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Liver Totxicity Classification
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Abstract—The feature selection (FS) problem in real-life
applications across various industries, particularly in the
medical field, is a commonly encountered challenge. An
improved Sparse Genetic Algorithm (SparseGA) was
proposed to combine a sparse strategy with GA. SparseGA
incorporates the genetic architecture while improving the
greedy initialization strategy, dynamic scoring and elite
retention strategy. Additionally, the K-nearest neighbors
(KINN) classifier is integrated to select a representative feature
subset from the given sparse high-dimensional dataset,
improving both data representation ability and classification
performance. Experimental results demonstrate that this
method has achieved remarkable performance enhancements
on various UCI sparse high-dimensional datasets and
generally performs well across most datasets. Furthermore, a
collection of medical data consisting of 1475 hepatotoxic
compounds and 1038 nomn-hepatotoxic compounds was
collected for classification purposes. A comparison of
performance with commonly used classical meta-heuristic
algorithms reveals that SparseGA performs favorably on the
classification problems. The classification accuracy increased
from 68.13% to 72.33%, showing the practicality and
generalization ability of the algorithm. The findings of this
research can assist in predicting the hepatotoxicity of
compounds in the drug development stage.

Index Terms—Ifeature selection, sparse genetic algorithm,
liver toxicity, classification

I. INTRODUCTION

In the real world, an increasing number of practical
application scenarios involve the processing of sparse
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high-dimensional data, such as word frequency statistics in
text data, drug molecules and gene expression data in
genomics. Therefore, choosing the most representative
subset of features from this data can reduce the detrimental
effects of dimension curse and improve the expressive
ability and classification performance. Meta-heuristic
optimization (MHQO) has demonstrated impressive and
precise performance by stochastically solving optimization
problems based on prior knowledge of stochastic search
over the past few decades. These algorithms include Gray
Wolf  Optimizer (GWO) [1], Whale Optimization
Algorithm (WOA) [2], Salp Swarm Algorithm (SSA) [3]
and Pathfinder Algorithm (PFA) [4]. Striking a balance
between exploring the search space and developing optimal
solutions can lead to improved algorithm performance.
Emina et al. Utilized GAs to extract crucial features from
breast cancer datasets and emploved various data mining
techniques for classification decisions [5]. Huang et al.
aimed to improve classification accuracy by simultaneously
optimizing parameters and feature subsets through a
GA-based method [6]. Stefano et al. proposed a FS
algorithim based on GAs to evaluate feature subsets through
a designed separability index. [7]. From different
perspectives, 11 et al analyzed the differences and
connections between individual sparse FS. Furthermore,
they explored promising research directions and topics in
sparse learning models related to FS [8]. Hou et al
proposed a novel unsupervised FS framework, that is Joint
Embedding Learning and Sparse Regression (JELSR) [9].
Yang et al. studied the role of FS in face recognition from
the perspective of sparse representation[10]. Maleki et al.
adopted KNN technology, used GAs for FS, and
experimentally determined the optimal value of K for
diagnosing the patient's disease stage [11]. Abualigah et al.
proposed a hybrid FS method based on the SCA and GA
[12]. Singh et al. adopts Gravitational Search Optimization
Algorithm (GSOA) for FS in machine learning. The focus
of this study 1s to analyze retinal fundus images to extract
36 features of infected and healthy individuals. By training
six machine leaming models with the feature subset
identified based on GSOA, the classification accuracy is
95.36% [13-14].

Drug development is a time-consuming and expensive
process. On average, the development of a new drug takes
10 to 17 years and incurs a cost of approximately US$2.6
billion [15]. When a new drug enters the market, it can
cause adverse drug reactions, potentially leading to
restricted use or even withdrawal [16]. Therefore, ensuring
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the safety of drug development while minimizing costs and
time is crucial. Hepatotoxicity, a significant adverse drug
reaction, contributes to the failure of clinical trials and the
withdrawal of drugs from the market. Thus, predicting
potential hepatotoxicity during the early stages of drug
discovery is critical for minimizing costs and the likelihood
of drug failure. However, current in vivo animal toxicity
testing is both costly and time-consuming. As an alternative,
several machine learning models have been developed to
predict potential hepatotoxicity in humans [17]. Based on
the detailed annotated drug labels of 387 FDA-approved
drugs, Chen et al. constructed and validated quantitative
structure-activity relationships for type 2 DILI prediction
(mo DILI and yes DILI) by using a decision forest
algorithm and molecular descriptors calculated by Mold2
(QSAR) machine learning model [18]. Williams et al. [19]
developed Bayesian machine leamning to build model data
by integrating mechanistically relevant liver safety assays,
including data from in vitro assays. A recursive random
forest method was developed to predict bioactivity data for
233 chemicals by using chemical descriptors and ToxCast
to detect mouse liver toxicity [20].

This paper presents an improved algorithm, SparseGA,
that combines sparse strategy and genetic algorithm to
address the FS problem in high-dimensional sparse space.
Additionally, the algorithm was tested on and compared to
15 data sets from the UCI. The results demonstrate the
superiority of the proposed algornithm. Classification tasks
utilize KNN to evaluate the quality of the selected feature
subset. Finally, F'S and classification were performed on the
hepatotoxic compound data set.

II. SPARSE GENETIC ALGORITHM BASED ON DYNAMIC
SCORING AND GREEDY STRATEGY

A, Dynamic Scoring Strategy

The SparseEA is an evolutionary algorithm developed
for large-scale sparse multi-objective optimization
problems (MOPs) [21]. However, there are two
shortcomings, one is that it is only scored in the
initialization stage, and the other is that the decision
variables of each dimension are scored separately. So, in
order to solve the above problems, to reduce the score of
each decision variable has an impact on its optimization
performance. Improved the static scoring strategy of
SparseEA, proposed a dynamic scoring strategy for
decision variables, and applied it to SparseGA. Algorithm 1
outlines the specific process. The real vector dec represents
the value of each decision variable. Eq. (1) can be used to
obtain each solution, denoted by x. Consequently, the best
decision variables identified are stored in the dec vector.
The mask vector records which decision variables should
be set to 0, allowing for control of solution sparsity.

x = (mask, x dec,, ---,mask 5 x dec ;) (1

The algorithm takes as mnput the current population P
and outputs a 1xD— dimensional matrix that represents
the Scores of 7 decision variables. Score consists of two
parts. The non-dominated level where the individual is
located and the number of times the corresponding decision
variable is selected in the population Mask vector are

weighted and accumulated. The lower the non-dominated
level, carries a higher weight. In summary, for decision
variable o, the higher its frequency in the population’s the
higher the score. The lower the non-dominated level it
belongs to, the higher the score. The scores are updated as
each generation of the population evolves.

For instance, consider a population with a size of
N=5and a decision variable dimension of D=6 . The
distribution of the population in the decision space and its
non-dominated level are illustrated in Table [ According to
Algorithm 1, the binary masking matrix Mask of the
population and the score of each indiviual, ScoreP | can be
obtained as shown in Table II. Hach decision vanable's
Score can be calculated by multiplying the binary value
corresponding to its dimension in the Mask matrix with the
respective individual score.

The presented tables provide a comprehensive depiction
of the decision variable (dec) matrix for a given population
and the corresponding non- dominated levels assigned to
each individual. Within the decision variable matrix, each
row signifies an individual, with each column representing
a specific decision variable. The matrix encompasses six
columns to account for six decision variables. The decision
variable values for each individual span the range from O to
1. Taking individual 1 as an exemplar, the decision variable
values are as follows: 0.83 for the first variable, 0.67 for the
second variable, 0 for the third and fourth variables, 0.92
for the fifth variable and O for the sixth variable. This
representation 1s sequentially extended to encompass all
individuals within the population. In addition to the
decision variable matrix, each individual 15 ascribed a
non-dominated level In the exemplified scenario,
individual 1 1is positioned at non-dominated level 3, while
individuals 2 and 5 share level 2. Individual 3 1s designated
at level 1, and individual 4 is situated at level 4. The
non-dominated hierarchy serves as a crucial metric for
elucidating the interrelations among individuals within the
context of goal optimization. A lower hierarchy signifies
superior individual performance, whereas identical
hierarchies suggest a lack of discernible distinctions
between individuals.

