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Abstract—The Black-Litterman portfolio model based on
the Gaussian mixture model is proposed in this study.
Different from current popular research patterns in Black-
Litterman portfolio, we do not employ some forecasting
algorithms to build investment views, but use the clustering
method to dig the historical samples and find the repre-
sentative centroids as the investment experts. Due to GMM
believes that the data follows a mixed normal distribution,
with each component is assigned a probability value. We
build three types of Black-Litterman portfolio based on the
designed selection algorithm, the optimistic-style GMM-BL,
the pessimistic-style GMM-BL, and the maximum proba-
bility GMM-BL. The corresponding numerical experiments
focus on testing the out-of-sample performance of the pro-
posed portfolio models and the baseline strategy, where the
maximum probability GMM-BL and the pessimistic-style
GMM-BL achieve the highest Sharpe ratio and Calmar ratio,
and the optimistic-style GMM-BL shows similar performance
with the 1/N model. Although the proposed framework
tends to be conservative, the out-of-sample effectiveness still
demonstrates its practical value.

Index Terms—Portfolio selection, Gaussian Mixture
Model, Black-Litterman, Clustering method

I. INTRODUCTION

HE Black-Litterman (BL) portfolio model[l], [2],

[3] has been recognized as one of the practical
investment strategies by academia and industry[4], [5], [6],
[7], [81, [9], [10], [11], because of its outstanding ability
to overcome some notorious drawbacks of the classical
mean-variance (MV) portfolio model[12], [13]. For exam-
ple, MV only uses historical samples to generate model
parameters, which resulting severe parameter-dependency
and high parameter-sensitivity. Thus, it is difficult for
MV to achieve impressing performance in the out-of-
sample numerical experiments. Black-Litterman designs a
ingenious way to reduce the parameter sensitivity to some
extent, where the investor views can be used to fix the es-
timated parameters from the historical samples. Therefore,
Black-Litterman portfolio model generally shows better
out-of-sample performance than the classical MV model,
as long as the inputted investor views are reliable.
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The key insight of the Black-Litterman method is to
blend the prior market portfolio with the subjective in-
vestor views via a Bayesian approach, where the Gaus-
sian assumption is hold for model derivation process.
Some scholars also develop non-Gaussian Black-Litterman
portfolio model. Meucci[3] considers non-normal investor
views, and combines arbitrarily distributed market prior
with these views in a manner of copula method. Sa-
hamkhadam et, al.[8] extends the Black-Litterman frame-
work to incorporate tail dependency, and the joint posterior
returns distribution is estimated by vine copulas. The
associated empirical analysis demonstrates the robustness
of the copula-based BL portfolio framework, especially
in terms of lower tail risk. Recently, artificial intelligence
(AI) has showcased enormous potential in financial model-
ing, some machine learning and deep learning algorithms
proven to be appropriate for giving provident predictions,
which are beneficial in building Al-based BL portfolio
model[14], [15], [16], [17], [18].

Another strand of research route is to combine some
econometric methods, statistical approaches, and time-
series analysis with the traditional BL framework to im-
prove portfolio performance[19], [5], [9], [11], [10]. The
core idea of these variants is to empower the forecast-
ing ability for the constructed strategies, which is equal
to achieve high-quality expert investment views in the
classical BL method. Nonetheless, how to specify the
uncertainty level of the simulated investor views is still
one of the most complicated issues discussed in academic
communities. He & Litterman (2002) [20] directly set
the uncertainty level (quantified by variance) of investor
views to be proportional to the uncertainty level of the
prior market equilibrium portfolio. Idzorek (2007) [21]
quantifies the uncertainty level of the investor view using
a percentage between 0% and 100%, where 0% means the
investor view can not be believed while 100% indicates the
given investor view is highly reliable. Although Idzorek
provides a feasible solution to adjust the BL posterior
returns distribution according to the given confidence
level, but the specific method to set the confidence level
for each investor view is not mentioned. Li et, al. (2023)
[22] quantify the investment view uncertainty based on
theory of Gaussian process regression, which is consistent
with the Black-Litterman framework in spirit of basic
assumption. To eradicate the arbitrariness and subjectivity
in viewpoint setting as much as possible, we develop the
Gaussian Mixture Model based Black-Litterman (GMM-
BL) portfolio model in this work, where the normality
assumption is hold throughout the paper.

Combine optimization techniques and machine learn-
ing methods in portfolio formation gradually be-
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come the mainstream of financial modeling research
community[23], [24], [25], [26], [10]. Existing numerical
experiments[7] illustrate that direct forecasting asset return
rates may not be very robust in the out-of-sample perfor-
mance, in that the issue of over-fitting in lots of tree-based
models and neural network-based systems. Scholars and
practitioners have proposed some impressing strategies to
cope with this problem. For example, one can call mul-
tiple algorithms to simulate different investment experts
simultaneously, and design an ensemble mechanism to
evaluate these investor views. In this paper, we do not
consider many algorithms to give predictions, because Al-
based methods of identical types tend to present similar
results, whereas the complicated underlying structure of
asset returns might not given enough attention.

