040.39744245 2074.31639894 2056.54515649 2056.57293545 2024.21003771 2027.35854343 2018.96017686

Std 23.31218483 9.07935932 11.36058218 26.70130761 16.67275761 22.58369908 12.97209106 3.68867567 7.19438378

Best 2021.31946387 2000.07300122 2018.93216598 2033.88708855 2033.76194060 2026.04495622 2000.03248020 2018.21942115 2004.24285486

Worst 2122.23685208 2044.19595832 2072.34834035 2132.83550564 2103.24555412 2118.24103170 2056.26547797 2032.85210800 2027.76790565

Rank 6 2 5 9 7 8 3 4 1

f8 Mean 2229.57557733 2218.55554611 2228.44872305 2238.59144153 2233.07800236 2232.20173102 2219.62116389 2218.49233240 2217.48988951

Std 4.75116922 6.78423736 4.66986579 24.63637482 31.15041872 21.59828524 8.51556123 6.51664624 8.03147430

Best 2218.76602728 2201.16710156 2211.79033342 2223.77147561 2209.21169302 2215.91846930 2201.35939888 2209.43795165 2205.61245566

Worst 2242.36099795 2224.48900886 2238.49665393 2356.44150676 2351.71667921 2344.40645805 2228.06985337 2226.42918292 2226.35712040

Rank 6 3 5 9 8 7 4 2 1

f9 Mean 2536.55000254 2529.28438271 2532.64949411 2623.99742535 2556.92218619 2555.75374855 2560.90110666 2530.22000963 2529.28438271

Std 28.99042734 0.00000000 3.41398095 57.86769060 54.85307705 33.35680381 26.69497013 0.28817766 0.00000001

Best 2529.29185089 2529.28438271 2529.75944341 2532.84130666 2529.28438271 2529.36213595 2529.28554609 2529.77319843 2529.28438271

Worst 2676.21751975 2529.28438271 2547.29310971 2702.41267893 2712.62305556 2648.80330624 2628.33931624 2530.82955519 2529.28438279

Rank 5 1 4 9 7 6 8 3 2

f10 Mean 2576.31156730 2571.13839588 2500.63619418 2573.22937666 2569.99509290 2591.02002819 2571.88488880 2500.50897261 2561.66677150

Std 136.86171714 68.29474517 0.16445779 72.95178021 93.88978514 60.02734097 55.82343125 0.09224148 54.57885814

Best 2500.43261186 2500.15332793 2500.38235488 2501.03717174 2500.51322607 2500.50543578 2451.51785602 2500.28940693 2500.25591687

Worst 3045.57231243 2747.33207487 2500.94684418 2676.46636249 2873.90467734 2643.73567578 2620.27531333 2500.75219172 2614.21376718

Rank 8 5 2 7 4 9 6 1 3

f11 Mean 2784.93157921 2690.51504040 2631.68780692 2903.26412630 2844.67998703 2867.38217597 2790.61011286 2650.90006016 2690.00796867

Std 151.61559233 165.32750980 21.96263435 181.21153652 196.28241684 191.58058508 174.49202362 7.07533798 153.92396789

Best 2600.21145421 2600.00001002 2620.20845013 2705.50332349 2600.08979884 2703.14479231 2600.14338004 2625.22181451 2600.00000459

Worst 3184.13345031 3183.56567710 2745.91009487 3182.25845279 3186.22605619 3312.44771104 3183.14361459 2663.92917852 3000.00150263

Rank 5 4 1 9 7 8 6 2 3

f12 Mean 2892.42256118 2863.48621648 2864.43038441 2888.84005281 2871.25673023 2868.78211872 2868.01237672 2862.20437655 2861.40955827

Std 41.12774199 1.15747175 1.39663135 31.11568230 9.51073369 10.86479851 8.59355309 1.20041229 1.74256609

Best 2863.27026769 2858.78647348 2860.03864617 2864.92206525 2862.41960862 2861.80973160 2858.75865262 2859.87286609 2859.11106244

Worst 3049.34961003 2865.46861178 2866.48079200 2985.86155377 2902.62555823 2917.54761193 2890.72748541 2864.44810457 2864.82683614

Rank 9 3 4 8 7 6 5 2 1

Total rank 84 35 52 97 73 81 61 39 18

Final rank 8 2 4 9 6 7 5 3 1
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Fig. 3: Search history of GWO for f12.