Algorithm 1 DyScoringStrategy(P)

Input: P(population)
Output: Score (score of each dimension of decision variable)

1: D < Decision variable dimension; //D is an integer

2: N+ The size of the population P; //N is an integer

3: @ < Decision variable of population P; //(? is an NxI dimensional
real matrix

4:  Mask < Q#0; //N=<D dimensional 01 matrix

5:  FrontNe < Population P non-dominated sorting; //1N dimensional
integer matrix, for each individual level

6:  ScoreP < max(FrontNo) - FronitNo + 1; //1 xN dimensional integer
matrix, which is the score of each individual

T MaskScore — Mask < repmat(ScoreP, [D 1]Y; //N=D dimensional
matrix, which is the score of each dimension of each individual

8:  Score — sum{MaskScore), //Sum by column, D-dimensional vector,
score for each dimension of decision variables

9: Return Score, //Return the score of each dimension of decision
variables
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TABLE I. POPULATION DEC MATRIX AND INDIVIDUAL NON-DOMINATED HIERARCHY

Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 Dimension 6  Non-dominated layer
Individual -1 0.83 067 0 0 0.92 0 3
Individual -2 0 036 0.54 0 0 0.21 2
Individual -3 0.56 0 0 0.14 0.24 0.85 4
Individual -4 0.96 027 0.71 0 0.27 0 1
Individual -5 0.23 0 0.36 0.25 0 0 2

TABLE II. POPULATION MASK MATRIX AND INDIVIDUAL SCORE

Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 Dimension 6 Non-dominated layer
Individual -1 1 1 0 0 1 0 4-3+1=2
Individual -2 0 1 1 0 0 1 4.2+1=3
Individual -3 1 0 0 1 1 1 4-4+1=1
Individual -4 1 1 1 0 1 0 4-1+1=4
Individual -5 1 0 1 1 0 0 4-2+1=3

Decision 24+0+1+4+3 243+0+4+0 0+3+0+4+3 O+O+1+0+3 240+1+4+0 0+3+1+0+0

variable score

B. Greedy Initialization Strategy

The principle of greedy strategy initialization is to select
the optimal individual according to the score and
probability of the decision variable as much as possible
during the population mitialization stage. The greedy
population initialization strategy includes two steps:
decision variable scoring and population initialization. First,
a pepulation ¢ containing ;y  individuals is generated,

each individual contains a real vector Dec and a binary
vector Mark . Through Algorithm 1, the score of each
individual at the non-dominated level is calculated, which
indicates the individual's strengths and weaknesses in the
solution space. Since each dimension of the decision
variable in population ¢ is marked as 1 an equal number
of times 1n the AMark , the score of the decision variable
here is only related to the non-dominated level at which the
individual is located. The lower the level, the higher the
score. The score of a decision variable represents the
probability that it should be set to 1, with a higher score
indicating a higher probability of the decision variable
being set to 1. Following the evaluation of decision
variables, the initialization phase of population F is each
individual within P 1s endowed with a real-number vector,
Dec | wherein each constituent is assigned a random value.
Concurrently, an accompanying binary vector Mark | 1is
established for every individual, with its elements mitially
set to 0. Subsequently, a stochastic process selects
rand()x D elements randomly from the Mark vector
and assigns them a value of 1. Here, 7and() denotes a
uniformly distributed random number within the interval
[0,1]. Tt is imperative to note that the selection process,
executed "with replacement”, permits the possibility of
duplicate elements being assigned a value of 1.
Consequently, the resultant Mark  vector is characterized
by a proportion of elements set to 1 that 1s anticipated to be
less than 50%. A detailed procedural delineation is
provided in Algorithm 2.

C. Greedy Genetic Operator

The pseudo-code for a greedy genetic operator is
provided in Algorithm 3. P and 9 are randomly selected

parents from the crossover pool, and each time a new
offspring individual © 1s created. In the binary vector
Mark  section, start by setting the Mark of o to be the
same as that of individual P | and then perform the
following two operations with equal probability.

(1) Crossover operation. Based on the score of the
decision variable (the smaller the better), choose one of the
non-zero elements in  pmask ~gmask  and set the
element at this position in emark to 0, Or, according to
the score of the decision variable Score (bigger is better),

select one of the non-zero elements of pmask ~gmask |
and assign the element at this position in omark to 1.

{2) Mutation operation. In step 1, Choose one of the
non-zero elements in omark and assign a value of 0 to the
element in omark at that position, Conversely, based on
the score of the decision variable (with a larger value being
more preferable), select one of the elements in  omark
with a value of 0, and assign a value of 1 to the element in
omark at that position. The real vector dec of O is
generated by using conventional genetic operations,
specifically, simulated binary crossover and polynomial
mutation.

Algorithm 2 FnifializationGreedy(N)

Input: N (population size)
Output: P (initial population}, Score (score of each dimension of
decision variables)

—_

D« decision variable dimension;

Dec — D=D dimensional random real matrix;

Mark < D-dimensional identity matrix;

© +— SOLUTION( Dec. xMask); //Construct a population for scoring
. Score — DyScoringStrategy((?); //Calculate the score of each
dimension of decision variables, Algorithm 1

4§ Dec +— N> Drandom real matrix;

th s Wk

7. Mark < N x D-dimensional all-zero matrix;
8 Fori=1:N

9: For j=1 : D x rand() //The mathematical expectation of D =
rand() is 0.5D

10: x, y —Randomly select two integers from [1, D];

11: If Score[x] = Score[y] Markli][x]=1;

12: Else Mark[i][y] =1,
13: P+ SOLUTION (Dec.x Mask);, /Initialization population
14: Return P, Score;
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The greedy-like genetic operator is specifically designed
for large-scale sparse MOPs. Based on the score of the
decision variable, both non-zero elements and 0 in the mask
vector will be flipped with equal probability. The offspring
generated by this operator exhibit varying counts of 0 and 1
elements, to maintain the sparsity of decision variables in
the offspring individuals.

D. SparseGA Algorithm Framework

SparseGA 1s proposed by improving the GA framework
and combining the decision variable dynamic scoring
strategy, greedy initialization strategy and greedy genetic
operator to generate the initial population and crossover
mutation offspring. It is a GA variant applied to FS
problems. The core idea is to use strategies to process
sparse high-dimensional data through the evolution process
of the GA, and gradually optimize the quality of the feature

subset to enhance the classification performance of the data.

Firstly, initialize the population P with size N, and construct
a suitable reference point based on the population size and
target dimensions. In each iteration of the main loop, 2V
parents through binary tournaments to generate N offspring.
Next, the parent population and the offspring population are
merged, and duplicate solutions in the combined population
are deleted. In the combined population, N individuals are
selected and retained for the next generation through
non-dominated sorting and by using associated reference
points. Detailed steps can be found in Algorithm 4.

Fig. 1 presents the flowchart of SpaeseGA for the feature
selection problem. Firstly, the dataset is read and divided
into a training set and a test set. Subsequently, a
binarization operation is implemented for the progeny
individuals. Specifically, according to the pre-set threshold,
when the importance index of a feature in the model
training and evaluation process is higher than the threshold,
its corresponding code is assigned to 1, which indicates that
the feature is selected. On the contrary, if it is lower than
the threshold, it is assigned to 0, which indicates that the
feature is not selected. With this binarization, it is possible
to clearly define the subset of features that are ultimately

Greedy initialization

of the population P

Returns the score for
each dimension of the

decision variable

Binary Tournament
Selection Mating Pool

Generation of offspring by G/\]

[ for cross mutation of parents
Not
Terminate l

Evaluate the classification
performance of the
generated offspring

I

Updating per-dimensional
decision variable scores

Final evolved
population P

Fig. 1 Flowchart of SparseGA 1n feature selection problem.

identified for each child individual. After training the KNN
classifier based on the selected K-values by using the
training set, the relevant evaluation metrics on the training
set are calculated, such as accuracy, precision and recall in
the classification task, to initially judge the model's
goodness of fit to the training data. Next, test the KNN
classifier and calculate the corresponding evaluation
metrics.
Algorithm 3 GAOperatorGreedy(P, Score)

Input: P (crossover pooling), Score (score of each dimension of the
decision variable)
Qutput: O (offspring population)

1. O« @ Joffspring population

2. WhileP £ 0

3 P, ¢ < Randomly select two ndividuals from FP; //Determine
the male and female parents

4: P «— P\{p, ¢}, // Bliminate p and ¢ from P

5 o.mask — p.mask; /01 vector

6: If rand() < 0.5 //cross operation

& x,y < Randomly select two decision variable
numbers from the non-0 elements of  p.mask ~ gmask

8: If Score[x] > Scorely] o.maskly] = 0,

9: Else o.mask[x] = 0,

10: Else

11: x,y «— Randomly select two decision variable

numbers from  pmask ~ gmask 0 elements;

12: If Score[x] > Score[y] o.mask[x]=1;

13: Else omasky] =1,

14 If rand() <0.5 /Mutation operation

15: x, y +— Randomly select two decision variable
numbers from the non-0 elements of o.mask;

16 If Score[x] > Score[y] o.maskly] = 0,

17 Else o.mask[x] =0,
18 Else

19; x, y + Randomly select two decision variable

numbers from elements where o.mask 1s 0,

20: If Scorelx] > Score[y] o.masklx] = 1;

21: Else o.mask{y] =1,

22 o.dec < GaOperator(p.dec, g.dec), //The real number vector
part uses traditional crossover mutation

23 0O «—O0U o},

24:  Return O,

Training Data . .
Subset Generation

Feature Estimated
Subset Accuracy

[ Subset Evaluation ]

Feature
Subset

| Induction Algorithm

Final Subset

Induction Algorithm

Hypothesis

Test Data Result Validation
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ITII. EXPERIMENTAL RESULTS AND DISCUSSION

A. Classification Dataset Description

This section evaluates and compares the proposed
SparseGA  with other algorithms, and provides an
experimental results analysis. This article selected 15
benchmark data sets {rom the UCI database. The details of
these datasets are presented in Table IIL

B. K-Nearest Neighbor Classifier

This article utilizes the KNN classifier [22] to compute
the Euclidean distance (Dz) between an unlabeled instance
and its closest X instances. By doing so, it determines the K
nearest neighbors of the sample for classification purposes.
If the majority of the K most similar samples of a sample
belong to a particular category in the given feature space,
then the sample also belongs to that category. Its
calculation formula 1s presented as:

L3
D, = Z (Train, —Test, ) (2)

i=1

where, T7d@in; is a feature in the training data, Test, is
a feature in the test data, and % 1s the number of features.