In order to analyze financial data at a finer granular-
ity and build Black-Litterman portfolio model, we take
data as variables following a set of multivariate normal
distributions, and the Gaussian Mixture Model is used
to cluster the samples. By this way, both the impact of
macroeconomics and the technical indicators can be taken
into account for simulating investor opinions. Essentially,
the proposed portfolio model combines BL framework
with clustering method[27], [28], [25], contributing to
provide a robust approach for investment views genera-
tion, with quantifiable uncertainty. In principle, Gaussian
mixtures can approximate any continuous distribution[29],
whose components can be interpreted as market regimes.
Therefore, some non-normal attributes of financial returns
such as skewness and kurtosis can be modeled by GMM,
which also supports the rationality of the proposed GMM-
BL portfolio model.

The rest of this study is structured as follows. Section II
summaries the classical Black-Litterman portfolio frame-
work, which is the basis for this research. Section III
provides the derivation of the Gaussian Mixture Model,
and the associated GMM-BL portfolio is constructed and
presented in Section IV. In Section V, the proposed
strategies and benchmarks are tested on the real-world
datasets, and the corresponding analysis are given. Section
VI draws a conclusion of the whole paper and discusses
the possible limitations of this study at last.

Note that the lower case bold letters refer to vectors, for
example, a. The upper case bold letters denote matrices
such as A. Meanwhile, scalars such as A are indicated by
the plain white letter.

II. BLACK-LITTERMAN FRAMEWORK

Analytically, define a universe of N risky assets over
time period of length 7', whose N X T' return matrix
R = (rl,rQ,...,Tn)T follows the multivariate Gaus-
sian distribution, » ~ N(g,X), where p = E[r] =
(11, 2, - - -, piny) Tepresents the expected asset return, and
3} is the covariance matrix.

Under the assumption of Gaussian, the expected return
p is deemed to be composed of market equilibrium return
IT and Gaussian residual vector €, ~ N(0,7X). There-
fore, we have g ~ N (II, 7X), which constitutes the prior
distribution of the involved assets. The market equilibrium
return IT can be achieved using reverse optimization,

where each investor holds the same market portfolio
with the utility objective of maxz”II — Az’ Xz, where
z € R” is the portfolio weight vector, and A € (0,1) is
the risk-aversion coefficient. By solving the maximization
problem, we have Il = AXz, A\ = "L, where ., is the
market return rate, r is the risk—freemrate, and 0'72n is the
variance of market return rate. 7 is a scalar representing the
uncertainty of the prior distribution, which is proportional
to the confidence level of the market equilibrium prior.

Black-Litterman framework takes the subjective investor
views as the likelihood estimations for the underlying
return distribution, and can fix the market prior via the
Bayesian formula. Assume there are K investor views
about M (M < N) risky assets, the pick matrix P €
REXM and the investor views vector Q € R can be
used to describe the subjective views as follows:

Pu=Q+e,,e, ~N(0,Q2),Cov(u,e,) =0

Thus, we have Py ~ N(Q,Q), and the posterior dis-
}ribution of p can be achieved via Bayesian formula as
ollows:

N((ED) ' +rTar) (rs) 'm+P Q7 1qQ, [(+=) '+PTaP] )

where
p= (D) '+ PTQP| ()"0 + P !Q!Q
2= (%) '+ PToP]!

Based on the posterior distribution, the Black-Litterman
portfolio can be expressed as follows:

A
maxzl i — xSz (1)
z 2

An illustrative example is given as follows to present
the basic logic of the investor views in Black-Litterman
framework. Assume there are four available risky assets
named A, B, C, D on the market. An investment expert
has the following three opinions about the involved assets:

o The yield of asset A is 20%.

o The yield of asset B is 10% higher than that of asset
C.

« The yields of assets A and C are 5% higher than that
of asset D.

Therefore, the pick matrix P is as follows:

1 0 0 0
P=|0 1 -1 0
1/2 0 1/2 -1

and the associated views vector Q = [20%, 10%, 5%] T
with the K x K covariance matrix Q = diag(P(7X)P7T).

III. GAUSSIAN MIXTURE MODEL

Gaussian Mixture Model (GMM) belongs to the prob-
abilistic model used for representing the presence of sub-
populations within an overall population. The fundamental
assumption of GMM is that the data is generated from a
mixture of several Gaussian distributions. Each Gaussian
component indicates a cluster within the data. The overall
distribution is a weighted sum of these Gaussian compo-
nents. Assume that each cluster C; can be represented by
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a multivariate Gaussian distribution as follows:

fil®) = f(x|pi, )

_ 1 expl - (@ — i) "2 (@ — i)
(2m) 12|21/ 9

where f;(x) is the probability density of z belonging to
cluster C;. For the population X, we assume its probability
density function is a GMM of k clusters:

k

> filelwi, i) P(C))

i=1

k
fle) =Y H@P(C:) =

where P(C;) is the mixture parameter, satisfying the
constraint Zle P(C;) = 1 for total k clusters. Hence,
the parameters of GMM is defined as follows:

0 .= {[Ll, 21,P(C1), . 7/Lk72k,P(Ck)}

A. Maximization Likelihood Estimation

Generally, given data set D, the likelihood function for
P(DJ#) is as follows:

PmpY) =[] /@)

where the assumption of independent and identically dis-
tributed (i.i.d) samples holds. And, the corresponding log-
likelihood function is as follows:

In P(D]§) = > In f(x;)
j=1

- illn (if(leui, Ei)P(Ci)>

Note that it is hard to solve @ analytically, but it can be
approximately estimated by the Expectation-Maximization
(EM) algorithm.