Fig. 4: Search history of FCGWO for f12.
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TABLE IV

ALGORITHM COMPLEXITY RESULTS.

Algorithm T1 (s) Std.T2
̂T2 Complexity Rank

WOA 2.182438200 0.0623455524 2.464457660 38.0582791288 1

EO 1.989095200 0.0404146368 2.560955660 77.1720682303 3

CSA 1.972022700 0.0480198844 6.400217520 597.5810126582 9

WSO 1.967703100 0.0375867569 2.483471080 69.6024371812 2

FDBPPSO 1.997944400 0.2540771789 3.861757880 253.0750694988 6

NRBO 1.986421000 0.0780597141 4.657287280 360.4797819222 7

GWO 1.990168900 0.0378524262 2.631958920 86.6090011066 4

GGWO 1.983537400 0.0887515428 5.132916500 425.0059512564 8

FCGWO 1.986060000 0.0425510958 3.380971360 186.6382769696 5

E. Convergence performance analysis
In this part, we analyze the average convergence per-

formance of the algorithm using the basic function f4,

and the results are presented in Fig. 5. From the figure,

it’s clear that the proposed FCGWO achieves the highest

convergence accuracy and a favorable convergence speed for

the tested functions. Compared with GWO, its convergence

performance has been notably enhanced. This improvement

can be credited to the FDB selection method and the chaos

learning strategy that we’ve adopted.

F. Friedman test and Friedman alignment rank test
The Friedman test, a non-parametric statistic method, is

employed to detect whether there is a significant difference

in the population distribution [34]. It assesses the differences

among groups by converting the original data into ranks,

while Friedman alignment rank test calculates ranks based

on considering the alignment relationship of the data to test

for differences among groups [46]. The latter generally has

higher test power and is applicable to scenarios where the

data has specific structures or relationships.
Table V hows the experimental results of FCGWO and the

compared algorithms. Evidently, FCGWO ranks first, with

the p-value of 3.62612399E-10 and 1.56561313E-12, which

are far smaller than 0.05, indicating that there are significant

differences among these algorithms.

TABLE V

FRIEDMAN TEST AND FRIEDMAN ALIGNMENT RANK TEST

RESULTS.

Algorithm
Friedman test Friedman aligned test

MeanRank Rank MeanRank Rank

WOA 7.00000000000 8 76.00000000000 8

EO 2.91666666667 2 35.50000000000 3

CSA 4.33333333333 4 46.58333333333 4

WSO 8.08333333333 9 86.50000000000 9

FDBPPSO 6.08333333333 6 65.66666666667 6

NRBO 6.75000000000 7 66.91666666667 7

GWO 5.08333333333 5 49.33333333333 5

GGWO 3.25000000000 3 32.66666666667 2

FCGWO 1.50000000000 1 31.33333333333 1

p-value 3.62612399E-10 1.56561313E-12

G. Wilcoxon signed rank test
In this section, the Wilcoxon signed rank test [47] is

utilized to conduct pairwise tests on the differences be-

tween FCGWO and all the compared algorithms. For the

convenience of observation, the final statistical results are

presented in the form of average, as shown in Table IV.

R- and R+ represent, respectively, the average rank sum of

FCGWO’s outperformance and inferiority to the comparison

algorithms in solving the 12 functions. ’+’, ’-’ and ’=’

indicate that FCGWO outperforms, outperforms and does not

significantly differ from the comparison algorithm for the 12

functions, respectively. It is clear from Table VI that for most

of the test functions, FCGWO has a distinct advantage over

the algorithms listed in Table II.

TABLE VI

WILCOXON TEST (AVERAGE) RESULTS.