C. Fitness Function

The objective of FS methods is to minimize the number
of selected features while maintaining high classification
accuracy. To address this conflicting goal, fitness function
shown in Eq. (3) are employed.

M|

fitness =hyy, (D) +h, ™ ()

where, ¥ rtepresents the classification error rate
corresponding to the currently selected feature subset of the
classifier, [3| represents the number of currently selected
features, | is the total number of features, A and A,
are two weight coefficients of subset classification rate and
length satisfy % +#& =1.1Inthis article, # and A, are
setto 0.9 and 0.1, respectively.

D.  Experimental Parameter Settings

This paper uses KNN with Euclidean distance and
k=35 to calculate the classification accuracy in the fitness
function. The experiment is conducted 10 times with
different random seeds for robustness. Additionally, to
prevent over-fitting, five-fold cross-validation is employed
to evaluate the effectiveness of the machine learning model.
The final results are obtained by collecting the average
statistical measurements from 10 independent runs. The
population size of each algorithm is set to 30, the maximum
number of iterations to 100, and the dimension of the
search space is equal to the total number of features.
Meanwhile, the detailled parameter settings of all
algorithms are presented in Table V.

The crossover probability is generally chosen between
0.6 and 0.9, and the mutation probability 1s chosen between
(0.001 and 0.1. In this paper, a crossover probability of 0.6
and a mutation probability of 0.01 are chosen. Firstly,

selecting a higher crossover probability of 0.6 helps to
generate new individuals in the population, increasing the
diversity of the search and avoiding falling into local
optimal solutions. However, if the crossover probability is
too high, it may lead to the emergence of too many
duplicate individuals, which will reduce the efficiency of
the search and cause overcrowding in the survival space.
Secondly, choosing a lower mutation probability of 0.01
helps to maintain the overall integrity of the population so
as to avoid excessive disruption of the population structure.
However, if the mutation probability is too high, it may
disrupt the overall integrity of the population and increase
the burden of the search Therefore, by selecting a
crossover probability of 0.6 and a mutation probability of
0.01, it 1s possible to {ully utilize the crossover operation to
generate new individuals during the search process, while
maintaining the diversity of the population, thereby
improving the convergence and search capabilities.

E. FS Performance Evaluation Criteria

The evaluation metrics for FiS problems include fitness
value, classification accuracy and average selection size. Eq.
(4)-(8) represent the calculation methods for the average
classification accuracy, the average number of selected
features, the fitness mean and the standard deviation
respectively.

TABLE IIl. DATASETS USED IN THE SIMULATION EXPERIMENTS

Number Datasets Features Instances Classes
1 Arthythmia 279 452 16
2 COIL20 1024 1440 20
3 CNAE 9 856 1080 9
4 Hill_valley 100 1212 2
5 Secom 590 1567 2
6 Handwritten 256 1593 10
7 QSAR_ androgen receptor 1024 1687 2
8 Har 561 270 6
9 HAPTDataSet 561 360 12
10 Isolet5s 617 1559 26
11 Semeion 256 1593 10
12 UlllndoorLoc 522 279 3
13 Madelon 500 2600 2
14 Mfeat 649 2000 10
15 TUANDROMD 241 4464 2
TABLE IV. ALGORITHM PARAMETERS
Algorithm Parameters Values
SparseGA CrossoverRate, mutationRate 0.6,0.01
SA Tempe_raturc, MarkovC_hain, 100 * dim, 5,
AttenuationFactor, mutationRate 0.98, 0.01
GA CrossoverRate, mutationRate 0.6,0.01
SSA Sparrow number 10
WOA r 1
PFA Population number 10
GWO a [2,0]
SSOA wele2k 072205
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Mean _accuracy = % Z:;AccumcyI {4
where,  Mean _accuracy, represents the average
classification accuracy achieved by independently

executing the algorithm 10 times, while Acawragy, denotes
the classification accuracy attained in each iteration. The
classification accuracy 1s calculated as follows:

Accuracy = % Z:zlmatch (PL.,AL) (5)

where, N represents the number of test set points, that is,
the number of data set instances; FPIL represents the
predicted class label of data point 7, Al refers to the
actual class in the annotated data. In other words, it
represents the reference class label of i, match { PL | AL)
serves as a discriminant function for comparison. When
PL == Al  match ( PL | 4L =1, otherwise match ( PL |
Al y=o.

Mean  feature = %Z}g 1 fealurei (6)

where, Mean _ feature rtepresents the average number of
selected features obtained by running the algorithm A4
times independently, while jfeafure, denotes the number
of selected features in each run.

1
Mean  filness = BZ:; fitress, (7

where, Mean _ filess  represents the average fitness
value obtained by running the algorithm independently A
times, and f; signifies the optimal fitness value obtained
by each operation.

Std 1y, = %Z(ﬁi}/zessj ~Mean _ fitness)* (8)
where, 51d,.. rtepresents the standard deviation of the
fitness value, fitness, comesponds to the fitness value
obtained at the ith time, and Mean fitness s
calculated using Eq. (6). Furthermore, all models are
evaluated by calculating true positives (TF), true negatives
(TN), false positives (FFP) and false negatives (FN) to
obtain Precision, Sensitivity, Specificity, Fl-score, and
G-mean values. The evaluation indicators are defined in
Table V.

F. Simulation Results Comparison

In order to verify the improvement effect of the proposed
strategy on SparseGA, the contribution comparison of
different strategies is tested, as shown in Fig. 2. When only
adding greedy initialization strategy and tournament
strategy to the algorithm, it cannot achieve optimal results,
and dynamic scoring will have a small effect compared to
the original algorithm. But when these three strategies are
combined, they are initialized through Initialization Greedy,
the genetic operator i1s combined with the binary
tournament to generate offspring, and finally the scores of
each dimension of the decision variables are updated
through dynamic scoring. By conducting repeated iterations
in sequence, SparseGA achieved excellent classification
accuracy in the model.

The convergence curves of classification accuracy of
SparseGA and comparison algorithms on the UCI datasets
are shown in Fig. 3, and the non-parametric Wilcoxon test

results of classification performance indicators and
classification accuracy are shown in Table VI-XVI. The
time complexity is shown in Table 16. As can be seen from
Table VI, compared with other algorithms, SparseGA has
higher accuracy in classification problems. Although GOA
performed well on the Hill Valley dataset, Secom dataset
and Madelon dataset, SparseGA achieved higher accuracy
than other 8 comparison algorithms on the remaining 13
datasets, and reached 100% accuracy on the Ull-Indoorl.oc
dataset. When comparing the Precision, Sensitivity,
Specificity, Fl-score and G-mean metrics, SparseGA
performed well in most data sets, indicating that the
algorithm has good model accuracy. In terms of FS,
although SparseGA does not select the mimimum number of
features compared with other 6 algorithms, it retains about
half of the features compared with the original data set
while ensuring the accuracy of classification.

The Wilcoxon test is a non-parametric statistical test
method used to compare the differences between two
related samples or paired samples. Based on the Wilcoxon
analysis results of classification accuracy in Table XV, the
following conclusions can be drawn. For the arrhythmia
dataset, COIL20 dataset, and Semelon dataset, GA, PFA
and SSOA do not meet the significance level of less than
0.05. However, for the QSAR androgen receptor dataset,
only the p-value compared with SA is greater than 0.05,
while all other comparison p-values are less than 0.05,
indicating that SparseGA exhibits excellent performance in
terms of classification accuracy. Overall, SparseGA has
demonstrated excellent performance in handling these
classification datasets.

According to the time complexity analysis results in
Table XVI, although SparseGA is not the fastest in the
algorithm comparison, it performs well in terms of speed.
For smaller data sets, the calculation can usually be
completed in tens to tens of seconds, while on large data
sets, 1t 1s usually around 150 seconds. On the COIL20 and
Hill Valley data sets, SparseGA has significant
performance improvements compared with the original GA,
and can achieve ideal classification accuracy on most data
sets. Compared with the SSOA, although SSOA has
superior performance in terms of time complexity, it is
slightly insufficient in classification effect, which may be
due to nsufficient search due to too fast running speed. In
comparison, SparseGA  can  still achieve excellent
classification results while running quickly, showing
excellent performance.

TABLE V. TEST PERFORMANCE INDEX

Measure Definition

Accuracy (TN + TP)/(TP + FP + TN + FN)
Sensitivity TP/(FN + TP)
Specificity TN/(FP + TN)

Precision TP/{TP+ FP)

Fl-score 2*(%
G-mean \/ Sensitivity * Specificity
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Fig. 3 Classification accuracy comparison and convergence chart under
UCI datasets.