B. Expectation-Maximization Algorithm

EM algorithm iteratively updates # to maximize the
likelihood of the observed samples. Initially, for each
cluster Cy, p; = (pi1, ftiz, - - -, ptiq)” can be generated by
uniformly sampling from every dimension, with 3; = 1.
The prior probability for each cluster is P(C;) = 1.

The E-step aims to evaluate the weight w;; (contri-
bution) of data point z; to cluster C;, that is, E[c;;] =
P(C;|z;) = w;j, which can be calculated as follows:

flaglps, 3:)P(Cy)
f(z;5)

The M-step gives the likelihood estimation of
Wi, X;, P(C;) using the obtained w;; in the E-step:

wi; = P(Cilz;) = P(ijIDC(‘;)j(Ci) _

Do Wi T

Bi =

21 Wij
> iy wiy (@ —pa) (@ —pi)T
' - 2 j=1 Wij
N Ge1 Wij
P(Cy) = =52—

IV. GMM-BL PORTFOLIO MODEL

The theoretical basis for our proposed GMM-BL model
is that history would repeat itself, especially on the scope
of finance and economics. According to this hypothesis,
we can firstly extract the local trends from market data
points as the k clusters, representing the multiple investors
opinions at different periods. Then, we use the obtained %
components to evaluate each stock, and get the forecasting
return rates. Accordingly, the confidence level can be
quantified by the mixture parameter P(C;). Algorithm 1
presents the basic logic of GMM-BL.

Algorithm 1 Algorithm of GMM-BL portfolio model.

Input: Market data D,,,; Asset data D,,.
Output: GMM-BL portfolio; Pick matrix P; Investor
views Q; Confidence matrix €.
1: Separate training samples from historical datasets, i.e.,
T,,, for market data and T, for asset universe.
2: Define the number of components k for the GMM
according to the overall trend of T,,.
3: For each stock in T, get k investor views as well as
P(C;) using GMM.
Construct the confidence matrix based on P(C;).
Construct the pick matrix P.
Construct the views vector Q based on the GMM.
Obtain the posterior distribution and calculate the
parameters f& and 3.
Build the GMM-BL portfolio model based on (1).
9: return GMM-BL.

A

®

Some practical constraints are also considered in the
proposed GMM-BL model, the first one is non-shorting
constraint, z > 0, and the second one is budget constraint,
17"z = 1. The objective of the proposed GMM-BL
portfolio is to maximize Sharpe ratio[30], where both the
investment return and portfolio risk are taken into account:

)
max —_—
z Vel

st. £>01Tz=1

2

Note that the problem belongs to nonlinear programming,
which can be solved by open-source modules such as
SciPy[31], or commercial solvers such as Gurobi and
CPLEX.

V. NUMERICAL EXPERIMENTS

The numerical experiments provide model performances
on the realistic datasets for analyzing the efficient and
effectiveness of the proposed GMM-BL portfolio. We use
the equal-weighted portfolio as the benchmark, in that
it has been demonstrated to show stable out-of-sample
performance [32]. Also, we focus on evaluating portfolio
out-of-sample performance, in which some risk-adjusted
indicators such as Sharpe ratio and Calmar ratio are
involved. Note that, the risk-free rate 7y = 3% per year
throughout the numerical experiments.
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TABLE I
FINANCIAL INFORMATION OF THE INVOLVED CORPORATIONS.

Ticker Corporation Market Capital ~ 3(5 Year Monthly)  PE ratio (TTM) EPS (TTM)
AAPL Apple Inc. 3.001T 1.25 30.49 6.42
BA The Boeing Company 115.609B 1.55 - -3.53
C Citigroup Inc. 117.886B 1.47 18.02 343
GE General Electric Company 176.057B 1.24 42.33 3.80
GOOG Alphabet Inc. 2.184T 1.01 27.25 6.52
INTC Intel Corporation 129.579B 1.06 31.38 0.97
JPM JPMorgan Chase & Co. 563.49B 1.11 11.84 16.57
MSFT Microsoft Corporation 3.141T 0.89 36.65 11.53
NVDA NVIDIA Corporation 2.953T 1.69 70.03 17.14
TSLA 2.32 44.94 3.90

Tesla Inc.
. 1ndicates 3.

559.00B

TABLE II
DESCRIPTIVE STATISTICS OF THE INVOLVED ASSETS RETURN RATES.

