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Abstract—In UAV aerial photography scenarios, target detec-
tion faces numerous challenges, particularly the issues of detec-
ting overly small target sizes and high background similarity of
target images, which severely limit detection accuracy and
efficiency. To address these challenges, this paper proposes a
depth-optimized target detection algorithm based on the YOL-
Ov8s framework. The core innovation of this algorithm lies in
the multi-dimensional enhancement of the YOLOv8s model,
aiming to substantially improve detection performance for
small targets and in complex background environments. First,
we introduce a convolutional module that incorporates sensory
wild attention, replacing the traditional convolutional layer in
the backbone network. This design effectively enhances the
model's learning efficiency for detailed features by boosting the
network's capacity to capture local region and global context
information, thereby accelerating the speed and accuracy of
target detection. Secondly, we innovatively incorporate a multi-
faceted attention mechanism within the subsequent feature
extraction phase of the backbone network, which is subsequ-
ently followed by a pooling layer. This refinement significantly
enhances the precision of our algorithm compared to its
original counterpart. This mechanism can dynamically adjust
feature weights to strengthen the representation of key target
features while suppressing background noise, which signific-
antly reduces the false detection rate, especially for small
targets and complex backgrounds. Additionally, we have made
pivotal improvements to the neck network structure by
replacing the original C2f module with a more efficient ELAN
(Enhanced Local Aggregation Network) module. The ELAN
module learns directly from the original feature map,
minimizing information loss and enhancing feature represent-
ation, thereby further impr- oving detection accuracy.

Index Terms—YOLOv8s, Multi-target detection, Feel
the wild attention, UAV aerial images, Loss function
optimization

I. INTRODUCTION
AVs (Unmanned Aerial Vehicles) have a diverse range
of applications in fields such as agricultural production,
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pedestrian detection, and military combat [1], with target
detection in aerial images occupying a pivotal position in the
utilization of UAVs. Due to the UAV's high relative altitude
above ground and the extensive field of view of aerial
imagery, issues arise such as lower pixel availability for
target objects, smaller sizes, and increased recognition diffi-
culty [2]. Target detection algorithms are classified into
traditional detection algorithms and convolutional neural
network (CNN) algorithms based on deep learning. As
traditional target detection algorithms exhibit poor anti-
interference capabilities and are unsuitable for complex
detection environments, CNN algorithms based on deep
learning are more frequently employed in UAV aerial
photography. These algorithms offer more accurate and
faster detection and are currently the mainstream approach.
Deep learning-based target detection algorithms are prim-
arily categorized into two-stage and single-stage algorithms.
Two-stage target detection algorithms, exemplified by R-
CNN [3], require auxiliary sub-networks to generate cand-
idate bounding boxes, resulting in slower detection speeds.
In contrast, single-stage target detection algorithms, which
include single-shot detectors (SSD [4]) and the YOLO [5]
series, directly classify and regress feature maps, thereby
offering a broader range of application scenarios. Zhang [6]
proposed replacing the CIoU loss function with a more
efficient EIoU loss function to directly minimize the diff-
erence between the width and height of the target and
anchor boxes, achieving faster convergence and improved
localization accuracy. He [7] integrated channel and spatial
attention by embedding a lightweight feature-enhanced
backbone network with Shuffle Channel and Spatial
Attention modules within the backbone of YOLOv3. This
enhancement improved accuracy, reduced model complexity,
and accelerated small object detection. Hang [8] introduced
an additional small target detection head in YOLOv5 to
retain as much feature information as possible for small-
sized targets, replacing the original convolutional prediction
heads with Swin Transformer Prediction Heads (SPHs).
Ranjai [9] incorporated a probe head and ConvMixer to
extract one-to-one feature relationships using deep and
pointwise convolutions, which facilitates better handling of
small target object tracking by establishing spatial and
channel relationships. Liu [10] simplified the model and
enhanced object detection efficiency by introducing a DCS
layer to replace the original convolutional block. Consequ-
ently, they proposed a lightweight Slim-BiFPN to replace
the original Feature Pyramid Network (FPN) in YOLOv5.
Yang [11] integrated the GhostNet module, modified the
loss function, and redesigned anchor boxes based on YOL-
Ov5 to improve small target detection accuracy. To further
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refine the detection of various object types, YOLOv6, YOL-
Ov7, and YOLOv8 algorithms have been continuously
developed on the foundation of YOLOv5, as detailed in
references [12-16].
Although YOLOv8, as one of the current state-of-the-art