IV. SPARSEGA TO SOLVE FEATURE SELECTION
PROBLEM AND CLASSIFICATION OF HEPATOTOXICITY
DaTa

Hepatotoxicity is a prevalent adverse drug reaction and a
primary cause for some drug  discontinuation
post-marketing because the liver plays a crucial role in
metabolizing and eliminating xenobiotics  [23-25].
Predicting the risk associated with hepatotoxic compounds
1s extremely challenging due to the complexity of liver
mechanisms. Even human clinical trials are not always
helpful as liver damage can occur rarely or take a long time
to develop [26]. Consequently, hepatotoxicity is the most
frequent cause of drug wastage [27]. It is crucial to identify
and eliminate potentially problematic compounds at the
early stages of drug discovery. This paper utilizes the
SparseGA combined with the KNN classifier to classify
hepatotoxic and non-hepatotoxic compounds.

A. Data Sources

By consulting the literature, we gathered medical data on
1475 hepatotoxic compounds and 1038 non-hepatotoxic
compounds sourced from the SIDER, LiverTox, and
Drugs.com databases. SIDER contains information about
marketed drugs and their documented adverse drug
reactions, derived from public documents and instructions.
It provides details on side effect {requency, drug and side
effect classification, and links to additional information,
such as drug-target relationships. LiverTox offers current,
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unbiased and accessible information on the diagnosis,
causes, frequency, clinical patterns and treatment of liver
injury induced by prescription and over-the-counter drugs,
as well as specific herbal and dietary supplements.

During the process of data collection, keywords related
to liver toxicity such as "hepatic," "liver," and the prefix
"hepat" were utilized to extract liver toxicity information.
To ensure data quality and reliability, the following steps
were performed [38]. (1) Removal of compounds or
molecular structures without specific Adverse Hepatic
Effects (AHE); (2) Standardization of all compounds by
using MOE (Molecular Operating Environment Software,
2016 version, Chemical Computing Group, Montreal,
Quebec, Canada) to eliminate group metals in simple salts,
retain only the largest molecular fragments, deprotonate
strong acids, protonate strong bases and add explicit
hydrogens; (3) Manual integration of hepatotoxicity
information to maintain consistency. For instance, only one
AHE was retained for duplicated AHEs such as jaundice.
Subsequently, the 2D structure of the molecule was
optimized by Merck Molecules to obtain a 3D structural
force field, with a potential energy gradient threshold set at
0.001 kcal' mol'. Finally, a total of 15873
compound-AHE pairs were associated with 2017
compounds and 403 AHEs for further in-depth analysis,
and their associated frequency information was collected.

In the text, negative samples are defined as compounds
not associated with hepatotoxicity or any AHE. Hence,
after removing inconsistent data, 1038 negative samples
from the previous study were ultimately collected. Among
them, positive samples exhibited significant numerical
differences across the three databases. Duplicate
compounds accounted for 40% of the total data in the three
databases, suggesting that drug-induced hepatotoxicity is
generally diagnosed in clinical practice following
regulatory approval of the drug. The overlap between
LiverTox and Drugs.com is notably higher than the overlap
between SIDER and these databases. As mentioned earlier,
this overlap can be explained by the fact that SIDER's data
originates from FDA drug labels, while LiverTox and
Drugs.com extract hepatotoxicity information during the
data collection process based on diverse clinical
observations. Ultimately, a total of 1475 compounds with
various Adverse Hepatic Effects (AGEs) are collected.

B. Data Classification Experiment and Analysis

In this experimental study, the parameter values and test
conditions are the same as those under the UCI datasets.
The comparison results of classification indicators under
the confusion matrix, as well as the average fitness value,
fitness value variance, number of sub-feature sets and
accuracy non-parametric Wilcoxon test are shown in Table
XVII-XVIII. Fig. 4 shows the comparison of the average
classification error rate. Fig. 5 shows the visualization of
the compared algorithms in terms of fitness, sensitivity,
F1 Score, precision, G _mean, classification accuracy and
specificity values.

As can be seen from Table XVI, compared with other
algorithms, SparseGA has a higher accuracy rate in
classification problems. Although it is about 2 percentage
points different from GOA, it can be seen from the

convergence diagram that GOA reached the current
classification accuracy result at 10 iterations, and
SparseGA still showed an upward trend at 59 iterations.
Therefore, as the number of iterations of SparseGA
increases, the classification accuracy will gradually
increase. Compared with the original GA, it increased by
about 4 percentage points. At the same time, it performs
well in Precision, Sensitivity, Specificity, Fl-score and
G-mean indicators, indicating that this algorithm has good
model accuracy and fitting effect. As can be seen from
Table XVII, in terms of selecting the number of features,
SparseGA selected an average of about 116 feature values
from 206 feature values, retaining 56.31% of the features
while ensuring classification accuracy. SSOA and GOA
only retain about 3% of the number of features, which will
make the model lack diversity. Therefore, when performing
FS, it is necessary to weigh the number of retained features
to avoid under-fitting and information loss problems caused
by too few features. According to the results of Wilcoxon
analysis, it is shown that SparseGA has a significant
advantage in classification accuracy because the statistical
significance level (p-value) is less than 0.05. This means
that SparseGA can more accurately classify samples into
the correct categories when performing classification tasks,
showing excellent classification performance.
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Fig. 4 Comparative convergence curves of classification accuracy under

hepatotoxicity data.

Fig. 5 3D visualization of classification indicators.
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TABLE VI. THE AVERAGE CLASSIFICATION ACCURACY OF THE ALGORITHM UNDER THE UCI DATA SETS

SparseGA SA GA SSA WOA PFA GWO SSOA GOA
Arthythmia 8.4444E- 01 73333E-01 74444E-01 7.1871E-01 84201E-01 73792E-01 6.9720E-01 7.7663E-01 8.3713E-01
COIL20 9.8958E-01 9.6875E-01 9.7569E-01 R.77I9E-01 9.6914E-01 88570E-01 8.7854E-01 9.5807E-01 9.7747E-01
CNAE 9 9.2130E-01 7.6389E-01 8.5648E-01 7.8191E-01 7.7046E-01 7.9419E-01 7.8700E-01 7.1501E-01 8.0088E-01
Hill Valley 6.2810E-01 5.6198E-01 58678E-01  58%2E-01 6A4812E-01  6.0942E-01 5.7673E-01 64559E-01 6. 7003E-01
Secom 9.3610E-01 93610E-01 93610E-01 8.6549E-01 9A854E-01  8.7295E-01 8.6109E-01 94854E-01 9.5110E-01
Handwritten 9.5283E-01 92767E-01 92138E-01 83459E-01 86550E-01 84951E-01 84100E-01 82384E-01 8.7643E-01
QSrﬁilr’;_;I;?;?gﬁn 93175E-01  9.1395E-01  9.1988E-01 83747E-01  9.0954E-01 84908E-01 8.3736E-01 89629E-01 9.1648E-01
Har 9.8148E-01 8.8889E-01 9.0741E-01 8.2646E-01  9.1808E-01 8.6108E-01 8.2757E-01 84615E-01  9.2379E-01
HAPTDataSet 9.4444F-01 9.0278E-01  9.1667E-01  8.5460E-01  89127E-01 8.6144E-01  §.2935E-01  8.5668E-01  9.2264E-01
Isolets 8.7138E-01 7.9743E-01 82958E-01 7.7025E-01 8.0557E-01 7.7831E-01 7.5357E-01 7.5360E-01 8.3879E-01
Semeion 9.3396E-01 8.9937E-01 8.9623E-01 8.2636E-01 84493E-01 84006E-01 83961E-01 &1178E-01 8.5440E-01
UllindoorLoc LOGOOE+HM  1.0000EA+00 1.0000E+00  9.1494E-01  9.9962E-01  92222E-01  9.1724E-01  99962E-01  9.9962E-01
Madelon 8.4808E-01 7.4615E-01  8.1923E-01  7.3852E-01 8A637E-01  7.5262E-01  7.1662E-01  73382E-01  9.0951FE-01
Mfeat 9.7750E-01 9.7250E-01 9.8000E-01 R.8585E-01 94813E-01 89048E-01 88308E-01 9.1076E-01 9.5522E-01
TUANDROMD  9.8206E-01 9.7085E-01 97982E-01 8.9466E-01 9.5029E-01  9.0412E-01 8.9181E-01 89318E-01 9.4845E-01