Ticker Mean Stdev.  Jarque-Bera  p-value
AAPL  0.0016  0.0215 840.3486 0.00
BA 0.0001  0.0345  4817.7620 0.00
C 0.0002  0.0264  4614.3127 0.00
GE 0.0009 0.0264  4614.3127 0.00
GOOG  0.0009  0.0208 546.3112 0.00
INTC 0.0000 0.0248  4779.2096 0.00
JPM 0.0006  0.0219  5523.1220 0.00
MSFT  0.0012  0.0204 1886.8853 0.00
NVDA  0.0026  0.0333 239.2627 0.00
TSLA 0.0033  0.0431 395.9242 0.00
SPX 0.0005 0.0146  5670.8814 0.00
A. Data Set

We collect daily fundamental trading information of 10
giant corporations on the US equities market from the
database of Finance Yahoo, including open price, high
price, low price, close price, adjusted close price, and
volume. Table I summarizes the fundamental information
of the involved companies, where MSFT has the highest
market capital of 3.141 trillion, TSLA shows the largest
B of 2.32, indicating significant higher level of volatility
than market. PE ratio suggests insight into how much
investors are willing to pay for each dollar of earnings,
that is, the market expectation for the company. Note that
NVDA achieves the highest PE ratio of 70.03, whereas
BA has the negative EPS of —3.53, hence its PE ratio is
meaningless. Earning Per Share (EPS) is a financial metric
illustrating the profitability of a company on a per-share
basis. Investors can use this indicator to gauge a company’s
financial health and performance. NVDA also obtains the
best EPS of 17.14, followed by JPM, of 16.57.

Table II gives the descriptive statistics of the involved
corporations as well as the S&P 500 index (SPX), where
the mean value, standard deviation are provided. We also
present the results of Jarque-Bera statistical test for each
asset, and no normality could be observed according to the
associated p-values (the null hypothesis is rejected at the
significance level of 0.1%). The SPX figure on the website
of Yahoo Finance visualizes the market trend in a manner
of candlestick chart, where the training period ranging
from May, 2019 to May, 2023. Significantly, different
market regimes can be observed, which provide practical
basis for GMM modeling.

B. Technical Indicators

Besides the fundamental financial features, we also
make some technical indicators for better capturing the

TABLE III
TECHNICAL INDICATORS.

Item Detail Type
ADX Average Directional Movement Index =~ Momentum
ADOSC Chaikin A/D Oscillator Volume
NATR Normalized Average True Range Volatility
MIDPRICE Mid Point Over period Overlap

characteristics of these assets. Table III illustrates the used
technical indicators, where the short period is 5 days and
the long period is 10 days in the associated computations.

C. Evaluation Measures

For the purpose of comparing different strategies com-
prehensively, we employ some performance measures,
namely return on investment (ROI), annual percentage
yield (APY), maximum drawdown (MDD), Sharpe ratio
(SR), and Calmar ratio (CR). Define Rt as the final wealth
obtained by a investment strategy, and Ry as the initial
wealth, ROI is given as follows:

Ry — Ry
0

ROI = x 100%

Based on that, APY is calculated by the following formula:
APY = V1+ROI -1

where n is the year of investment period, and we assume
252 trading days per year.

MDD can be used to measure the portfolio downside
risk, which is define as the peak-to-trough decline of a
investment over a specified time period, which can be ex-
pressed by MDD = max;¢[o,7j{max;c[o,4 ROI; — ROI;}.
Generally, MDD is quoted as a ratio of the peak value:

maxie[o’t] ROIZ — ROIt
maxie[o’t] ROIZ

MDD = max {
t€[0,T]

} x 100%

where max;eo 4 ROL; documents the highest peak from
the initial point to the instant ¢.

SR is a widely used indicator in appraising investment
strategy, measuring the excess return obtained with the
predefined portfolio risk.

_ APY — Ry

Op

SR

where Ry is the risk-free rate, o, is the annual standard
deviation (VOL) of the investment return rates. Conven-
tionally, scholars take the Treasury bill rate or long-term
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government bond yield as the risk-free rate in practice. In
this study, we set Ry = 3% per year for simplicity.

CR is also a risk-adjusted financial measure advocated
by hedge fund managers. Slightly different from SR, the
denominator in CR is MDD instead of VOL, suggesting
it focuses on the portfolio downside risk.

APY
CR=-——
MDD

D. Investor views

According to the overall status shown in Yahoo Finance
ranging from June 2019 to May 2023, three identifiable
sub-trends can be found and simulated as investment
experts. Table IV reports the results of executing algorithm
1 on the practical data set. BA seems not to be favored
by these experts, due to its low EPS and unsatisfactory
average return rate. Whilst NVDA and GE are ranked high
positions by these experts, where all of forecasting returns
are positive.

Based on that, we construct three types of GMM-BL
portfolios: the first one is optimistic investment style,
where the view with highest possible return is adopted
for building subsequent portfolio; the second one is pes-
simistic investment style, where the view with lowest
possible return is used for constructing Black-Litterman
model; the last one portfolio takes the forecasting return
rate with the most confidence level as the investor view to
form investment strategy.

E. Portfolio Performance

The risk-aversion coefficient A = 1.9868 can be calcu-
lated by the historical prices of SPX, and the correlation
matrix can be achieved via the Ledoit-Wolf estimation
method, which is a robust and efficient manner, particu-
larly when the number of observations is not much larger
than the number of assets. Essentially, this approach aims
to improve the stability and accuracy of the covariance
matrix by shrinking the sample covariance matrix towards
a more structured estimator, often the identity matrix or
a constant correlation matrix. In portfolio optimization, a
more stable covariance matrix leads to better estimates of
portfolio risk and more reliable results.