target detection algorithms, has demonstrated excellent
detection performance, it still faces significant challenges
when dealing with detection tasks involving small targets,
complex backgrounds, and variable lighting conditions. In
this paper, these challenges are deeply analyzed, and a series
of innovative improvement strategies are proposed. By
embedding a reference-free attention module in the back-
bone network to enhance the comprehensiveness of feature
extraction, fusing sense-field attention into the convolutional
layer to improve multi-scale target recognition capability,
replacing the C2f module of the necking network with an
Elan module to enhance the model's robustness, and opti-
mizing the training process by using a WIoU loss function
to eliminate the interference of low-quality samples, this
paper successfully constructs a more adaptable target detec-
tion model with better performance. Experimental results
show that the improved algorithm achieves significant perf-
ormance improvements in several evaluation dimensions.

II. THE ALGORITHMIC SCHEME OF THIS PAPER

A. Original YOLOv8 Model
The YOLO series, introduced in 2016, has been renowned

for its rapid response speed and high accuracy. In January
2023, the YOLOv5 team at Ultralytics proposed the YOL-
Ov8 [17] model, which incorporates several improvements
over YOLOv5 and offers versions such as s, m, n, l, and x.
YOLOv8 consists of three parts: the backbone network
(Backbone), the neck network (Neck), and the detection
head (Head). Its structural model is illustrated in Figure 1.
Compared to YOLOv5, YOLOv8 features notable modifi-
cations, including: firstly, replacing the C3 structure in the
backbone network of YOLOv5 with the C2f structure;
secondly, adopting the SPPF structure to further enhance
feature semantic expression ability while preserving original
features and improving the information richness of the
pooling layer; the improvements in the neck network are
similar to those in the backbone network, with the conv-
olution kernel of the first convolutional layer being opti-
mized, and C3f being replaced with the same C2f structure
as in the backbone network, while redundant connection
layers are removed and the number of different channels is
adjusted according to the image size; additionally, the
coupled head of YOLOv5 is changed to a decoupled head,
and the anchor-based detector is transformed into an
anchor-free detector; finally, Distribution Focal Loss fused
with CIoU Loss is introduced to calculate the bounding box
loss.

B. Improved YOLOv8 Model
In the context of target detection models for Unmanned

Aerial Vehicles (UAVs), the majority of aerial images, due
to the shooting angles and high altitudes involved,
encompass small and densely packed targets. These targets,
coupled with the intricate and variable backgrounds filled
with interfering factors, render the YOLOv8 algorithmic
model susceptible to misdetections, omissions, and other
related issues in this specific application scenario.
In this paper, a series of enhancements are introduced to

the foundational YOLOv8s model to effectively tackle the
challenge of low detection accuracy in aerial imagery using
this algorithm. Firstly, multiple attention mechanisms are
integrated into the backbone network [18], enabling the
model to concentrate on the target region, mitigate
background interference, and seamlessly integrate spatial,
channel, and temporal attention to bolster its adaptability.
Secondly, the Elan module [19] is utilized to replace the C2f
feature extraction module, thereby facilitating more
comprehensive and granular feature fusion by augmenting
channel dimensions and increasing the number of branches
to capture feature information across various levels and
scales. Following this, within the backbone network, the
standard convolution is substituted with the Fusion Sensory
Wild Attention (FSWA) convolution module [20], which
enhances the capacity to focus on and extract pivotal feature
regions by adaptively assigning weights. Lastly, given the
high computational complexity of CIoU [21] Loss and DFL
Loss, which struggle with complex and demanding scenes,
Wise-IoU [22] is adopted as the loss function to elevate
detection accuracy and demonstrate superior adaptability to
a diverse range of scenarios. The resultant algorithm model
architecture after these modifications is depicted in Figure 2.