FCGWO vs. p-value R+ R- +/=/-

WOA 0.03092965031 26.66666666667 438.33333333333 11/1/0

EO 0.20313055138 143.16666666667 321.83333333333 5/6/1

CSA 0.05642746890 56.58333333333 408.41666666667 10/1/1

WSO 0.00887911882 19.16666666667 445.83333333333 11/1/0

FDBPPSO 0.07279154066 61.33333333333 403.66666666667 10/2/0

NRBO 0.00003138668 11.41666666667 453.58333333333 12/0/0

GWO 0.07408774576 65.33333333333 399.66666666667 8/4/0

GGWO 0.08618477862 80.41666666667 384.58333333333 9/2/1

V. APPLICATION RESULTS OF FCGWO TO PV MODULE

MODEL UNDER DYNAMIC WEATHER

For the time-varying weather conditions, the parameter

estimation performance of FCGWO in such situations is of

crucial importance. In this section, FCGWO is applied to

the widely known Shell ST40 module under various climatic

conditions.

A. Introduction to PV module and parameter settings

The Shell ST40 module consists of an overall struc-

ture formed by 25 copper indium diselenide (CIS)-based

solar cells connected in series (Ns=1 and Np=25). It

has been widely applied to grid connection in the field

of photovoltaics. The electrical characteristics at standard

test conditions (STC, 1000W/m2 and 25◦C) are peak

power Pmpp=40W, peak power voltage Vmpp=16.6V, peak

power current Impp=2.41A, open circuit voltage Voc=23.3V,

short circuit current Isc=2.68A, series fuse rating =

5A, and minimum peak power Pmppmin
=36W. Tempera-

ture coefficients at low irradiance are αPmpp=-0.6%/◦C,

αVmpp=-100mV%/◦C, αIsc=+0.35mA%/◦C, and αVoc=-

100mV%/◦C. And, the nominal operating cell temperature

TNOCT is 47◦C, for details in [48].

According to the method provided in [49], we set

the search upper and lower limits as follows: Iph ∈
[0, 2Isc(G,T )](A), Isd ∈ [1E − 6, 50](μA), Rs ∈
[0, 2](Ω), Rp ∈ [0.001, 5000](Ω), n ∈ [1, 4]. The Isc(G,T )
under non-standard conditions of irradiance (G) and temper-

ature (T) can be determined according to Eq.(15) through the

electrical characteristics parameters under STC.

Isc(G,T ) = Isc−STC ∗ G

GSTC
+ αIsc ∗ (T − TSTC) (15)

The datasets used (see [48, 49]) are widely applied to

evaluate the performance of parameter estimation methods.

All the experimental parameters remain consistent with those

in Section IV.
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Fig. 5: Convergence curve and box plot on f4 of CEC2022.

B. Standard test conditions (STC) estimated results

Standard test conditions (STC) serve as the industry

benchmark for the testing and application of solar panels.

Therefore, we first use FCGWO to estimate the parameters

of the PV module model under STC. The results consist of

the optimal RMSE, the corresponding estimated parameters,

and the running time, as shown in Table VII. From this, the

RMSE value of FCGWO is 0.00073409853, which is much

better than that of GGWO, GWO, and other comparison

algorithms. It is also the only one among the algorithms

that reaches the accuracy level of 1E-04. The running time

of FCGWO is 9.8154160000s, which is not outstanding.

However, it is still acceptable and applicable among many

algorithms.

Fig. 6 presents the convergence curve and the box plot.

As can be seen from Fig. 6(a), FCGWO has the fastest

convergence speed, outperforming NRBOG, GWO, and EO.

It obtains the best RMSE when the number of function

evaluations (FEs) is 0.2×105, and then it keeps converging,

which reflects its capability to avoid getting stuck in local

optima. The convergence speed and accuracy performance of

FDBPPSO, WOA, and WSO are all not satisfactory. These

algorithms get trapped in local optimal solutions at an early

stage and are unable to break free successfully in the later

stages. The ’+’ in Fig. 6(b) represents outliers, and the broken

line is the average value of RMSE. It is clear that the box plot

of FCGWO is the flattest, demonstrating the best stability.