The correlation matrix suggests that JPM and Citi
have similar stock trends, since the correlation coefficient
between them is around 0.9, and both of them belong
to financial industry. Also, the correlation coefficients
between MSFT & AAPL, MSFT & GOOG are above 0.6.
Whilst GE and TSLA show low correlation coefficient
around 0.3, because they represent noval industries and
traditional industries, respectively. And, TSLA show low
correlation with BA, Citi, and JPM.

Fig. 1 gives the market prior returns of the assets
in a manner of horizontal bar plot, where NVDA has
the highest market prior return, and TSLA ranks the
second place. However, JPM and GE show relative low
market prior returns according to the assumption of Black-
Litterman framework.

Three types of investment strategies are built within the
proposed GMM-based Black-Litterman theoretical frame-
work: pessimistic-style, optimistic-style, and maximum

probability-style. Table V reports the details of posterior
returns of the involved portfolios, respectively. It can
be observed that the pessimistic-style GMM-BL shows
relative high posterior returns comparing to another two
strategies, even though the most pessimistic investment
views are inputted. The reason for this counter-intuitive
phenomenon is that the corresponding confidence level
is not high enough to generate significant influence on
the prior asset returns. However, the maximum probability
portfolio gives the most conservative prior returns due to
the highest confidence level.

Table VI reports the details of each portfolio alloca-
tion weight, where the optimistic strategy is the most
diversified, total 5 stocks are selected by this investment,
while the maximum probability model focuses on only 2
assets, MSFT and NVDA. The intelligence of the proposed
GMM-BL portfolios can be witnessed by the results of the
weight distribution, where the companies with mediocre
financial performance such as BA, C and INTC are not
considered by any investment strategy.

Table VII presents the evaluation metrics for the pro-
posed portfolios and the equal-weighted portfolio (EW) as
the benchmark. ROI and APY gauge the profitability of
the portfolios, on which the maximum probability GMM-
BL portfolio achieves the highest ROI of 1.3362 and APY
of 1.3193. Pessimistic-style GMM-BL portfolio ranks the
second place with ROI of 1.1199 and APY of 1.0832. EW
does not show any advantage on the profitability, whose
ROI and APY are only 0.4660 and 0.4530, respectively.

Regarding to investment maxdrawdown, the optimistic-
style GMM-BL portfolio has weak comparative advantage,
with MDD of 11.90%. The pessimistic-style GMM-BL
shows similar MDD with EW, that is, 12.27% versus
12.52%. The maximum probability GMM-BL has the
highest MDD of 14.60%, suggesting the investors may
suffer from more potential loss during the fund man-
agement period than other strategies. Essentially, MDD
provides a clear measure of the worst-case scenario for an
investment’s decline (downside risk), which is a critical
metric for risk-averse investors who want to minimize their
exposure to significant losses.

Portfolio volatility (VOL) is quantified by the an-
nual standard deviation, which gives the strategy overall
risk level. According to some classical financial theo-
ries, investment reaches high return due to it undertakes
more risk. Our numerical results also confirm this asser-
tion, where the maximum probability GMM-BL portfolio
shows the largest volatility of 35.38%, followed by the
pessimistic-style GMM-BL portfolio, 30.63%. Although
EW is inferior to other portfolios in terms of ROI and
APY, but EW outperform other investments in controlling
overall risk level, since its VOL is only 16.77%.

Two risk-adjusted indicators, SR and CR, evaluate
portfolio performance comprehensively. SR uses standard
deviation as a measure of risk, and assumes the portfolio
returns are normally distributed. The maximum probabil-
ity GMM-BL portfolio dominate other portfolios via its
highest SR of 3.6443. The pessimistic-style GMM-BL
also has impressive performance with the second highest
SR of 3.4382. Nonetheless, the optimistic-style GMM-BL
portfolio shows the lowest SR of 2.3, which is even worse
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Fig. 1. Market prior returns.
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Fig. 2. Portfolio cumulative excess returns.
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TABLE IV
RESULTS OF GMM-BL ALGORITHM.

Fig. 3. Portfolio daily returns.

Asset Viewl Confidencel View2 Confidence2 View3 Confidence3
AAPL -0.0021 25.54% 0.0037 24.84% 0.0018 49.62%
BA -0.0012 19.29% -0.0005 14.53% 0.0004 66.17%
C 0.0003 13.69% 0.0012 39.85% -0.0002 46.46%
GE 0.0016 18.71% 0.0028 21.83% 0.0006 59.46%
GOOG  -0.0007 23.66% 0.0029 18.11% 0.0013 58.23%
INTC -0.0032 13.16% 0.0007 54.63% 0.0002 32.21%
JPM 0.0002 15.80% -0.0004 29.87% 0.0016 54.32%
MSFT -0.0027 23.36% 0.0026 41.76% 0.0020 34.88%
NVDA  0.0016 40.72% 0.0030 50.65% 0.0010 8.63%
TSLA -0.0065 54.94% 0.0080 20.66% 0.0200 24.40%
ew | —{
Max Prob.q © }—[I:I—{ o] o) o]
Opt.
opt. - 00 }—[I:I—{ @ O
Pess. - o | lo 0 o
T T T T T
—=0.05 0.00 0.05 0.10 0.15
TABLE V TABLE VII

POSTERIOR RETURNS OF THE BUILT PORTFOLIOS.