Fig. 1. YOLOv8 schematic diagram

C. Add Triplet Attention Module
In recent years, the attention model has been increasingly

utilized in the field of deep learning algorithms. The
attention model mimics the human visual attention mech-
anism, allowing the algorithmic model to focus more on the
object features in target detection tasks, thereby facilitating
the realization of these tasks. Triplet Attention is a mech-
anism designed for processing ternary (three-dimensional)
channel data attention. It accelerates the model's ability to
process data and quickly locate the target object by estab-
lishing relationships among the three dimensions: space,
height, and width. Triplet Attention not only establishes
weight relationships between height and channel, width and
channel, but also determines the final attention weight
relationship among all three dimensions through operations
such as rotation, rearrangement, and convolution. This
enables the model to pay greater attention to multi-
dimensional features. The principle of Triplet Attention in
the context of three-dimensional channels is illustrated in
Figure 3.
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Fig. 2. Structure of the improved YOLOv8 algorithm

Fig. 3. Schematic diagram of the multiple attention
mechanism

Triplet Attention constructs a ternary attention mecha-
nism with three branches. One branch performs direct
z-pooling compression on the original tensor to filter key
channel features and reduce complexity. The weights are
generated through convolution, batch normalization, and a
Sigmoid activation function, which emphasize the impo-
rtant original features and act upon the original tensor
output. The b-branch rotates the tensor 90 degrees counter-
clockwise along the W-axis to form a rotated tensor,
facilitating the discovery of connections between horizontal
features. The rotated tensor undergoes z-pooling compr-
ession and convolution with batch normalization to obtain
and optimize important horizontal features and data.
Sigmoid generates weights to focus on key horizontal
features, which are then applied to the rotated tensor output
to enhance horizontal orientation processing.
For branch c, the channel of the original input tensor is

compressed by Z-pooling to a tensor of shape (2, H, W),
and the input tensor is rotated along the height axis,
transforming the viewpoint to capture vertical feature
relationships. The rotated tensor is then compressed and
downscaled by Z-pooling, and key vertical features are
extracted. These features are subsequently optimized for
feature and data distribution through convolution and batch
normalization. Attention weights are generated by the

Sigmoid function, which are applied to the rotated tensor
output to reinforce the vertical direction of attention. The
tensors of shape (2, H, W) generated by each branch are
aggregated by simple averaging. The algorithmic model
presented in this paper chooses to add two Triplet Attention
modules to the backbone network.

D. Improved Feature Extraction Module
The neck network of YOLOv8 utilizes CSPDarknet to

extract features from the input image. The C2f module in
YOLOv8 comprises CSP and FFM, which constitutes the
core component of the feature extraction process for the
YOLOv8 neck network. The specific structure of this
module is shown in Figure 4.

Fig. 4. C2f schematic

Although C2f in YOLOv8 employs a simpler convo-
lution method to streamline the model, the resultant loss of
gradient information still leads to poor tracking perfor-
mance. To improve the tracking accuracy of YOLOv8, a
module with reduced gradient information loss is selected
to replace the C2f module. The ELAN module in YOLOv7
directs different groups of computational blocks to learn
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more diversified features by regulating the shortest and
longest gradient paths, enabling the deep learning network
to learn and converge more efficiently. The structure of this
module is shown in Figure 4.
ELAN adds several sets of convolutional modules to the

original gradient transmission path, augmenting the found-
ation of the original image features. It reorganizes and
merges features from different layers to enhance the image
features. There are a total of four paths for feature extr-
action in ELAN. The first path involves passing through a
1x1 convolution module for dimensionality reduction. The
second path achieves feature connection and fusion betw-
een cross-layer strata, first passing through a 1x1 convolu-
tion layer for dimensionality reduction and then through
four 3x3 convolution modules for feature extraction. The
third path obtains feature results through two 3x3 convol-
ution modules. The fourth path involves passing through
four 3x3 convolution modules for dimensionality reduction
and feature processing. Finally, the four sets of features are
summed to extract the final result.

.

Fig. 5. ELAN schematic diagram

Replacing the C2f module in YOLOv8 with the ELAN
module as the feature extraction backbone network, without
incurring gradient loss, increases the accuracy of the
network.