TABLE VII. THE AVERAGE CLASSIFICATION SENSITIVITY VALUE OF THE ALGORITHM UNDER THE UCI DATA SETS

SparseGA SA GA SSA WOA PFA GWO SS0A GOA
Arrhythmia 1.0000E+00  9.4000E-01 94000E-01 9.6000E-01  9.6000E-01 9.8000E-01  9.6000E-01 8.8000E-01 8.8000E-01
COIL20 LOOOOE+00  1.0000E+00  1.0000E+00 1.0000E+00  1.0000E+-00  1.0000E+00  1.0000E+00  1.0000E+00  1.0000E+00
CNAE 9 1.OO00OE+00  8.7500E-01  1.0000E+00 1.0000E+00  95833E-01  9.5455E-01  1.O000E+00  1.0000E+00  1.0000E+00
Hill Valley 6.2500E-01 5.5000E-01 59167E-01 5.7500E-01 6.0833E-01 5.5000E-01 59167E-01 5.5000E-01 6.0833E-01
Secom 1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
Handwritten LOOOOE+00  1.0000E+00  1.0000E+00 1.0000E+00  1.0000E+-00  1.0000E+00  1.0000E+00  1.0000E+00  1.0000E+00
QSzil;EE:;?(r)?gen 1.0000E+00  9.8990E-01 9.9663E-01 L1.0000E+00 9R8653E-01 9.9663E-01 1.0000E+00 9.6296E-01 9.6970E-01
Har 1.0000E+00  1.0000E+00 88889E-01 L1.0000E+00 S.0000E-01 1.0000E+00 1.0000E+00 8.8889E-01 1.0000E+00
HAPTDataSet  L.00OOE+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
Isolets LOOOOE+00  1.0000E+00  1.0000E+00 1.0000E+00  1.0000E+-00  1.0000E+00  1.0000E+00  1.0000E+00  1.0000E+00
Semeion LOOOOE+00  1.0000E+00  1.0000E+00 1.0000E+00  1.0000E+-00  1.0000E+00  1.0000E+00  1.0000E+00  1.0000E+00
UllIndoorLoc 1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
Madelon 8.6923E-01  7.5385E-01 8.3077E-01  8.0385E-01 8.2692E-01 8.0385E-01 8.5769E-01  6.8846E-01  8.7692E-01
Mfeat 1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
TUANDROMD  1.0000E+00  1.0000E+00  1.0000E+-00 1.0000E4+00 99719E-01  1.0000E+00  1.0000EA+H00  1.0000E4+00  1.0000E+00

TABLE VIII. THE AVERAGE CLASSIFICATION SPECIFICITY VALUE OF THE ALGORITHM UNDER THE UCI DATA SETS

SparseGA SA GA SSA WOA PFA GWO SSOA GOA
Arrhythmia 7.2222E-01  5.2778E-01  5.5556E-01  5.8333E-01  7.2222E-01  6.1111E-01  58333E-01 6.1111E-01  7.7778E-01
CQIL20 1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
CNAE 9 1.0000E+00 9.5833E-01 1.0000E+00 8.7500E-01 1.0000E+00 1.0000E+00 1.0000E+00 9.0000E-01 1.0000E+00
Hill_Valley 6.3115E-01  5.7377E-01  58197E-01 5.9836E-01 55738E-01 6.2295E-01  S5.9016E-01  57377E-01 58197E-01
Secom 0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00  S.0000E-02
Handwritten 1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
Qsﬁzgfg?gm 4.5000E-01  3.5000E-01  3.5000E-01  3.2500E-01  4.2500E-01 4.2500E-01 4.0000E-01  3.0000E-01 4.7500E-01
Har 1.0000E+00  87500E-01  1.0000E+00  1.0000E+00 1.0000E+00  1.0000E+00  1.0000E+00  1.0000E+00  1.0000E+00
HAPTDataSet  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 8.8889E-01 1.0000E+00
Isolets 1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+00 8R8889E-01 1.0000E+00 1.0000E+00 9.0000E-01 1.0000E+00
Semeion LOOOOE+00  1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+-00  1.0000E+00  1.0000E+00  1.0000E+00  1.0000EA+00
UllIndoorLoc LOOOOE+00  1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+-00  1.0000E+00  1.0000E+00  1.0000E+00  1.0000EA+00
Madelon 8.2692E-01 7.3846E-01 8.0769E-01 7.8846E-01 R8.5000E-01 8.0769E-01 8.0385E-01 6.7308E-01 9.0385E-01
Mfeat LOOGOE+00  LOOOOE+00  1.0000E+00  1.0000E+00  1.0000E+00  LOOGOE+00  1.0000E+00  1.0000E+00  1.0000E+00
TUANDRCMD  9.1061E-01 85475E-01 8.9944E-01 8.6592E-01 8.1006E-01 8.9385E-01 9.0503E-01 3.9665E-01 7.1508E-01
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TABLE IX. THE AVERAGE CLASSIFICATION PRECISION VALUE OF THE ALGORITHM UNDER THE UCI DATA SETS

SparseGA SA GA SSA WOA PFA GWO SSOA GOA
Arthythmia  83333E-01  7.3438E-01  7.4603E-0l 7.6190E-01 82759E-01 7.7778E-01 7.6190E-01 7.5862E-01 8.4615E-01
COIL20 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 1.0000E-00
CNAE 9 1.0000E+00 9.5455E-01 1.0000E+00 8.8889E-01 1.0000E+00 1.0000E+00 1.0000E+00 9.2000E-01  1.0000E+00
Hill Valley  62500E-01 5.5932E-01 58197E-01 5.8475E-01 57480E-01 58929E-01 58678E-01 55932E-01  5.8871E-01
Secom 93610E-01 93610E-01 9.3610E-01 9.3610E-01 9.3610E-01 93610E-01 9.3610E-01 93610E-01 9.3910E-01
Handwritten ~ 1.00DOE-00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 1.0000E+00
Qs‘iizgfgfgen 9.3082E-01 9.1875E-01 9.1925E-01 9.1667E-01 92722E-01 92790E-01 92523E-01 9.1083E-01  9.3204E-01
Har 1.0000E+00 9.0000E-01 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 1.0000E-00
HAPTDataSet  1.000OE+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 91667E-0l  1.0000E+00
Isolet 1.O0DOE-00  1.0000E+00 1.ODOOE+00 1.0000E+00 9.1667E-01  1.0000E+00 1.0000E+00 9.2308E-01  1.0ODOE-00
Semeion 1.O0DOE-00  1.0000E+00  1.ODOOE00  1.0000EL00  1.0000E+00 1.0000E+00  1.0000E+00 1.0000E+00 1.0000E-00
UllindoorLoc  1.OOOOE+00  1.0000E-00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 1.0000E+00 1.0000E+00
Madelon 83395E-01 74242E-01 8.1203E-01 7.9167E-01 84646E-01 8.0695E-01 8.1387E-01 6.7803E-01 9.0119E-01
Mfeat 1.0000E+00 1.0000E+00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000F+00 1.0000E+00 1.0000E+00 1.0000E+00
TUANDROMD  9.780SE-01 0.6482E-01 9.7538E-01 9.6744E-01 0.5436E-01 9.7404E-01 9.7671E-01 8.6845E-01  9.3325E-01
TABLE X. THE AVERAGE FI_SCOR.E VALUE OF THE ALGORITHM UNDER THE UCI DATA SETS

SparseGA SA GA SSA WOA PFA GWO SSOA GOA

Arthythmia ~ 9.0909E-01 82456E-01 83186E-01 84956E-01 8.8889E-01 8.6726E-01 8.4956E-01 8.1481E-0l 86275E-01
COTL20 LODOOE00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 1.0000E+00 1.0000E+00  1.0000E+00  1.0000E+00
CNAE 9 LODOOE00  9.1304E-01 1.0000E+00 O04118E-01 9.7872E-01 0.7674E-01 LOODOE+00  9.5833E-01  1.0000E+00
Hill Vally  62500E-01 55462E-01 58678E-01 5.7983E-01 5.9109E-01 56897E-01 5.8921E-01 5.5462E-01  59836E-01
Secom 9.6700E-01 9.6700E-01 9.6700E-01 9.6700E-01 9.6700E-0l 9.6700E-01 9.6700E-01 9.6700E-01  9.6860E-01
Handwritten ~ 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
Qs‘if;;a:p‘tig?gm 9.6260E-01 9.5300E-01 9.5638E-01 9.5652E-01 9.5595E-01 9.6104E-01 9.6117E-01 93617E-01  9.5050E-01
Har LODOOEDD 94737E-01  94118E-01 LOODOEL00 9.4737E-01  1.OODOE+L00 1.O000E+00 94118E-01  1.0000E+00
HAPTDataSet  1.OOOOEL00 1.0000E+-00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00  9.5652E-01  1.0000E+00
Tsolets LODOOE00  1.0000E+00 1.0000E+00 1.0000E+00 9.5652E-01  1.0000E+00  1.000OE+00  9.6000E-01  1.0000E+00
Semeion LODOOE00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 1.0000E+00 1.0000E+00  1.0000E+00  1.0000E+00
UlllndoorLoc ~ 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-+00
Madelon 8.5122E-01 74809E-01 82129E-01 79771E-01 83658E-01 8.0539E-01 83521E-01 68321E-01 88889E-01
Mfeat LODOOE00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E-00 1.0000E+00 1.0000E+00  1.0000E+00  1.0000E+00
TUANDROMD  9.8890E-01 9.8209E-01 9.8753E-01 9.8345E-01 9.7531E-01 9.8685E-01 9.8822E-01 9.2960E-01  9.6547E-01