Asset Pess. Port. ~ Opt. Port. ~ Max Prob. Port.
AAPL 0.0839 0.0656 0.0422
BA 0.0386 0.0174 0.0100
C 0.0309 0.0212 0.0128
GE 0.0220 0.0202 0.0103
GOOG 0.0797 0.0617 0.0350
INTC 0.0694 0.0326 0.0238
JPM 0.0314 0.0203 0.0146
MSFT 0.0872 0.0610 0.0444
NVDA 0.1413 0.0859 0.0660
TSLA 0.0698 0.0837 0.0395
TABLE VI
PORTFOLIO ALLOCATION.
Asset Pess. Port. ~ Opt. Port. ~ Max Prob. Port.
AAPL 10.47% 39.27% 0.00%
BA 0.00% 0.00% 0.00%
C 0.00% 0.00% 0.00%
GE 0.00% 0.00% 0.00%
GOOG 6.82% 30.21% 0.00%
INTC 0.00% 0.00% 0.00%
JPM 0.00% 0.00% 0.00%
MSFT 32.44% 6.25% 37.63%
NVDA 50.27% 17.19% 62.37%
TSLA 0.00% 7.07% 0.00%

PORTFOLIO ALLOCATION.

Asset  Pess. Port.  Opt. Port. ~ Max Prob. Port. EW

ROI 1.1199 0.5367 1.3662 0.4660

APY 1.0832 0.5214 1.3193 0.4530

MDD 12.27% 11.90% 14.60% 12.52%

VOL 30.63% 21.36% 35.38% 16.77%

SR 3.4382 2.3000 3.6443 2.5226

CR 8.8263 4.3818 9.0291 3.6200
than EW.

Slightly different from SR, CR considers the down-
side risk, MDD, as the risk term. CR is primarily used
to evaluate the performance of hedge funds and some
other high-volatility investments. As far as this indica-
tor concerned, the maximum probability GMM-BL and
the pessimistic-style GMM-BL portfolios continuously
maintain their superiority, whose CR values are 9.0291
and 8.8263, respectively. The optimistic-style GMM-BL
portfolio surpasses EW in this metric (4.3818 versus 3.62).
For the investors with high priority of capital protection,
they should pay attention on CR instead of SR.

Fig. 2 visualizes the cumulative excess returns of the
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involved investment strategies. Except at the very begin-
ning stage, the maximum probability GMM-BL portfolio
has higher cumulative excess curves than other portfolios.
And, the pessimistic-style shows the sub-optimal cumula-
tive excess curve. However, the two curves are intertwined
multiple times during the testing period, indicating they
have similar portfolio performances, which is consistent
with the results shown in table VIIL

Fig. 3 plots the daily returns of the proposed GMM-
BL portfolio as well as the baseline strategy. It can be
observed that the two portfolios with outstanding prof-
itability, maximum probability GMM-BL and pessimistic-
style GMM-BL, have significant outliers, especially on the
right side, indicating fascinating potential to reach high
level of investment return. The out-of-sample stability of
EW model can be reflected on the distribution of daily
returns, where almost no outliers can be observed.

FE. Sensitivity Analysis

The sensitivity analysis is implemented in this section,
where the different numbers of simulated experts are con-
sidered. The portfolio performance section mainly reports
the results of using 3 defined investment experts corre-
sponding the 3 significant trends could be easily observed
from the market index. However, when the candlestick
chart is magnified on the finer scale, more sub-trends could
be found. Therefore, we consider some more simulated
investment experts in forming the proposed three GMM-
BL types portfolio models. Note that pick sub-trends is a
highly subjective process, thus some human interventions
such as parameter tuning are necessary, and the following
records of sensitivity analysis are for reference only, be-
cause the numerical results would be obviously influenced
by different picking rules.

Table VIII gives the sensitivity analysis of portfolio
MDD using different numbers of simulated investment ex-
perts. For the pessimistic GMM-BL portfolio, it achieves
the best MDD performance of 12.20% when the number
of simulated experts is 6. The optimistic GMM-BL reaches
11.83% MDD using 7 investment experts. Regarding to the
maximum probability portfolio, using 8 simulated experts
is a wise choice, since the portfolio MDD is 14.48%.

It also records the sensitivity analysis of portfolio SR
with multiple numbers of constructed investment experts.
For the pessimistic GMM-BL portfolio, it achieves the best
SR performance of 3.4405 when using 6 simulated invest-
ment experts. For the optimistic GMM-BL portfolio, using
5 investment experts is appropriate, due to the Sharpe
Ratio is 2.3005, higher than other cases. Regarding to the
maximum probability GMM-BL portfolio, the best choice
is to set 9 investment experts, by which the portfolio SR
could reach to 3.6503.