E. Improved Feature Extraction Module
In the backbone network of YOLOv8, the regular

convolution module and C2f are primarily used for
extracting network features. To better enable the network to
focus on important features and enhance the model's
anti-interference ability, the Receptive Field Attention
Convolution (RFAConv) is selected to replace the regular
convolution module. Receptive field attention convolution
involves replacing the regular convolution operation with
the RFA convolution operation, which not only attends to
the spatial features of the receptive field but also provides
effective attention weights for large-sized convolution
kernels. Its schematic diagram is shown in Figure 6.
When the input feature vector C H WX R   is changed to

a sensory wild space feature of dimension 9C H W 
after Group conv, where C, H, and W represent the number
of channels, height, and width of the input pixel. When the
image undergoes average pooling to aggregate the global

information of each receptive field feature, then the group
convolution operation is used to interact, and finally soft-
max is used to emphasize the significance in each receptive
field feature, the formula F for the receptive field is follow

1 1max( ( ( )))
ReLU( ( ( ))) ,k k

rf rf

F Soft g AvgPool X
Norm g X A F





 

 
(1)

where 11g represents a grouped convolution of size
1 1 , k represents the size of the convolution kernel,
Norm stands for normalization, X stands for the input
feature map, Norm represents the normalization, and ReLU
is the activation function. rfA refers to the attention

diagram, and rfF is the spatial feature of the changed

receptor field. F is obtained by multiplying rfA and rfF ,
which helps the network to better process the information
in the receptive field space according to the importance
weight of features, and improves the adaptability of the
network.

Fig. 6. Structure of RFAConv
F. Loss Function Improvement

The YOlOv8s model uses CIoU Losses and DFL
Losses to predict the bounding box regression losses,
CIoU Losses can quickly reduce the distance between
two boxes and can converge faster for cases where the
target is duplicated or the target is incomplete
resulting in detection of objects with extreme aspect
ratios. However, the convergence speed of CIoU
decreases sharply when the target object has diverse
shapes or the target has a large scale change due to
fast speed movement. For this reason, Wise-IoU [20]
is adopted as the loss function in this paper.
Wise-IoU constructs a two-layer attention mechan-

ism in order to solve the problem of increasing the
training intervention and decreasing the penalty when
the anchor box and the target box overlap, and the
calculation formulas are as follows:

1WIoUv WIoU IoUL R L  , (2)

1IoUL IOU  , (3)
and

2 2

2 2

( ) ( )
exp

( )
gt gt

WIoU
g g

x x y y
R

w H
   

    
, (4)
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where IOU denotes the intersection ratio of the
prediction box and the real box, IoUL is the boundary

frame loss, and WIoUR is the constructed distance atte-
ntion. x and y are the horizontal and vertical coord-
inates of the center point of the prediction box; gtx and

gty are the horizontal and vertical coordinates of the

center point of the real box; gW and gH are the
width and height of the minimum external rectangle of
the prediction box and the real box. Then, according to
the loss function 1WIoUvL of the constructed two-layer
attention mechanism, a nonmonotonic focusing coeff-
icient is constructed to obtain the Wise-IoU v2 boundary
frame loss. The calculation formula is as follow:

2 1WIoUv WIoUvL r L  , (5)

r  


  , (6)

and

 
*

0,IoU

IoU

L
L

    , (7)

where  is the outlier degree, representing the anomaly

degree of the prediction box, IoUL is the average value of

IoUL , and *
IoUL is the monotonic focus coefficient which

effectively reduces the weight of simple examples in the
loss value.  and are hyper parameters, and the gradient
gain r can be obtained by formula (6), which is applied to

1WIoUvL to obtain the Wise-IoU v2 bounding frame loss.

III. EXPERIMENTAL SETTING AND ANALYSIS OF RESULTS

A. Experimental Environment
The dataset utilized in this paper is the DOTAv1.5

dataset. The DOTAv1.5 dataset has been meticulously
cleaned and processed, and it is divided into 14,384 images
for the training set and 4,874 images for the test set. The
DOTA dataset encompasses 16 categories, including airp-
lanes, ships, storage tanks, baseball stadiums, tennis courts,
basketball courts, ground-level runways, harbors, bridges,
small vehicles, large vehicles, helicopters, roundabouts,
soccer fields, swimming pools, and container cranes. The
experimental environment for this paper is as follows: the
host system is Ubuntu 21.04, the computer GPU is an
NVIDIA RTX 3090, the RAM is 16GB, the development
language is Python 3.16, and the framework used is
PyTorch 2.0.0.