Its average value is also the most excellent. On the other

hand, Fig. 7 illustrates the population diversity of FCGWO

and GWO under the current conditions. From the figure,

throughout the entire iteration stage, FCGWO demonstrates

a far superior population diversity compared to GWO. This

is attributed to the FDB-based method, which takes into

account the distances among the population. By doing so,

it facilitates the expansion of the population’s search range,

thus augmenting the diversity. The above analysis has con-

firmed that FCGWO has a satisfactory accuracy for the PV

module model under STC.

C. Different irradiances estimated results

Under STC, FCGWO exhibits a highly competitive esti-

mation accuracy. However, parameter estimation under time-

varying weather conditions is of more practical application

value. In this section, FCGWOG estimates the parameters of

the ST40 PV module under 25◦C and different irradiance

levels (1000W/m2, 800W/m2, 600W/m2, 400W/m2). For

the sake of simplicity, Table VIII shows the performance

indicators under different irradiance levels at 25◦C. It is

evident that the accuracy of FCGWO is guaranteed under

various irradiance conditions. The optimal RMSE values ob-

tained are 0.00073409853, 0.00077412459, 0.00067403574,

and 0.00063072457 respectively, which are far superior to

those of the comparison algorithms. The accuracy does

not fluctuate with the change of irradiance, demonstrating

extremely strong stability.

In addition, once the model parameters have been esti-

mated, it is straightforward to obtain the output current and

power corresponding to the voltage. This enables the recon-

struction of the I-V and P-V characteristic curves, as shown

in Fig. 8. Both relative error (RE) curve of the current and

individual absolute error (IAE) curve of the power indicate

that the error between the estimated results of FCGWO and

the measured values is very small, being controlled within

the range of 0.035. The fitting curves also show that the

estimated data by FCGWO closely aligns with the measured

data across the entire voltage range. In conclusion, regardless

of the irradiance conditions, FCGWO is far superior to the

algorithms based on the RMSE evaluation criterion and has

excellent parameter estimation accuracy for the ST40 PV

module model. The above phenomena profoundly prove that

FCGWO is a promising algorithm, demonstrating its strength

in being applied to actual PV modules.

D. Different temperatures estimated results

It can be known from Eq.(15) that temperature also has an

impact on the estimated parameters of the PV module. In this

work, the climatic conditions of temperature are regarded as

another estimation scenario. Specifically, FCGWO is used
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TABLE VII

PARAMETER ESTIMATION RESULTS OF ST40 PV MODULE ON STC.

Parameter WOA EO CSA WSO FDBPPSO NRBO GWO GGWO FCGWO

Iph (A) 2.64916211877 2.65535728937 2.65900301983 2.65611806859 2.66303708466 2.65234716596 2.65611783143 2.65432773667 2.67579981477

Isd1 (A) 1.07268222E-05 3.92963990E-05 4.22999114E-05 1.42540926E-05 1.46840904E-06 1.88786807E-05 4.42364272E-06 2.02874607E-05 1.00000000E-12

Isd2 (A) 7.59756307E-06 5.45740109E-06 1.97698435E-05 3.36722769E-05 1.44843700E-05 4.67128820E-05 6.35348230E-06 9.32194896E-07 1.00000000E-12

Isd3 (A) 1.89443312E-06 1.29192791E-05 7.05121387E-06 1.34815272E-05 3.52630482E-06 1.90863839E-07 1.06687475E-12 8.72144794E-06 1.52880247E-06

Rs (Ω) 0.02644340518 0.02238643410 0.02294811822 0.02193324374 0.02496720702 0.02727262843 0.02417523124 0.02309026956 0.02650538101

Rp (Ω) 1067.921843224 4992.376779371 68.924811741 1168.187725494 18.906240406 4950.462545783 54.955882069 3456.359412132 8.514249251

n1 2.56561667303 3.85836952671 2.71522070597 2.73464935499 2.70897115642 3.99585849140 3.61763846289 3.46846827453 4.00000000000

n2 2.71085730056 3.96511119554 3.07204619092 3.63428805510 3.40280615148 2.30548864818 1.66266543930 1.92374628246 4.00000000000

n3 1.52466319938 1.75765677030 1.68153059962 1.76522994331 1.59183122682 1.32721673103 1.21458698356 1.70676871931 1.50027992927