Overall, employing more simulated investment experts
in constructing GMM-BL based portfolio does improve
the associated performance, but the effectiveness is also
limited, especially exceeding a certain threshold. For in-
stance, 5 simulated investment experts in this analysis.
Hence, high sensitivity can be observed when the number
of simulated experts is small, whereas the sensitivity is low
when there exists sufficient number of investment experts.

VI. CONCLUSIONS

In this study, we continue to expand and deepen pre-
vious researches about the Black-Litterman portfolio [7],
[22]. Different from the existing works using machine
learning algorithms to generate forecasting investment
views, the clustering method is used in this paper, and the
achieved centroids are employed as the investment experts
for giving representative views. However, this method is
slightly conservative, because the Gaussian mixture model
could only dig historical samples and give probability-
based centroids. Based on that, we construct three types of
GMM-BL portfolios on the testing samples, and use 1/N
strategy as the benchmark for comparison. Empirical study
shows that the maximum probability GMM-BL portfolio
and the pessimistic style GMM-BL portfolio have impres-
sive performance in terms of profitability. The optimistic-
style GMM-BL portfolio show similar performance with
EW regarding to both return and risk. Therefore, we can
conclude that the GMM can provide reliable investment
views for the Black-Litterman portfolio, especially for the
short-term portfolio formation.

Some limitations can also be observed from the nu-
merical experiments. Due to both the Black-Litterman
theoretical framework and the GMM are based on the
Gaussian assumption, whereas the stock returns reject
the normality hypothesis to large extent, which generates
obvious gap between theory and reality. Even though the
GMM-BL portfolios achieve excellent results on the out-
of-sample experiments, some obstacles in the real world
such as transaction costs and slippage should be taken into
account, which construct our future research direction. In
addition, we need to consider automating the sensitivity
analysis process, where the human interventions should
be minimized as much as possible, to ensure the stability
of the results.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the associated pro-
fessor from the School of Information Management and
Engineering, Shanghai University of Finance & Eco-
nomics, Jianjun Gao, for his professional guidance. The
authors also thank the professor from the School of
Information Management and Engineering, Shanghai Uni-
versity of Finance & Economics, Dongmei Han, for her
kindly help.

REFERENCES

[1] F. Black and R. Litterman, “Global portfolio optimization,” Finan-
cial analysts journal, vol. 48, no. 5, pp. 28-43, 1992.

[2] S. Satchell and A. Scowcroft, “A demystification of the black—
litterman model: Managing quantitative and traditional portfolio
construction,” Journal of Asset Management, vol. 1, pp. 138-150,
2000.

[3] A. Meucci, “Beyond black-litterman: Views on non-normal mar-
kets,” Available at SSRN 848407, 2005.

[4] P. N. Kolm, G. Ritter, and J. Simonian, “Black-litterman and
beyond: The bayesian paradigm in investment management,” The
Journal of Portfolio Management, vol. 47, no. 5, pp. 91-113, 2021.

[5] T. E. Simos, S. D. Mourtas, and V. N. Katsikis, “Time-varying
black—litterman portfolio optimization using a bio-inspired ap-
proach and neuronets,” Applied Soft Computing, vol. 112, 107767,
2021.

Volume 33, Issue 4, April 2025, Pages 1020-1028



Engineering Letters

(6]

(7]

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

PORTFOLIO PERFORMANCE USING DIFFERENT NUMBER OF SIMULATED EXPERTS.

TABLE VIII

n=3 n=4 n=>5 n==~6 n="7T n=3~8 n=9 n=10
Maxdrawdown
Pess-GMM-BL 0.1277  0.1230  0.1225 0.1220 0.1223  0.1225 0.1222  0.1224
Opt-GMM-BL 0.1190 0.1192 0.1220 0.1188 0.1183 0.1189  0.1191 0.1190
Max-Prob-GMM-BL  0.1460  0.1455 0.1451 0.1450 0.1453  0.1448 0.1449  0.1450
Sharpe Ratio
Pess-GMM-BL 34382 3.4301 34384 3.4405 3.4400 3.4397 3.4401 3.4376
Opt-GMM-BL 2.3000 22807 2.3101 23005 2.2901 2.2900 2.2903 2.2991
Max-Prob-GMM-BL  3.6443  3.6450 3.6501 3.6500 3.6400 3.6408 3.6503 3.6482
T. Stoilov, K. Stoilova, and M. Vladimirov, “Application of modi-  [25] J. Puerto, M. Rodriguez-Madrena, and A. Scozzari, “Clustering and

fied black-litterman model for active portfolio management,” Expert
Systems with Applications, vol. 186, 115719, 2021.

L. Min, J. Dong, D. Liu, and X. Kong, “A black-litterman portfolio
selection model with investor opinions generating from machine
learning algorithms,” Engineering Letters, vol. 29, no. 2, pp. 710-
721, 2021.

M. Sahamkhadam, A. Stephan, and R. Ostermark, “Copula-based
black—litterman portfolio optimization,” European Journal of Op-
erational Research, vol. 297, no. 3, pp. 1055-1070, 2022.

