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Abstract—To solve the centralized optimization scheduling
problem of long-distance water diversion in cascade pumping
stations, we propose a fully distributed optimization method
based on the state-based potential game (SPG). The primary
objective is to minimize the daily electricity operating cost for
the cascade pumping stations. Handling the coupled equality
constraints of head and water diversion volume is challenging.
Inspired by the Lagrangian approach, our SPG framework uses
states and state transition functions to manage these constraints
effectively. This method uses graph theory and distributed
optimization algorithms to achieve stationary Nash equilibrium
without requiring central control. The results demonstrate that
using a distributed optimization method based on the state-
based potential game is feasible and efficient for solving the
optimization scheduling problem of cascade pumping stations.

Index Terms—Cascade pumping stations, State-based poten-
tial game, Distributed optimization, Stationary Nash equilib-
rium

I. INTRODUCTION

IN recent decades, climate change and pollution have
exacerbated drought conditions. Population growth and

poor water management have increased the demand for
scarce freshwater resources [1], [2]. Water resources are
unevenly distributed spatially worldwide [3]. Effective water
management and allocation are crucial to ensure reliable
access to adequate and safe water [4]. Cascade pumping
stations are key in long-distance water diversion projects
such as the South-to-North Water Diversion Project [5] and
the Wanjiazhai Yellow River Diversion Project [6]. However,
these long-distance water diversion projects consume a lot
of electricity and contribute to high carbon emissions [7],
[8]. Therefore, optimizing the daily operation of cascade
pumping stations is crucial to ensure the efficient supply
of water resources, reduce operating costs, and lessen the
environmental impact.

Currently, the optimal scheduling problem of cascade
pumping stations is mainly studied using centralized op-
timization methods [9], which include deterministic and
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stochastic optimization algorithms [10]. Deterministic algo-
rithms such as Linear Programming (LP), Nonlinear Pro-
gramming (NLP), Integer Programming (IP), and Dynamic
Programming (DP) are predictable but are prone to get
trapped in local optimum, especially for complex or unstruc-
tured problems [11]. Stochastic algorithms such as Genetic
Algorithms (GA) [12], [13], Particle Swarm Optimization
(PSO) [14], [15], and Ant Colony Optimization (ACO) [16]
have strong global search capabilities but suffer from slow
convergence and unstable results [17], [18], [19].

Centralized optimization algorithms necessitate bidirec-
tional communication between the central control system
and each node [20]. This requirement can lead to several
limitations, including high communication demands, signif-
icant computational burden, and low flexibility and scala-
bility [21]. In contrast, distributed optimization algorithms
eliminate the need for a central control system [22]. A
certain spatial distance for long-distance water diversion
projects separates each single-stage pumping station. Tradi-
tional methods rely heavily on the central control system
[23], which limits the full utilization of the performance
capabilities of each single-stage pumping station. Therefore,
we adopt a distributed optimization algorithm to address the
optimal scheduling problem of cascade pumping stations.

Many studies have been on distributed optimization al-
gorithms so far [24]. In this paper, we focus on the dis-
tributed first-order discrete-time algorithms [25]. For cascade
pumping stations, there are antagonistic or cooperative rela-
tionships between different levels of pumping stations [26],
[27], [28]. Therefore, game models such as Stackelberg game
[29], [30], cooperative game [31], and potential game[32]
are introduced to describe these relationships [33]. Among
these, the potential game has a potential function that uni-
formly describes the changes in all agents [34]. Each agent
converges to a Nash equilibrium. An auxiliary state space
can be introduced to handle complex centralized targets and
coupled constraints, and the game framework is extended to
a state-based potential game (SPG) [35].

Distributed optimization methods aim to minimize the
daily electricity operating cost [36]. However, they often
overlook the competition or cooperation between each single-
stage pumping station [37], [38]. Designing a potential func-
tion ensures that strategy updates of all single-stage pumping
stations move toward the global optimum. SPG carefully an-
alyzes information interactions and state transmission among
single-stage pumping stations by introducing state variables.
The properties of the potential function guarantee system
convergence and stability.