TABLE XI. THE AVERAGE (G-MEAN VALUE OF THE ALGORITHM UNDER THE UCT DATA SETS

SparseGA SA GA SSA WOA PFA GWO SSOA GOA

Arthythmia ~ 8.4984E-01 7.0435E-01 72265E-01 74833E-01 83267E-01 7.7388E-01 74833E-01 73333E-01 8.2731E-01
COIL20 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
CNAE 9 LOODOE+00  9.1572E-01  1.0000E+00 9.3541E-01  9.7895E-01  9.7701E-01 1.0000E+00 9.4868E-01  1.0000E+00
Hill Valley  6.2807E-01 5.6176E-01 58680E-01 5.8656E-01 5.8230E-01 58534E-01 59091E-01 56176E-01  5.9500E-01
Secom 0.0000E+00  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.2361E-01
Handwritten ~ 1.0000E+00 1.0000E+00 1.0000E:00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00  1.0000E-00
Qs‘il:;if[‘)?gfge" 6.7082E-01 S8861E-01 59061E-01 5.7009E-01 64752E-01 65082E-01 63246E-01 53748E-0l  6.7868E-01
Har 1.0000E+00 9.3541E-01 94281E-01 1.0000E+00 9.4868E-01 1.0000E+00 1.0000E+00 9.4281E-01  1.0000E+00
HAPTDataSet  1.0000E-00 1.0000E+00 1.0000E-00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 9.4281E-01  1.0000E+00
Tsolets 1.O0DOE 00  1.0000E+00 1.0000E-00 1.0000E+00 9.4281E-01  1.0000E+00 1.0000E+00  9.4868E-01  1.0000E+00
Semeion 1.O0DOE 00  1.0000E+00 1.0000E-00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00  1.0000E+00  1.0000E+00
UlMllndoorLoc  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
Madelon 84781E-01 74611E-01 81915E-01 7.9612E-01 83838E-01 80577E-01 83033E-01 6.8073E-01  8.9028E-01
Mfeat 1.O0DOE 00  1.0000E+00 1.0000E-00  1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00  1.0000E+00  1.0000E+00
TUANDROMD  9.5426E-01 92453E-01 94839E-01 9.305SE-01 8.9877E-01 94544E-01 9.5133E-01 6.2980E-01 8.4563E-01
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TABLE XII. THE AVERAGE FITNESS VALUE OF THE ALGORITHM UNDER THE UCI DATA SETS

SparseGA SA GA SSA WOA PFA GWO SSOA GOA
Amhythmia ~ 21839E-01  2.9556E-01 2.7803E-01  3.0047E-01 1.5008E-01 2.8247E-01 3.3058E-01 2.0605E-01  1.4801E-01
COIL20 62500E-02 7.8711E-02 7.3340E-02 16082E-01 3.0703E-02 14613E-01 16449E-01 4.2031E-02 2.3203E-02
CNAE_9 12815E-01  2.6332E-01  1.7917E-01  24791E-01  2.7692E-01 2.3628E-01 2.6857E-01  3.0824E-01  2.0654E-01
Hill_Vally ~ 3.8587E-01 4.4521E-01 4.2090E-01 4.0952E-01 3.2570E-01 3.8152E-01 4.2895E-01 3.2097E-01 2.9997E-01
Secom 1.1022E-01  1.0683E-01  1.0683E-01 16275E-01 4.6481E-02 1.5231E-01 16892E-01 4.6481E-02 4.4181E-02
Handwritten ~ 9.3330E-02  1.1822E-01 12075E-01 19887E-01 1.5308E-01 1.8427E-01 2.0248E-01  2.0386E-01  1.3777E-01
Qsﬁzgfgfgm 1.1989E-01 1.275SE-01 12113E-01 19550E-01 9.4600E-02 1.8280E-01 19921E-01 9.8909E-02 8.1322E-02
Har 1.1301E-01  1.5009E-01 13182E-01 20592E-01 7.7647E-02 1.7226E-01 2.1918E-01 14132E-01 6.9661E-02
HAPTDataSet  1.1009E-01 1.3739E-01 12455E-01 1.7578E-01 1.1889E-01 1.7176E-01 2.1668E-01 1.3398E-01 7.4973E-02
Tsolets 18417E-01  2.3369E-01  2.0135E-01  2.5734E-01 1.8860E-01 24863E-01 2.8970E-01 2.2792E-01 1.5238E-01
Semeion LI41IE-01  14057E-01 14144E-01 20159E-01 1.7432E-01 19121E-01 2.0568E-01 2.1823E-01  1.5604E-01
UllindoorLoc ~ 5.2299E-02  4.8659E-02  4.9425E-02  1.1908E-01 53640E-04 10889E-01 1.1586E-01 53640E-04 5.3640E-04
Madelon 20165E-01  2.8186E-01 20549E-01  2.8453F-01 1.5047E-01 2.6865E-01 3.2905E-01 24497E-01 8.2843E-02
Mfeat 72022E-02  7.2670E-02  64225E-02  1.5081E-01 5.3614E-02 14233E-01 1.5469E-01 84943E-02  4.3692E-02
TUANDROMD  7.0679E-02  8.0590E-02  6.5464E-02 13672E-01 53457E-02 1.2571E-01 14385E-01 1.0112E-01 4.9299E-02
TABLE XIII. ALGORITHM FITNESS VALUE VARIANCE UNDER UCI DATA SETS

SparseGA SA GA SSA WOoA PFA GWO SSOA GOA
Arrhythmia ~ 8.9201E-03  0.0000E+00 0.0000E+00 0.0000E+00 29257E-17  58514E-17 58514E-17  0.0000E+00 2.9257E-17
COIL20 5.8675E-04  0.0000E+00 0.0000E+00 2.9257E-17 3.6571E-18 29257E-17 29257E-17 73142E-18  3.6571E-18
CNAE_9 1.9087E-03  5.8514E-17 29257E-17 58514E-17 58514E-17 58514E-17 58514E-17 58514E-17  0.0000E+00
Hill Valley  2.8957E-03 5.8514E-17 58514E-17 0.0000E+00 58514E-17 0.0000E+00 1.1703E-16 58514E-17  5.8514E-17
Secom 6.9677E-04  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 29257E-17  0.0000E+00  0.0000E+00
Handwritten ~ 1.5383E-04 0.0000E+00 14628E-17 29257E-17 0.0000E+00 0.0000E+00 2.9257E-17  0.0000E+00 0.0000E+00
QSAI;;@;?;;”G’C“ 1.7199E-03  0.0000E+00 14628E-17 29257E-17 14628E-17 0.0000E+00 29257E-17 14628E-17  1.4628E-17
* Har 1.4459E-02  0.0000E+00 2.9257E-17  58514E-17  0.0000E+00 29257E-17 29257E-17 0.0000E+00 1.4628E-17
HAPTDataSet  2.4873E-03  2.9257E-17  0.0000E+00 0.0000E+00 0.0000E+00 29257E-17 0.0000E+00 29257E-17  1.4628E-17
Isolets 5.3883E-03 58514E-17 29257E-17 58514E-17 0.0000E+00 58514E-17 0.0000E+00 29257E-17  0.0000E+00
Semeion 6.1530E-04 2.9257E-17 0.0000E+00 29257E-17  0.0000E+00 0.0000E+00 58514E-17 29257E-17  0.0000E+00
UlllndoorLoe  1.3933E-03  0.0000E+00 0.0000E+00 0.0000E+00 1.1428E-19 0.0000E+00 14628E-17 1.1428E-19  1.1428E-19
Madelon 5.6653E-03  5.8514E-17 2.9257E-17  0.0000E+00 29257E-17 58514E-17 S58514E-17 29257E-17  1.4628E-17
Mfeat 1.3156E-03 1.4628E-17 14628E-17 0.0000E+00 0.0000E+00 29257E-17 29257E-17 0.0000E+00 7.3142E-18
TUANDROMD  1.8936E-03  0.0000E+00 0.0000E+00 29257E-17  0.0000E+00 29257E-17 29257E-17 14628E-17  7.3142E-18