Y. Han and J. Li, “The impact of global economic policy uncertainty
on portfolio optimization: A black-litterman approach,” Interna-
tional Review of Financial Analysis, vol. 86, 102476, 2023.

J. Gao, J. Wang, Y. Zhou, M. Lv, and D. Wei, “Enhancing
investment performance of black-litterman model with ai hybrid
system: Can it be done?” Expert Systems with Applications, vol.
244, 122924, 2024.

H. Ko, B. Son, and J. Lee, “A novel integration of the fama—french
and black-litterman models to enhance portfolio management,”
Journal of International Financial Markets, Institutions and Money,
vol. 91, 101949, 2024.

H. M. Markowitz, “Portfolio selection,” The Journal of Finance,
vol. 7, no. 1, p. 77, 1952.

T. Joro and P. Na, “Portfolio performance evaluation in a mean—
variance—skewness framework,” European Journal of Operational
Research, vol. 175, no. 1, pp. 446-461, 2006.

R. Barua and A. K. Sharma, “Dynamic black litterman portfolios
with views derived via cnn-bilstm predictions,” Finance Research
Letters, vol. 49, 103111, 2022.

L. Min, J. Dong, J. Liu, and X. Gong, “Robust mean-risk portfolio
optimization using machine learning-based trade-off parameter,”
Applied Soft Computing, vol. 113, 107948, 2021.

T. Hai and L. Min, “Hybrid robust portfolio selection model using
machine learning-based preselection,” Engineering Letters, vol. 29,
no. 4, pp. 1626-1635, 2021.

F. D. Paiva, R. T. N. Cardoso, G. P. Hanaoka, and W. M. Duarte,
“Decision-making for financial trading: A fusion approach of
machine learning and portfolio selection,” Expert Systems with
Applications, vol. 115, pp. 635-655, 2019.

P. Sujin and L. Jaewook, “Exploiting the low-risk anomaly using
machine learning to enhance the black-litterman framework: Evi-
dence from south korea,” Pacific-Basin Finance Journal, vol. 51,
pp. 1-12, 2018.

P. N. Kolm and G. Ritter, “Factor investing with black—litterman—
bayes: incorporating factor views and priors in portfolio construc-
tion,” The Journal of Portfolio Management, vol. 47, no. 2, pp.
113-126, 2020.

G. He and R. Litterman, “The intuition behind black-litterman
model portfolios,” Available at SSRN 334304, 2002.

T. Idzorek, “A step-by-step guide to the black-litterman model:
Incorporating user-specified confidence levels,” in Forecasting ex-
pected returns in the financial markets. Elsevier, 2007, pp. 17-38.
Z. Li, C. Li, L. Min, and D. Lin, “Black-litterman portfolio opti-
mization using gaussian process regression,” JAENG International
Journal of Applied Mathematics, vol. 53, no. 4, pp. 1471-1476,
2023.

L. Min, Y. Han, and Y. Xiang, “A two-stage robust omega portfolio
optimization with cardinality constraints.” IJAENG International
Journal of Applied Mathematics, vol. 53, no. 1, pp. 86-93, 2023.
L. Min, D. Liu, X. Huang, and J. Dong, “Worst-case mean-var
portfolio optimization with higher-order moments.” Engineering
Letters, vol. 30, no. 1, pp. 266275, 2022.

[26]

(271

[28]

[29]

[30]

[31]

(32]

portfolio selection problems: A unified framework,” Computers &
Operations Research, vol. 117, 104891, 2020.

D. Lebn, A. Aragén, J. Sandoval, G. Hernindez, A. Arévalo,
and J. Nifio, “Clustering algorithms for risk-adjusted portfolio
construction,” Procedia Computer Science, vol. 108, pp. 1334—
1343, 2017.

S. M. S. Seyfi, A. Sharifi, and H. Arian, “Portfolio value-at-
risk and expected-shortfall using an efficient simulation approach
based on gaussian mixture model,” Mathematics and Computers in
Simulation, vol. 190, pp. 1056-1079, 2021.

Y. Zhang, M. Li, S. Wang, S. Dai, L. Luo, E. Zhu, H. Xu, X. Zhu,
C. Yao, and H. Zhou, “Gaussian mixture model clustering with
incomplete data,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 17, no. 1s, pp.
1-14, 2021.

E. Luxenberg and S. Boyd, “Portfolio construction with gaussian
mixture returns and exponential utility via convex optimization,”
Optimization and Engineering, vol. 25, no. 1, pp. 555-574, 2024.
C. L. Israelsen et al., “A refinement to the sharpe ratio and
information ratio,” Journal of Asset Management, vol. 5, no. 6,
pp. 423-427, 2005.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright
et al., “Scipy 1.0: fundamental algorithms for scientific computing
in python,” Nature Methods, vol. 17, no. 3, pp. 261-272, 2020.
V. DeMiguel, L. Garlappi, and R. Uppal, “Optimal versus naive
diversification: How inefficient is the 1/n portfolio strategy?” The
review of Financial studies, vol. 22, no. 5, pp. 1915-1953, 2009.

Volume 33, Issue 4, April 2025, Pages 1020-1028