This paper proposes a state-based potential game (SPG)
to solve the distributed optimization problem of cascade
pumping stations with coupled equality constraints. The main
contributions are as follows:
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Fig. 1. Changes in optimization scheduling method

(1)The fully distributed optimization framework of cas-
cade pumping stations is designed based on the state-based
potential game. Each pumping station acts as an independent
game agent and locally optimizes its strategies when solving
the coupled constraint problem.

(2)Cascade pumping stations update strategies based solely
on local information and estimates from neighboring stations
about coupling constraints. This approach eliminates the need
to know the specific parameters of other pumping stations. It
greatly reduces communication requirements and preserves
each user’s privacy.

(3)The designed optimization algorithm has good conver-
gence performance. It ensures that optimization strategies
are adjusted according to the Time-of-Use (TOU) electricity
pricing. It can also converge to the stationary Nash equi-
librium for different water diversion volumes and network
topologies.

II. CONSTRUCTION OF OPERATION MODEL FOR
CASCADE PUMPING STATIONS

A. Problem Description

In this section, we study the water pump systems, which
include cascade pumping stations, single-stage pumping sta-
tions, and individual water pumps. Cascade pumping stations
are composed of multiple single-stage pumping stations con-
nected in series to extend water diversion distances. Single-
stage pumping stations consist of multiple water pumps
connected in parallel or series to increase water diversion
volume.

In centralized optimization, a control center regulates all
equipment in the system. Each single-stage pumping station
has a computer monitoring system to execute commands.
However, we aim to enable each single-stage pumping station
to act as an independent agent. These pumping stations
will control their internal water pumps and communicate
with adjacent pumping stations. This approach removes the
influence of a centralized control center and achieves fully

distributed optimization. For example, Fig. 1 shows a system
with three single-stage pumping stations. Each station is
equipped with six water pumps.

B. Centralized Optimization Model

Electricity costs are the most critical factor in operating
cascade pumping stations. Therefore, we construct an opti-
mization scheduling model to minimize the operating cost.
The model considers N-level single-stage pumping stations
within cascade pumping stations. Each single-stage pumping
station contains M water pumps. The daily water diversion
task is divided into 7 time periods according to Time-of-Use
(TOU) electricity pricing.

1) Objective Function: The minimum objective function
for cascade pumping stations is as follows.

F=min
N∑
i=1

T∑
k=1

M∑
m=1

ρ · g ·Q ·Hk
i · tki,m

1000 · ηim · ηmot · ηdr · ηf
· pk (1)

where F denotes the daily electricity operating cost for
cascade pumping stations, N represents the number of
single-stage pumping stations, T represents the total number
of periods, which is divided according to TOU electricity
pricing during the day, M represents the number of water
pumps in a single-stage pumping station, ρ is the density
of the liquid, g is the acceleration of gravity, Q is the flow
rate of the water pump, Hk

i is the head of ith single-stage
pumping station in the kth period, tki,m is running time of the
mth water pump in the kth period, ηim is the efficiency of
water pump, ηmot is the motor efficiency, ηdr is the unit drive
efficiency, ηf is the efficiency of the frequency converter, pk
denotes TOU electricity price in the kth period.

2) Constraints: There are water diversion distances be-
tween the single-stage pumping stations. In the distributed
optimization, Each pumping station acts as a separate agent.
If the water loss between each pumping station is not
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considered, the following (2) must be satisfied.

T∑
k=1

M∑
m=1

(
Q · tki,m · 3600

)
= Qd (2)

where Qd represents the total water volume.
In addition, there are coupled equality constraints about

the head of each single-stage pumping station.

N∑
i=1

Hk
i = Zk

out − Zk
in +∆h (3)

To ensure the operational efficiency and safety perfor-
mance of the entire system, equation (3) is set as the overall
hydraulic head balance constraint of the cascade pumping
stations, where ∆h are hydraulic losses, Zk

out is the water
level of the last afterbay of cascade pumping stations in the
kth period, Zk

in is the water level of the first forebay of
cascade pumping stations in the kth period.

Moreover, running time and head must satisfy upper and
lower limit constraints. During operation, because of actual
hydraulic losses, the head of each single-stage pumping
station should be lower than the water level difference
between the forebay and afterbay.

tkmin ≤ tki,m ≤ tkmax (4)

Hk
min ≤ Hk

i ≤ Hk
max (5)

The water levels of the forebay and afterbay reflect the
actual operation of the single-stage pumping station.