TaBLE XIV. THE AVERAGE NUMBER OF FEATURE SELECTIONS BY THE ALGORITHM UNDER THE UCI DATA SETS

SparseGA SA GA SSA WOA PFA GWO SSOA GOA
Arthythmia ~ 1.3550E+02 15500E+02 13400E+02 13200E+02 22000E+01 1.3000E+02 1.6200E+02 14000E+01 4.0000E+00
COIL20 4.8450E+02 5.1800E+02 52700E+02 S.1500E+02 3.0000E+01 4.4300E+02 5.6500E+02 44000E+01 3.0000E+01
CNAE_9 44060E+02 43500E+02 42800F+02 44200E+02 6.0200E+02 4.3700E+02  6.5800E+02 44300E+02 23400E+02
Hill Valley  4.0200E+01 5.1000E+01 4.9000E+01 4.0000E+01 9.0000E+00 3.0000E+01 4.8000E+01 2.0000E+00 3.0000E+00
Secom 2.9930E+02 29100E+02 29100E+02 24600E+02 1.0O0OOE+00 22400E+02 2.5900E+02 1.0000E+00 1.0000E+00
Handwritten —~ 1.2840E+02 1.3600E+02 1.2800E+02 12800E+02 82000E+01 1.2500E+02 15200E+02 1.1600E+02 6.8000E+01
QSAﬁ—Ci‘;f;‘r’gen 54310E+02 5.1300E+02 5.0200E+02 5.0400E+02 13500E+02 4.8100E+02 54100E+02 5.7000E+01 6.3000E+01
© Har 2.8160E+02 28100E+02 27200E+02 27900E+02 22000E+01 2.6500E+02 3.5900E+02 1.6000E+01  6.0000E+00
HAPTDataSet ~ 2.9040E+02 28100E+02 2.7800E+02 2.5200E+02 1.1800E+02 2.6400E+02 3.5400E+02 2.8000E+01 3.0000E+01
Tsolet5 3.1520E+02 3.1700E+02 29600F+02 3.1200B+02 8.4000E+01 3.0300E+02 4.1900E+02 3.8000E+01 4.5000E+01
Semeion 11340E+02  1.2800E+02 12300E+02 1.1600E+02 S8.9000E+01 1.2100E+02 15700E+02 12500E+02 6.4000E+01
UllindoorLoc ~ 2.7070E+02  2.5400E+02 25800E+02 22200E+02 L.OO0OE+00 2.0300E+02 2.1600E+02  1.0000E+00  1.0000E+00
Madelon 23790E+02 26700E+02 2.1400E+02 24600E+02 6.1000E+01 23000E+02 3.7000E+02 2.7000E+01 7.0000E+00
Mfeat 3.3330E+02 3.1100E+02 3.0000E+02 3.1200E+02 4.5000E+01 2.8400E+02 3.2100E+02 3.0000E+01 2.2000E+01
TUANDROMD  1.1820E+02 13100E+02 1.1400E+02 10100E+02 21000E+01 9.5000E+01 1.1200E+02 12000E+01 7.0000E+00
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TABLE XV. NON-PARAMETRIC WILCOXON TEST OF ALGORITHM CLASSIFICATION ACCURACY UNDER UCI DATA SETS

SA GA SSA WOA PFA GWO SSOA GOA
Arthythmia 24000E-05  24000E-05  24000E-05  2.4000E-05 NaN 24000E-05  24000E-05  2.4000E-05
COIL20 2 AD00E-05 NaN 24000E-05  24000E-05  24000E-05  2.4000E-05  1.600CE-05  7.5600E-04
CNAE 9 24000E-05  24000E-05  2.4000E-05  1.6000E-035  24000E-05  24000E-05  24000E-05  2.4000E-05
Hill_Valley 1.6000E-05  24000E-05  2.4000E-05  24000E-05  24000E-05  1.6000E-05  2.4000E-03  2.4000E-05
Secom 24000E-05  24000E-05  L.6000E-05  24000E-05  24000E-05  2.4000E-05  24000E-05  1.6000E-05
Handwritten 24000E-05  24000E-05  2.4000E-05  2.4000E-035  24000E-05  24000E-05  24000E-05  9.7000E-05

Qs‘if‘e—ca;fgfge“ 36812E01  24000E-05  24000E-05  24000E-05  24000E-05  24000E-05  24000E-05  2.4000E-05
Har 24000E-05  24000E-05  24000E-05  24000E-05  24000E-05  2.4000E-05  24000E-05  2.4000E-05
HAPTDataSet  24000E-05  24000E-05  2.4000E-05  24000E-05  24000E-05  2.4000E-05  24000E-05  2.4000E-05
Tsolets 24000E-05  24000E-05  24000E-05  24000E-05  24000E-05  2.4000E-05  24000E-05  2.4000E-05
Semeian 2 A000E-05 NaN 24000E-05  1.6000E-05  24000E-05  2.4000E-05 NaN 2.4000E-05
UlllndoorLoc ~ 1.6000E-05  24000E-05  24000E-05 1 6000E-05  24000E-05  1.6000E-05  24000E-05  2.4000E-05
Madelon 1.6000E-05  7.5600E-04  1.6000E-05  24000E-05  24000E-05  1.6000E-05  2.4000E-03  1.6000E-05
Mfeat 24000E-05  24000E-05  L.6000E-05  24000E-05  16O00E-0S  2.4000E-05  24000E-05  1.6000E-05

TUANDROMD  24000E-05  1.6000E-05  2.4000E-05  2.4000E-05  16000E-05  2.4000E-05  1.6000E-05  2.4000E-05

TABLE XVI. TIME COMPLEXITY OF ALGORITHM CLASSIFICATION ACCURACY UNDER UCI DATA SETS
SparseGA SA GA SSA WOA PFA GWO SSOA GOA
Arthythmia ~ 14874E+01  6.7953E+01 1.3696E+01 11356E+01 8.2003E+00 1.1549E+01 12263E+01 3.1085E+00 7.9059E+00
COIL20 1.0309E+02  5.1146E+02 1.0562E+02 1.0040E+02 1.6848E+01 9.8270E+01 1.1227E+02 2.0854E+01 1.2695E+01
CNAE 9 6.0S14E+01  2.7426E+02 5.5320E+01 54335E+01 4.9637E+01  53L00E+01 7.9407E+01 2.0442E+01 2.8612E+0]

Hill Valley  14896E+01 7.6895E+01 1.5505E+01 12611E+01 1.0414E+01 12905E+01 13279E+01 7.7095E-01 7.2574E+00
Secom 72525E+01  34364E+02 6.8774E+01  6.1083E+01 9.7855E+00 6.6682E+01 6.9879E+01 4.8088E+00 8.6729E+00
Handwritten ~ 34821F+01 1.6460E+02 3.3146E+01 32356E+01 2.2252E+01 3.1804F+01 3.7973E+01 1.2734E+01 1.5388E+01

Qsﬁig?gfgen 14283F+02  6.5518E+02 1.3008E+02 12987F+02 3.9681E+01 12928E+02 14204E+02 21850E+01 1.9122E+01
Har 1 4241E+01  6.0512E+01 1.2153E+01 1.1135E+0l 8.7207E+00 1.1281E+0l 12412E+01 7.808SE+00 7.7429E+00
HAPTDataSet  1.6166F+01 68231E+01 13676E+01 12396F+01 1.0273E+01 12719F+01 14177E+01 9.0587E+00 8.2936E+00
Isalets 76773E+01  3.6100E+02 6.9734E+01  7.0264E+01 2.5011E+01  7.0460E+01 9.5005SE+01 1.3912E+01 1.7903E+01
UllindoorLoc ~ 1.5249E+01 64717E+01  1.3132E+01 1.0752E+01 6.2903E+00 1.1022E+01 1.1398E+01 3.2871E+00 5.4309E+00
Madelon 1.4338E+02  6.8796E+02 1.1910E+02 13496E+02 3.6676E+01 13379E+02 2.0383F+02 1.3§32E+01 1.6297E+01
Mfeat 1.1994E+02  5.6899E+02 1.0603E+02 1.0984E+02 2.2978E+01 1.0974E+02 1.1789E+02 1.3346E+01 1.5905E+01

TUANDROMD  1.6467E+02 S4344E+02 1.5639F+02 14274E+02 3.5425E+01 1.5689E+02 1.5319F+02 9.2666E+00 2.4483E+01

TABLE XVII. AVERAGE CLASSIFICATION PERFORMANCE INDEX OF CONFUSION MATRIX UNDER HEPATOTOXICITY DATA SETS
Algorithms Accuracy Sensitivity Specificity precision Fl score G mean
SparseGA 71514E-01 5.7488E-01 8.3051E-01 6.9512E-01 6.1456E-01 6.9097E-01
SA 6.7530E-01 5.4589E-01 7.6610E-01 6.2088E-01 5.8098E-01 6.4669E-01
GA 6.8526E-01 5.5072E-01 7.7966E-01 6.3687E-01 5.9067E-01 6.5527E-01
o SSA 6.6394E-01 53140E-01 8.1017E-01 6.6265E-01 58981E-01 6.5614E-01
Hepatotoxicity WOA 7.1273E-01 5.6039E-01 7.1186E-01 5.7711E-01 5.6863E-01 6.3160E-01
PFA 6.6414E-01 5.6522E-01 8.0339E-01 6.6857E-01 6.1257E-01 6.7386E-01
GWO 6.5249E-01 5.7005E-01 8.0000E-01 6.6667E-01 6.1458E-01 6.7531E-01
SS0A 6.9901E-01 4.7826E-01 7.4237E-01 5.6571E-01 5.1832E-01 5.9586E-01
GOA 7.3857E-01 5.8454E-01 7 4576E-01 6.1735E-01 6.0050E-01 6.6025E-01