RMSE 0.00836434733 0.00862210455 0.00790469779 0.00918331626 0.00516514832 0.00612795997 0.00644777266 0.00801695734 0.00073409853

Run time (s) 7.9271082000 8.3184712000 12.3881064000 8.1844898000 8.8515613000 8.8194779000 8.0886438000 9.9766095000 9.8154160000
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Fig. 6: Convergence curve and box plot of ST40 PV module on STC.
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PV module on STC.

to estimate the parameters of the ST40 module under the

irradiance of 1000W/m2 and different temperatures (25◦C,

40◦C, 50◦C, 60◦C). Among them, 25◦C is used as a bench-

mark for comparison. The experimental results in a concise

representation are shown in Table IX. When compared to ir-

radiance, the impact of temperature exerts a more significant

influence on the estimation accuracy. Under the conditions

of 40◦C and 50◦C, FCGWO achieved the minimum RMSE

values of 0.00132493187 and 0.00176046248 respectively,

outperforming GGWO, GWO and other comparison algo-

rithms. CSA obtained RMSE values of 0.00211079943 and

0.00214253010, ranking second. The advantage of FCGWO

is not as obvious as that under irradiance conditions. As for

60◦C, the estimation accuracy of all algorithms has declined

significantly. Among them, the optimal RMSE of FCGWO

is 0.02175865777, which is inferior to that of FDBPPSO,

CSA, NRBO and EO, but the relative difference is not large.

Fig. 9 presents the fitting and error curves at different

temperatures estimated by FCGWO. The maximum power

points corresponding to different temperatures have changed

significantly. The error at 60◦C fluctuates the most at the

maximum power point, while it is stable at 25◦C, 40◦C
and 50◦C. Nevertheless, the fitting curves also show strong

consistency. Overall, FCGWO achieves the best accuracy

performance at different temperatures, outperforming the

comparison algorithms and being capable of handling this

model.
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TABLE VIII

ESTIMATED RESULTS OF COMPARING METHODS FOR ST40 PV MODULE AT 25◦C AND DIFFERENT IRRADIANCES.

Irradiance Index WOA EO CSA WSO FDBPPSO NRBO GWO GGWO FCGWO

1000W/m2 Mean 0.06721116631 0.01204112964 0.01295811884 0.04551338051 0.29276872876 0.01224290699 0.01117882494 0.01094843029 0.00830618634

Std 0.11701955178 0.00153139702 0.00292229704 0.10378767348 0.71588283775 0.00438979043 0.00285441739 0.00188185008 0.00162687299

Best 0.00836434733 0.00862210455 0.00790469779 0.00918331626 0.00516514832 0.00612795997 0.00644777266 0.00801695734 0.00073409853

Worst 0.39320253374 0.01427674110 0.01933590311 0.56002802758 2.40341558249 0.02605560989 0.01754852792 0.01444569637 0.01301165023

Rank 7 8 5 9 2 3 4 6 1

800W/m2 Mean 0.01963370106 0.01216584317 0.01197362137 0.02036520265 0.23550058825 0.01081611713 0.01189017551 0.01065548658 0.00854379738

Std 0.01656674351 0.00451340799 0.00207957039 0.02141534633 0.49660381988 0.00210506397 0.01052820472 0.00116984430 0.00151244374

Best 0.00829928513 0.00622577076 0.00661980883 0.00822084955 0.00492782339 0.00737144726 0.00762045298 0.00844480695 0.00077412459

Worst 0.07155568219 0.03410054755 0.01589793669 0.09386802570 1.91546643735 0.01383944856 0.06695073904 0.01304025527 0.01232912957

Rank 8 3 4 7 2 5 6 9 1

600W/m2 Mean 0.01184651075 0.00825852977 0.00721669733 0.01952735045 0.14587282918 0.00804223933 0.00957909400 0.00783581643 0.00597688904