Zk
i,in,min ≤ Zk

i,in ≤ Zk
i,in,max (6)

Zk
i,out,min ≤ Zk

i,out ≤ Zk
i,out,max (7)

where Zk
i,in is water level of the forebay of ith single-stage

pumping station, Zk
i,out is water level of the afterbay of ith

single-stage pumping station.

III. STATE-BASED POTENTIAL GAME OF
CASCADE PUMPING STATIONS

Under two-way information interaction, we can construct
a state-based potential game within a distributed framework.
The framework consists of two main parts: the design of
game rules and the development of distributed optimization
algorithms, which can be developed independently.

The design of game rules includes four key aspects:
(1)The game model maps single-stage pumping stations as

agents.
(2)The strategy space in the optimization problem is

mapped to the state space and actions in the game model.
(3)Local and global optimization objectives are mapped to

the agent cost and potential functions.
(4)Considering the impact of information interaction dur-

ing optimization, the optimization iteration process is treated
as repeated game stages in the game model.

A. Design of Game Rules

The state-based potential game integrates the state of the
underlying space into the game-theoretic environment. It is
defined as G = {N,X,A, F, f}, which includes set of agent
N , state space X , action set Ai(x), agent cost function
Fi(x, a) and state transfer function f(x, a).

1) State Space: For game agent i ∈ N , states xi = (vi, si)
are used to represent the current state of individual decision,
where vi ∈ R represents the current decision variables of
agent i, si ∈ R represents the estimates of agent i for all
global constraints. By constructing these states, agents can
obtain virtual global information and continuously update
their decisions and estimated information according to the
state transfer function.

Each single-stage pumping station is considered an
independent agent for the optimization scheduling of cascade
pumping stations. The state of agent i is defined as: xi =(
{Hk

i , t
k
i,m}

k∈T,m∈M
, {eki , µk

i }k∈T , {cki,m, ρki,m}
k∈T,m∈M

)
.

eki ∼
∑

i∈N Hk
i − (Zk

out − Zk
in) − ∆h, where eki denotes

the estimate of agent i for the coupled constraint in the kth

period, µk
i is the Lagrange multiplier of agent i in the kth

period.
Each period is treated as an independent agent to

handle the coupled constraint (2). Specifically, cki,m ∼∑
k∈T

∑
m∈M

(
Q · tki,m · 3600

)
−Qd, where cki,m denotes the

estimate of mth water pump within agent i for the coupled
constraint in the kth period, ρki,m is the corresponding
Lagrange multiplier.

2) Actions: For agent i ∈ N , its action is defined as ai ∈
Ai(xi), which can not only alter the true value of the decision
from the previous game stage but also influence the estimated
values of other agents. Specifically, for action ai = (v̂i, ŝi),
where v̂i ∈ R is the change in the decision variable. ŝi ∈ R
is the change in the estimates for constraints. For cascade
pumping stations, actions are designed as follows:

ai =
(
{Ĥk

i , t̂
k
i,m}, {êki→j , µ̂

k
i }, {ĉki,m, ρ̂ki,m}

)
(8)

where t̂ki,m is the change in the running time for the mth

water pump of agent i in the kth period, Ĥk
i is the change in

head of agent i in the kth period, êki→j represent the change
in estimates that agent i passes to the j regarding the coupled
constraint (3). similarly, µ̂k

i , ĉ
k
i,m, ρ̂ki,m is the change in the

corresponding states.
Additionally, Ai(xi) is the action set for agent i.

Ai(x) =



{Ĥk
i , t̂

k
i,m}

k∈T,m∈M
,

{êki→j , µ̂
k
i }k∈T,j∈Ni

,

{ĉki,m, ρ̂ki,m}
k∈T,m∈M

,

Hk
min ≤ Hk

i + Ĥk
i ≤ Hk

max,

tkmin ≤ tki,m + t̂ki,m ≤ tkmax


(9)

where Ni represents the neighbor set of agent i.
3) State Transfer Function: The design of the state trans-

fer function involves the influence of information interaction
between agents on the dynamics of the game model. The
new state value is updated according to the information from
the previous stage. Interference effects on the state update
process are ignored. The number of iterations is set as r.