TABLE XVIII. AVERAGE CLASSIFICATION PERFORMANCE INDEX OF THE ALGORITHM UNDER THE HEPATOTOXICITY DATA SETS
Algorithms Mean fitness Std fitness Feature number Wilcoxon Time
SparseGA 33114E-01 5.6817E-03 1.1590E+02 57979E+01
SA 3.4320E-01 0.0000E-+00 1.0500E+02 2 AGOOE-05 2 6086E+02
GA 3.3909E-01 0.0000E-+00 1.1500E+02 2 A000E-05 58041 E+01
- SSA 3 4857E-01 0.0000E-+00 9.5000E+01 2 A000E-05 4.8207E+01
Hepatotoxicity WOA 2.6194E-01 0.0000E-+00 7.0000E-+00 7 5600F-04 1.5056E+01
PFA 3.5227E-01 0.0000E+00 1.0300E+02 2 A000E-05 4.9699E+01
GWO 3.6858E-01 5.8514E-17 1.1500E+02 2 AGOOE-05 5.8335E+01
SSOA 2. 7478E-01 5.8514E-17 8.0000E+00 7 5600F-04 5.7609E-+00
GOA 2.3771E-01 0.0000E-+00 5.0000E-+00 2 A000E-05 1.1817E+01
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V. CONCLUSION

SparseGA is proposed for large-scale sparse high-
dimensional data set optimization problems. The algorithm
achieved a significant increase in classification accuracy
when applied to hepatotoxicity classification in the medical
field, improving the classification accuracy from 68.53% to
71.51%. The algorithm divides decision vanables into
real-valued vectors and 0-1 binary vectors to ensure
sparsity, and utilizes a greedy population initialization
strategy and greedy genetic operators to expedite
convergence. Future research could explore combining
SparseGA with other evolutionary algorithms to address
multi-objective optimization problems, and testing it on
high-dimensional sparse datasets in different domains to
enhance data classification accuracy. These research
findings offer new insights for predicting compound
hepatotoxicity in drug development stages, and demonstrate
the potential of SparseGA in optimization algorithms and
data classification accuracy.

REFERENCES

[1] E.Emary, Hossam, M. Zawbaa, and A. E. Hassanien, “Binary grey
wolf optimization approaches for feature selection,” Neurocomputing,
vol. 172, pp. 371-381, 2016.

[2] M. Tubishat, M. A. M. Abushariazh, N. Idris, and I. Aljarah,
“Improved whale optimization algorithm for feature selection in
Arabic sentiment analysis,” Applied Intelligence, vol. 49, no. 5, pp.
1688-1707, 2019.

[3] L. Abualigah, M. Shehab, M. Alshinwan, and H. Alabool, “Salp
swarm algorithm: a comprehensive survey,” Newral Computing and
Applications, vol. 32, no. 15, pp. 11195-11215, 2020,

[4] H. Yapici, and N. Cetinkaya, “A new meta-heuristic optimizer:
Pathfinder algorithm,” Applied Soft Computing, vol. 78, pp. 545-568,
2019.

[5] E. Alickovic, and A. Subasi, “Breast cancer diagnosis using GA
feature selection and Rotation Forest,” Newral Computing and
Applications, vol. 28, no. 4, pp. 753-763, 2017.

[6] C.L.Huang, and C. J. Wang, “A GA-based feature selection and
parameters optimization for support vector machines,” FExpert
Systems with Applications, vol. 31, no. 2, pp. 231-240, 2006.

[7] C. De Stefano, F. Fontanella, C. Marrocco, and A. Scotto di Freca,
“A GA-based feature selection approach with an application to
handwritten character recognition,” Pattern Recognition Letters, vol.
35, pp. 130-141, 2014.

[8] X. PLi, Y D. Wang, and R. Ruiz, “A survey on sparse learning
models for feature selection,” JEEE Transactions on Cybernetics, vol.
52, no. 3, pp. 1642-1660, 2020.

[9] C. P. Hou, F. P. Nie, X. L. Li, D. Y. Yi, and Y. Wu, “Joint
embedding leaming and sparse regression: A framework for
unsupervised feature selection,” IEEE Transactions on Cybernetics,
vol. 44, no. 6, pp. 793-804, 2013.

[10] A.Y.Yang, J. Wright, Y. Ma, and 5. S. Sastry, “Feature selection in
face recognition: A sparse representation perspective,” IEEE
Transactions Pattern Analysis and Machine Intelligence, vol. 2, pp.
1-34, 2007,

[11] N. Maleki, Y. Zeinali, and S. T. A. Niaki, “A k-NN method for lung
cancer prognosis with the use of a genetic algorithm for feature
selection,” Expert Systems with Applications, vol. 164, pp. 113981,
2021.

[12] S. Aalaei, H. Shahraki, A. Rowhanimanesh, and S. Eslami, “Feature
selection using genetic algorithm for breast cancer diagnosis:
experiment on three different datasets” Iranian Jowrnal of Basic
Medical Sciences, vol. 19, no. 5, pp. 476, 2016.

[13] L. K. Singh, M. Khanna, H. Garg, and R. Singh, “Efficient feature
selection based novel clinical decision support system for glaucoma
prediction from retinal fundus images” Aedical Engineering &
Physics, vol. 123, pp. 104077, 2024.

[14] L. K. Singh, M. Khanna, H. Garg, and R. Singh, “Emperor penguin
optimization algorithm-and bacterial foraging optimization
algorithm-based novel feature selection approach for glaucoma

[15]

[16]

171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

classification from fundus images,” Soft Computing, vol. 28, no. 3,
pp. 2431-2467, 2024.

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H.
Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D
productivity: the pharmaceutical industry's grand challenge,” Nature
Reviews Drug Discovery, vol. 9, no. 3, pp. 203-214, 2010.

R. A. Wilke, D. W. Lin, D. M. Roden, P. B. Watkins, D. Flockhart, I.
Zineh, K. M. Giacomini, and R. M. Krauss, “Identifying genetic risk
factors for serious adverse drug reactions: current progress and
challenges,” Nature Reviews Drug Discovery, vol. 6, no. 11, pp. 904-
916, 2007.

J. Liu, W. J Guo, S. Sakkiah, Z. W_ Ji, G. Yavas, W. Zou, M. J. Chen,
W. D. Tong, T. A. Patterson, and H. X. Hong, “Machine learning
models for predicting liver toxicity,” Silico Methods for Predicting
Drug Toxicity, vol. 2425, pp. 393-415, 2022.

M. J. Chen, H. X. Hong, H. Fang, R. Kelly, G. X. Zhou, J. Borlak,
and W. D. Tong, “Quantitative structure-activity relationship models
for predicting drug-induced liver injury based on FDA-approved
drug labeling annotation and using a large collection of drugs,”
Toxicological Sciences, vol. 136, no. 1, pp. 242-249, 2013.

D. P. Williams, S. E. Lazic, A. J. Foster, E. Semenova, and P.
Morgan, “Predicting drug-induced liver injury with Bayesian
machine leaming,” Chemical Research in Toxicology, vol. 33, no. 1,
Pp. 239-248, 2019.

X, W. Zhu, Y. J. Xin, and Q. H. Chen, “Chemical and in vitro
biological information to predict mouse liver toxicity using recursive
random forests,” SAR and QSAR in Environmental Research, vol. 27,
no. 7, pp. 559-572, 2016.

Y. J. Zhang, Y. Tian, and X. Y. Zhang, “Improved SparseEA for
sparse large-scale multi-objective optimization problems,” Complex
& Intelligent Systems, pp. 1-16, 2021.

Y. C. Lo, S. E. Rensi, W. Torng, and R. B. Altman, “Machine
learning in chemoinformatics and drug discovery,” Drug Discovery
Today, vol. 23, no. &, pp. 1538-1546, 2018.

M. Bourhia, R. Ullah, A. S. Alqahtani, and S. Ibenmoussa,
“Evidence of drug-induced hepatotoxicity in the Maghrebian
population,” Drug and Chemical Toxicology, vol. 45, n0. 3, pp. 985-
989, 2022.

S. Russmann, A. G. Kullak-Ublick, and I. Grattagliano, “Current
concepts of mechanisms in drug-induced hepatotoxicity,” Current
Medicinal Chemistry, vol. 16, no. 23, pp. 3041-3053, 2009,

A. Regev, “Drug-induced liver injury and drug development:
industry perspective,” Seminars in Liver Disease, Thieme Medical
Publishers, vol. 34, no. 2, pp. 227-239, 2014.

D. Mulliner, F. Schmidt, M. Stolte, H. Spirkl, A. Czich, and A.
Amberg, “Computational models for human and animal
hepatotoxicity with a global application scope,” Chemical Research
in Toxicology, vol. 29, no. 5, pp. 757-767, 2016.

I. I. Onakpoya, C. J. Heneghan, and J. K. Aronson, “Post-marketing
withdrawal of 462 medicinal products because of adverse drug
reactions: a systematic review of the world literature,” BAC
Medicine, vol. 14, no. 1, pp. 1-11, 2016.

Volume 33, Issue 4, April 2025, Pages 1045-1060



	camera_Page_01
	camera_Page_02
	camera_Page_03
	camera_Page_04
	camera_Page_05
	camera_Page_06
	camera_Page_07
	camera_Page_08
	camera_Page_09
	camera_Page_10
	camera_Page_11
	camera_Page_12
	camera_Page_13
	camera_Page_14
	camera_Page_15
	camera_Page_16