Std 0.00591318803 0.00146194609 0.00135397811 0.05100795002 0.36907668748 0.00099000139 0.00362531151 0.00027552551 0.00148204514

Best 0.00743650658 0.00614977254 0.00366491486 0.00675697138 0.00290225167 0.00679076709 0.00666773176 0.00739075627 0.00067403574

Worst 0.02621211056 0.01204895136 0.00902127893 0.28698096217 1.45958850455 0.01076378484 0.02049263784 0.00842204241 0.00782938079

Rank 9 4 3 6 2 7 5 8 1

400W/m2 Mean 0.01676956608 0.00703928161 0.00607007735 0.00867852535 0.02193244658 0.00779598450 0.00805077012 0.00703783862 0.00533379426

Std 0.03032737648 0.00081788088 0.00098192026 0.00450437402 0.05068704636 0.00175912907 0.00171437992 0.00044250166 0.00122443802

Best 0.00693688897 0.00486269581 0.00407929670 0.00461120001 0.00179250989 0.00436135007 0.00656048095 0.00532654856 0.00063072457

Worst 0.17164122651 0.00815888191 0.00779174241 0.03103014110 0.17172332512 0.01381595239 0.01298981175 0.00741466401 0.00682560261

Total rank 33 21 15 27 8 19 23 30 4

Final rank 9 5 3 7 2 4 6 8 1

Shell ST40 Thin-film PV Module (TDM) at 25°C and different irradiances
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Fig. 8: Different irradiances results for ST40 PV module estimated by FCGWO.
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TABLE IX

ESTIMATED RESULTS OF COMPARING METHODS FOR ST40 PV MODULE AT 1000W/m2 DIFFERENT TEMPERATURES.

Temperature Index WOA EO CSA WSO FDBPPSO NRBO GWO GGWO FCGWO

25◦C Mean 0.06721116631 0.01204112964 0.01295811884 0.04551338051 0.29276872876 0.01224290699 0.01117882494 0.01094843029 0.00830618634

Std 0.11701955178 0.00153139702 0.00292229704 0.10378767348 0.71588283775 0.00438979043 0.00285441739 0.00188185008 0.00162687299

Best 0.00836434733 0.00862210455 0.00790469779 0.00918331626 0.00516514832 0.00612795997 0.00644777266 0.00801695734 0.00073409853

Worst 0.39320253374 0.01427674110 0.01933590311 0.56002802758 2.40341558249 0.02605560989 0.01754852792 0.01444569637 0.01301165023

Rank 7 8 5 9 2 3 4 6 1

40◦C Mean 0.03540048689 0.00988174960 0.00882551230 0.04376503112 0.22851702282 0.00914435247 0.00813456888 0.00921255730 0.00669327277

Std 0.08587193776 0.00161692941 0.00296457705 0.10845174613 0.45930691632 0.00211189851 0.00210808243 0.00149045695 0.00082007841

Best 0.00263768415 0.00685442997 0.00211079943 0.00605919207 0.00433773252 0.00438995937 0.00539297035 0.00644012811 0.00132493187

Worst 0.43862408421 0.01382439217 0.01307850363 0.43704480334 2.35696767081 0.01274597877 0.01363098161 0.01281586353 0.00809006729

Rank 3 9 2 7 4 5 6 8 1

50◦C Mean 0.02114651282 0.00671889935 0.00450473050 0.01684146512 0.29918713847 0.00977035095 0.00702096586 0.00810710900 0.00594115358

Std 0.04144990320 0.00361461342 0.00212135019 0.02245445679 0.60751327096 0.00588048605 0.00149707816 0.00110916303 0.00098478767

Best 0.00603869612 0.00310559116 0.00214253010 0.00609941566 0.00227769181 0.00483293184 0.00599700051 0.00659888728 0.00176046248

Worst 0.17963636662 0.02540283091 0.01173850151 0.11628926385 2.35523136299 0.02623711723 0.01290074450 0.01056332746 0.00763558607