(1)states of agents

Hk
i (r + 1) = Hk

i (r) + Ĥk
i (r) (10)

tki,m (r + 1) = tki,m (r) + t̂ki,m(r) (11)

(2)estimates of the coupled constraints
Each single-stage pumping station is mapped as an agent,

information interaction between agents via êki→j , and the
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state transfer function for constraint (3) is designed as
follows:

eki (r+1)=eki (r)+Ĥ
k
i (r)+

∑
j∈Ni

êkj→i(r)−
∑
j∈Ni

êki→j(r) (12)

µk
i (r + 1) = µk

i (r) + µ̂k
i (r) (13)

Considering each period as an agent, we construct a
fully connected, undirected communication topology graph
between periods. The state transfer function for constraint
(2) takes the following form.

cki,m(r + 1) = cki,m(r) +Q · t̂ki,m(r) + T · ĉki,m(r)−
∑
τ∈T

ĉτi,m(r) (14)

ρki,m(r + 1) = ρki,m(r) + ρ̂ki,m(r) (15)

where τ represents the neighbor of the kth period.
4) Invariance Property: The state transfer function en-

sures that coupled equality constraints are satisfied at any
game stage. However, there are some limits for each agent.
For the initial estimates of the state, The initial value of e
must satisfy (16).∑

i∈N

eki (0) =
∑
i∈N

Hk
i (0)− (Zk

out − Zk
in)−∆h (16)

According to the action of the next stage, such as
a(1), a(2), ..., the state value is updated based on (17),
and the subsequent state is satisfied

∑
i∈N eki (r) =∑

i∈N Hk
i (r)− (Zk

out − Zk
in)−∆h,∀k ∈ T .

xi(r + 1) = f(xi(r), a(r)) (17)

Therefore, the initial estimate of constraint (3) is given by
eki (0) = Hk

i (0)−(Zk
i,out−Zk

i,in)−∆h/N . Similarly, The ini-
tial value of c needs to be satisfied

∑
k∈T

∑
m∈M cki,m(0) =∑

k∈T

∑
m∈M

(
Q · tki,m(0) · 3600

)
−Qd,∀i ∈ N .

5) Agent Cost Function: The cost function refers to the
payoff that each agent can obtain based on its chosen actions
in the game. The information interaction between the agents
influences the cost function of the game model. Specifically,
for the optimization problem of cascade pumping stations,
the agent cost function comprises three components. The first
component is the agent’s local objective function.

F 1
i (x, a)=

∑
k∈T

∑
m∈M

ρ · g ·Q·Hk
i (r+1) · tki,m(r+1)

1000 · ηim · ηmot · ηdr · ηf
· pk (18)

The second component addresses the effect of coupled
constraints of the head.

F 2
i (x, a) =

∑
k∈T

{(
eki (r + 1) · µk

i (r)− eki (r) · µk
i (r + 1)

)
+

1

2

(
eki (r + 1)2

)
+

1

2

∑
j∈Ni

(
µk
i (r + 1)− µk

j (r + 1)
)2 } (19)

The third component deals with the effect of coupled
constraints on water diversion volume between each period.

F 3
i (x, a)=

∑
m∈M

{∑
k∈T

(
cki,m(r+1)·ρki,m(r)−cki,m(r)·ρki,m(r+1)

)
+
1

2

∑
k∈T

(
cki,m(r + 1)2

)
+

1

2

∑
k∈T

∑
τ∈T

(
ρki,m(r + 1)− ρτi,m(r + 1)

)2 }
(20)

The changes in F 2
i (x, a) and F 3

i (x, a) illustrate the con-
vergence process of additional costs incurred by coupled
equality constraints. The form of agent cost function for each
single-stage pumping station is as follows.

Fi(x, a) = F 1
i (x, a) + F 2

i (x, a) + F 3
i (x, a) (21)

B. Potential Function

In a state-potential game, both the agent cost function and
the potential function have the same trend. The agent cost
function characterizes the distributed decision mechanism
in the optimization problem for each agent. The potential
function shows the overall result of the agents’ strategic
choices in a game. The potential function guarantees that
the global optimum of the optimization problem aligns with
the stationary Nash equilibrium in the game model.