Rank 7 4 2 8 3 5 6 9 1

60◦C Mean 0.02478987898 0.02265201966 0.02330790290 0.13501752446 0.16658183981 0.02571934286 0.02417104691 0.02365981317 0.02247960978

Std 0.00446907511 0.00096474566 0.00348940924 0.22543516814 0.20930534843 0.00587001964 0.00210833538 0.00097039941 0.00052488117

Best 0.02225513821 0.02144622860 0.02124445170 0.02224913984 0.02095655972 0.02135961818 0.02229973688 0.02246145982 0.02175865777

Worst 0.03968531320 0.02605400736 0.03446511264 0.89582175120 1.03305902883 0.04906451912 0.02989768413 0.02682526128 0.02434815957

Rank 7 4 2 6 1 3 8 9 5

Total rank 24 25 11 30 10 16 24 32 8

Total rank 5.5 7 3 8 2 4 5.5 9 1

Shell ST40 Thin-film PV Module (TDM) at 1000W/m² and different temperatures
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Fig. 9: Different temperatures results for ST40 PV module estimated by FCGWO.
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E. Results analysis and discussion

As mentioned previously, the performance of the algo-

rithms for estimating the parameters of PV module under

dynamic weather conditions has been demonstrated from

different perspectives. As is evident from Eq.(1), the objec-

tive of the model parameters exhibits the characteristics of

nonlinearity, implicitness, and multimodality, which requires

the algorithms to have powerful searching capabilities and

is extremely challenging. The ultimate aim of this problem

is to achieve the highest possible estimation accuracy, and

based on the best ranking as shown in Fig. 10, the smaller

the area enclosed by the radar chart’s chain, the better the

overall performance of the algorithm. Combining the results

of Subsections V-B and V-C, it can be observed that the

change of weather undoubtedly affects the accuracy of the

estimated parameters. Nevertheless, FCGWO has achieved

the optimal overall solution and demonstrated the best perfor-

mance. In summary, FCGWO outperforms both GGWO and

GWO significantly. This further validates the practicality and

effectiveness of the improvements proposed in this paper for

estimating PV modules. FCGWO’s performance surpasses

that of the compared algorithms, and it holds great promise

as a valuable tool for estimating PV models.

Fig. 10: Radar map of PV model estimation ranking under

dynamic weather conditions.

VI. CONCLUSION

Aiming at the problem of estimating the parameters of

triple diode PV modules under dynamic weather conditions,

this paper proposes an enhanced grey wolf optimization

algorithm (FCGWO). The algorithm incorporates the FDB

selection method into the chaos learning strategy to improve

the convergence performance and population diversity of

GWO. Firstly, chaos learning expands the search range of

GWO based on the ergodic and random characteristics in

the improved Tent chaotic map, enabling the algorithm to

explore more potential search areas. Secondly, by utilizing

the guiding effect in chaos learning, the average position

of the population gradually approaches the optimal solu-

tion, thereby enhancing the global exploitation performance.

Thirdly, the FDB selection method factors in the impact of

fitness and distance of solutions. This allows it to strike

a balance between the algorithm’s global exploration and

local exploitation capabilities, and boosts the likelihood of

the algorithm breaking free from local optima. FCGWO

is evaluated against 8 comparison algorithms on CEC2022

test suite. The Friedman and Friedman aligned rank, as

well as Wilcoxon signed rank test, confirm that FCGWO is

significantly superior to the comparison algorithms. Finally,

FCGWO is applied to the actual PV module (Shell ST40 )

model for TDM modeling. The results under different irradi-

ance and temperature conditions indicate that this method has

the best parameter estimation accuracy, exhibits performance

exceeding that of the comparison algorithms, and has a strong

potential to become a valuable tool for estimating PV models.

However, the running efficiency of FCGWO is not out-

standing, and it is only utilized for addressing the parameter

estimation problem under single-objective independent tasks.

In future work, we will continuously optimize the efficiency

of this method, expand the multi-objective and multi-task

versions, and study new forms of PV modeling and objective

functions. In addition, expanding its application to more PV

problems, such as PV array configuration, heliostat field

optimization, and maximum power point tracking, will also

be the research directions.
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