The potential function of the state-based potential game
is the sum of three components: J(x, a) = J1(x, a) +
J2(x, a) + J3(x, a). These components correspond to the
respective parts of the agent cost function.

J1(x, a)=
∑
i∈N

∑
k∈T

∑
m∈M

ρ·g·Q·Hk
i (r+1)·tki,m(r+1)

1000·ηim·ηmot·ηdr·ηf
· pk (22)

J2(x, a) =
∑
k∈T

{∑
i∈N

(
eki (r + 1) · µk

i (r)− eki (r) · µk
i (r + 1)

)
+

1

2

∑
i∈N

(
eki (r + 1)2

)
+

1

2

∑
i∈N

∑
j∈Ni

(
µk
i (r + 1)− µk

j (r + 1)
)2 }

(23)

J3(x, a)=
∑
i∈N

∑
m∈M

{∑
k∈T

(
cki,m(r+1)·ρki,m(r)−cki,m(r)·ρki,m(r+1)

)
+
1

2

∑
k∈T

(
cki,m(r + 1)2

)
+

1

2

∑
k∈T

∑
τ∈T

(
ρki,m(r + 1)− ρτi,m(r + 1)

)2 }
(24)

IV. DISTRIBUTED OPTIMIZATION ALGORITHM
FOR GAME MODEL

A. Projected Gradient Algorithm

The game model provides an effective framework for
distributed optimization problems. By designing reasonable
algorithms, agents update their strategies according to their
cost functions and available neighbor information. This paper
chooses the projected gradient algorithm to calculate the
change value of the action.

ai(k) =

[
−δi ·

∂Fi(x, a)

∂ai

∣∣∣∣
a=0

]+
Ai(x)

(25)

where [�]+Ai(x)
is the projection of action values within the

feasible range, and δi represents the step size of the agent i.

B. Stationary Nash Equilibrium

When the communication network topology is undirected
and connected, each agent’s estimates e and c satisfy the
invariance property. If the constructed state-based potential
game satisfies the following two conditions, the game model
can converge to stationary Nash equilibrium [35].
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Fig. 2. The locations of Wanjiazhai Yellow River Diversion Project

TABLE I
OPERATIONAL PARAMETERS OF HEAD AND WATER LEVEL FOR CASCADE PUMPING STATIONS

Pumping station Minimum head (m) Design head (m) Maximum head (m) Forebay water level (m) Afterbay water level (m)

GM1 106.53 140.00 163.00 971.05 1108.13
GM2 117.50 140.00 162.00 1106.89 1244.25
GM3 70.89 76.00 78.55 1218.69 1292.86

(1) For any agent i ∈ N , a∗i ∈ argminai∈Ai
Fi(x

∗, ai, a
∗
−i)

(2) For both the previous state x∗ and the next state x =
f(x∗, a∗), x∗ = x is satisfied.

Furthermore, the estimated values of information trans-
mission satisfy êkj→i(r)− êki→j(r) = 0 for all agents
i ∈ N and constraints k ∈ T . These changes demonstrate
the equivalence between the stationary Nash equilibrium of
the designed game and solutions to the coupled constrained
optimization problem.

V. CASE STUDY

This section assesses the optimization performance of the
proposed game model and algorithm in real-world cascade
pumping stations. We conduct simulations on the MATLAB
platform.

A. Parameter Settings

The Wanjiazhai Yellow River Diversion Project operates
for 10 months each year, with an annual water diversion
volume of 1.2×109m3. The project features three single-stage
pumping stations along its main trunk lines: GM1, GM2,
and GM3 [6]. Each single-stage pumping station contains 10
water pumps. Fig. 2 illustrates the specific water diversion

route. For simplicity, we focus on fixed-speed water pumps
with a flow rate of 6.45m3/s to ensure efficient operation.
The cascade pumping stations’ specific water level and head
parameters are detailed in Table I.

TABLE II
TIME-OF-USE ELECTRICITY PRICE IN SHANXI PROVINCE

Period Type Period (h) Time-of-use electricity
price (Yuan/kWh)

Peak period 08:00-11:00
17:00-23:00 1.0499

Flat period
07:00-08:00
13:00-17:00
23:00-24:00

0.6963

Valley period 00:00-07:00
11:00-13:00 0.3722

According to the TOU electricity pricing in Shanxi
Province, a day from 00:00 to 24:00 is divided into seven
distinct peak and valley periods. The TOU electricity price
is listed in Table II.

B. Optimization Results Analysis of Game Model

Firstly, we set the water delivery task of cascade pumping
stations to 4×106m3. Based on the state-based potential
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game, the fully distributed optimization of the cascade pump-
ing stations is designed. We chose network topology GM1
↔ GM2 ↔ GM3. Each single-stage pumping station acts as
an independent game agent to optimize its strategies when
solving the coupled constraint problem locally.

1) Convergence of Agent Cost Function: The agent cost
function F 1

i (x, a) can clearly show the daily electricity op-
erating cost changes for three single-stage pumping stations.
The trend of F 1

i (x, a) reveals how each single-stage pumping
station adjusts its strategies to reduce its operating costs.
The simulation results of agent cost function F 1

i (x, a) for
three single-stage pumping stations GM1, GM2, and GM3
are illustrated in Fig. 3.
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 G M 2
 G M 3

Fig. 3. Simulation results of agent cost function

The projected gradient algorithm converges to the optimal
solution after 1516 iterations. The daily electricity operating
costs for three single-stage pumping stations are: GM1 at
990,258.21 yuan, GM2 at 1,106,297.09 yuan, and GM3 at
592,015.04 yuan. There is a fluctuating increase in F 1

i (x, a)
around the 500th and 800th iterations. These changes indicate
that the single-stage pumping stations are making a trade-off
between minimizing the daily electricity operating costs and
satisfying the coupled equality constraints.

To address the coupled equality constraints, we refer to
the Lagrangian approach. We add additional cost functions
F 2
i (x, a)and F 3

i (x, a) to the objective function. These func-
tions measure the extra costs of meeting the coupled equality
constraints and show how the whole system converges to the
global optimum.

When the game ends, F 2
i (x, a)and F 3

i (x, a) gradually
converge to zero. The system eventually complies with the
coupled constraints. The different convergence values of the
three agents are because of changes in head and running
time. These results show that the proposed state-based po-
tential game method can effectively optimize the operation
of cascade pumping stations and reach the stationary Nash
equilibrium.

2) Potential Function Analysis: The potential function
helps us measure the change in costs of all agents with
a unified criterion. By analyzing changes in the potential
function, we can indirectly evaluate the system’s overall
performance and simplify complex system analysis.

As shown in Fig. 4, the potential function of cascade

pumping stations gradually converges to 2,688,570.33 yuan.
The J2(x, a) and J3(x, a) converge to zero. It indicates that
global and local constraints are satisfied without additional
virtual cost calculations. These results indicate that using
state-based potential games to solve multi-agent system prob-
lems in cascade pumping stations is feasible and effective.
Also, the convergence of the potential function proves that
the stationary Nash equilibrium of the designed game is
equivalent to the solutions of the optimization problem.
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Fig. 4. Simulation results of potential function

3) Estimats of Coupled Equality Constraints: In the state-
based potential game framework, the estimates of the La-
grange multipliers and constraints are exchanged between
neighboring nodes. The estimated value can intuitively re-
flect whether the agents in the state-based potential game
satisfy the coupled equality constraints through information
exchange. Take the optimization process of the first pump in
GM1 pumping station as an example. The simulation results
of coupled equality constraints constraints (2) and (3) are
shown in Fig. 5.
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Fig. 5. Estimates of coupled equality constraints for game model

Specifically, e1 and c1 respectively represent the estimates
of coupled equality constraint (3) and (2) of the first water
pump in GM1 during the first period. The estimated value of
e1 gradually converges to zero through information interac-
tion via the communication topology between single-stage
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pumping stations. Considering each period in the single-
stage pumping station as a virtual agent, the estimated value
of c1 also converges to zero. These results show that the
optimization strategies of cascade pumping stations meet the
coupled equality constraints (2) and (3).

C. Evaluation of Pumping Station Operation Strategies

For three single-stage pumping stations, the head of each
single-stage pumping station must satisfy the constraints (3),
(5), (6) and (7). The simulation results for heads of GM1,
GM2, and GM3 are shown in Table III. The head of the
cascade pump station follows the upper and lower limit
constraints. These scheduling strategies guarantee the normal
and stable operation of cascade pumping stations.

TABLE III
THE HEAD OF PUMPING STATIONS AT DIFFERENT PERIODS

Period (h) Period
Type

GM1
head(m)

GM2
head(m)

GM3
head(m)

00:00-07:00 Valley 134.44 151.62 73.95
07:00-08:00 Flat 124.93 139.27 75.80
08:00-11:00 Peak 106.53 139.90 73.57
11:00-13:00 Valley 134.44 151.62 73.94
13:00-17:00 Flat 124.92 139.26 75.81
17:00-23:00 Peak 131.73 117.50 70.89
23:00-24:00 Flat 124.93 139.27 75.80

To minimize daily electricity operating costs, we must
adjust the operation strategies of each single-stage pumping
station dynamically according to TOU electricity pricing.
When the electricity price is low, we can raise the single-
stage pumping station’s head and operating power to meet
potential peak water demand. When the price is high, we
should lower the single-stage pumping station’s head and
operating power to reduce unnecessary energy consumption.

To complete the daily water diversion task of 4×106m3,
GM1 adjusts the running time of 10 fixed-speed water pumps
according to TOU electricity pricing.
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Fig. 6. The water delivery volume and running time at different periods

Fig. 6 shows the water diversion volume of the 7 periods
and the running time of water pumps. The interval 0-1
represents the first period 00:00-07:00, and the rest follow the
same rule. For the flat period and valley period, all 10 water
pumps run throughout the period. During the peak period

from 08:00-11:00, 10 water pumps in GM1 only run for 2.23
hours. And the single-stage pumping station stops running
completely from 17:00 to 23:00.

The specific volume of water delivered in each period
is as follows: 1,625,400 m3, 232,200 m3, 516,999.96 m3,
464,400 m3, 928,800 m3, 0 m3, and 232,200 m3. The
results show that cascade pumping stations can effectively
adjust water pump strategies according to TOU electricity
pricing. TOU electricity pricing encourages efficient energy
consumption patterns, alleviates peak load pressures, and
ultimately leads to cost savings by shifting usage to off-peak
periods. This approach maximizes the economic benefits of
electricity pricing mechanisms. It helps us better optimize
resource allocation and enhance the overall system efficiency
of cascade pumping stations.

D. Adaptation to Variations in Water Diversion Volume

Because the daily water diversion volume of cascade pump
stations is substantial, there are different water diversion
tasks on other days. The operation plan requires completing
a daily water delivery task of 3.8×106m3, and the equality
constraint of the head remains unchanged. This experiment
evaluates how well the algorithm performs under different
conditions to show its feasibility and rationality.
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Fig. 7. Agent cost function under different water delivery task

The daily electricity operating costs for three single-stage
pumping stations are as follows: GM1 at 912,134.85 yuan,
GM2 at 1,020,146.44 yuan, and GM3 at 540,039.18 yuan.
The potential function of the cascade pumping stations grad-
ually converges to 2,472,320.48 yuan. At the same time, the
additional cost functions F 2

i (x, a)and F 3
i (x, a) also converge

to 0. The water volume affects the daily electricity operat-
ing costs of the cascade pumping station. When the water
delivery task decreases by 2×105m3, the daily electricity
operating costs decrease by 216,249.85 yuan. The results
show that the distributed projected gradient method based
on the state-based potential game can solve various water
diversion volume optimization problems.

Due to the water diversion task change, the running
time of single-stage pump stations is reduced from 2.23
hours to 1.73 hours during the 08:00-11:00 peak period.
Shortening the running time can greatly decrease the daily
electricity operating costs for single-stage pumping stations.
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The running time of the water pump remains unchanged
during other periods. For head constraints, as only the water
volume constraint changes, the heads for GM1, GM2, and
GM3 remain unchanged.
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Fig. 8. Estimates of coupled equality constraints under different water
delivery task

Similarly, e1 and c1 represent estimates of couled equality
constraint (3) and (2) for the first water pump in GM1 during
the first period, respectively. Both the estimated values of e1
and c1 converge to zero. This shows that the optimization
strategies employed by the cascade pumping stations satisfy
the equality constraints (3) and (2).

E. Assessment of Variations in Network Topology

In the above experiments, the network topology used for
distributed optimization is GM1 ↔ GM2 ↔ GM3. The in-
formation needed to be shared among the neighboring agents
is the estimates of the coupled equality constraints {eki , µk

i }
and their Lagrange multipliers {cki,m, ρki,m} as well as the
corresponding actions. Local communication between agents
only transmits the estimated information of the neighbors.
None of them reveals detailed information on the preferences,
economic factors, or loads of the users. Thus, the privacy of
each user is well preserved.

In order to analyze convergence under different network
topologies, the network topology changes from linear to ring
topology. The specific change is shown in Fig. 9.

Fig. 9. Changes in network topology

The water delivery task remains at 4×106m3. Fig. 10
shows the simulation results of the agent cost function under
ring topology.
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Fig. 10. Agent cost function under ring topology

The agent cost function F 1
i (x, a) under ring topology

converges to the optimal solution after 1476 iterations. Be-
cause the water delivery task remains unchanged, the daily
electricity operating cost of the cascade pumping stations,
i.e. the potential function, is 2,688,570.33 yuan. The daily
electricity operating costs for the three single-stage pumping
stations have changed: GM1 at 1,004,099.88 yuan, GM2 at
1,091,849.68 yuan, and GM3 at 592,620.77 yuan.

In distributed optimization algorithms, the convergence
speed increases as individual agents receive more infor-
mation. However, the closed loop by agents GM1, GM2,
and GM3 introduces additional communication paths and
increases communication volume. This can result in informa-
tion overload and redundant calculations, which partly offset
the acceleration effect. Consequently, the added communi-
cation paths do not significantly improve overall algorithm
performance.

By comparing Table III and Table IV, the head of GM1
and GM3 increases, while the head of GM2 decreases.
Because the communication topology has changed, GM1 and
GM3 can exchange information. GM2, as an intermediate
node, reduces the communication burden and balances the
head of cascade pumping stations better. And the change in
head is also adjusted according to TOU electricity pricing.

TABLE IV
HEAD OF PUMPING STATIONS UNDER RING TOPOLOGY

Period (h) Period
type

GM1
head(m)

GM2
head(m)

GM3
head(m)

00:00-07:00 Valley 137.45 148.42 74.12
07:00-08:00 Flat 126.59 137.56 75.84
08:00-11:00 Peak 106.53 139.62 73.85
11:00-13:00 Valley 137.45 148.42 74.12
13:00-17:00 Flat 126.59 137.56 75.85
17:00-23:00 Peak 131.67 117.50 70.89
23:00-24:00 Flat 126.59 137.56 75.85

In conclusion, the original linear topology, where agents
GM1, GM2, and GM3 are connected sequentially, allows
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information to pass only between adjacent nodes. This
setup aligns with the real-world geographical layout of
long-distance water diversion projects. For the optimization
scheduling problem of cascade pumping stations, this ap-
proach reflects realistic spatial limits and ensures optimal
strategies can be found with limited information exchange.

VI. CONCLUSION

The proposed state-based potential game model for cas-
cade pumping stations provides an effective solution for
the distributed optimization scheduling of water pumps. By
considering the interactions between single-stage pumping
stations, we designed corresponding states and estimates to
handle coupled equality constraints. Subsequently, we intro-
duce the potential function with good convergence properties
to unify the cost function of multiple agents into a global
function. It simplifies the analysis process of the game model.
Finally, the projected gradient algorithm is used to achieve
stationary Nash equilibrium. Based on TOU electricity pric-
ing, the results demonstrate that cascade pumping stations
can efficiently complete water diversion tasks while minimiz-
ing daily electricity operating costs. The proposed algorithm
shows excellent convergence performance. In addition, we
also test the game model under different water diversion tasks
and network topologies. The results confirm the feasibility
and rationality of the state-based potential game framework
for the distributed optimization of cascade pumping stations.
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