B. Data sets and assessment indicators
This experiment employs Mean Average Precision

(mAP) to assess the detection performance of the algo-
rithm. mAP encompasses two metrics: mAP@0.50 and
mAP@0.50:0.95, which quantify the degree of overlap
between the target detection box and the ground truth
box. Specifically, mAP@0.50 indicates the average pre-

cision of all classes when the Intersection over Union
(IOU) threshold is set to 0.5, whereas mAP@0.50:0.95
reflects the average precision across a range of IOU
thresholds from 0.5 to 0.95. A detection is considered a
True Positive (TP) if its IOU with the ground truth frame
exceeds the specified IOU threshold; otherwise, it is
classified as a False Positive (FP). False Negatives (FN)
are determined by subtracting the number of TPs from
the total number of ground truth frames. Precision is the
ratio of TPs to the total number of samples predicted as
positive by the model, reflecting the accuracy of positive
predictions. Recall, on the other hand, is the ratio of TPs
to the actual number of positive samples present. The
calculation formulas for mAP, Precision, and Recall are
provided as follows:

1mAP ( )n N AP nN   , (8)

Precision TP
TP FP




, (9)

and

Recall TP
TP FN




. (10)

In this paper, mAP and Precision and Reca are selected
as the evaluation models to evaluate the effectiveness of the
model in UAV application scenarios.

C. Comparison with Baseline Model
To validate the improvements of the model introduced in

this paper compared to the benchmark model, we trained
both the enhanced YOLOv8s model and the original
YOLOv8s model independently for 280 epochs using
identical parameters, and subsequently evaluated them on
the validation set. Figure 7 depicts the variations of certain
key metrics with the number of training epochs during the
training process of both the enhanced YOLOv8s model and
the original YOLOv8s model. As observed, the yellow line
represents the data from the model presented in this paper,
while the blue line corresponds to the data from the original
YOLOv8s model. Upon completion of the experiment, the
yellow line data progressively surpasses the blue line data
as the number of epochs increases, indicating that the
model proposed in this paper outperforms the benchmark
model in terms of average accuracy and detection rate.

D. Ablation Experiment
To verify the effectiveness of the enhanced modules,

YOLOv8 is employed as a benchmark model, with impro-
vements made to its backbone network, feature extraction
module, loss function, and various other components. The
first through fifth rows in Table I outline the specific
operations: optimizing the loss function within the model,
replacing the feature extraction network of the neck
network, introducing the Triplet Attention module, and
integrating the Convolutional Sensory Field Attention
(C2f_RFAConv), respectively. Based on the experimental
data presented in the table, the following conclusions can
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be drawn: Firstly, after optimizing the YOLOv8s loss
function to Wise-IOU, the model's mAP@0.50 increased
by 0.7%, and its mAP@0.50:0.95 increased by 0.3%.
Secondly, incorporating the ELAN module into the neck
network resulted in a 0.1% increase in the model's
mAP@0.50 and a 0.4% increase in its mAP@0.50:0.95.
Subsequently, introducing two Triplet Attention modules
into the backbone network led to a 1.2% increase in the
model's mAP@0.50 and a 0.4% increase in its mAP@
0.50:0.95. Lastly, integrating the C2f_RFAConv module
into the backbone network boosted the model's mAP@0.50
by 0.2% and its mAP@0.50:0.95 by 0.6%. Compared to the
baseline YOLOv8 algorithm model, the improvements
proposed in this paper result in a 1.7% increase in both
mAP@0.50 and mAP@0.50:0.95. Although there is a
10.6% increase in GFLOPs, the accuracy exhibits a
significant improvement, and the model's real-time proce-
ssing capability remains unaffected.

E. Comparison experiment
To validate the efficacy of the enhanced YOLOv8 model,

this paper conducts comparative experiments with other
prevalent models, all trained on the DOTA V1.5 dataset to
assess their performance metrics. The models included in
the comparison encompass Faster-RCNN [23], SSD [4],
RetinaNet [24], YOLOv3 [25], YOLOv5s and YOLOv5m

[26], YOLOv8s, as well as the improved YOLOv8 model
presented in this paper, as outlined in Table II. The comp
-arative experiment results presented in the table unequi-
vocally demonstrate that, in contrast to other models, the
model proposed in this paper exhibits improvements in
Precision, Recall, and mAP@0.50. Notably, there are
significant enhancements in both the recall rate and
precision rate. Given the high altitude of aerial photography,
the majority of detection targets in this dataset are small.
Faster-RCNN and SSD, being two-stage detection
algorithms, suffer from inadequate feature extraction for
small targets, coupled with their intricate overall structure
and high computational demands, leading to suboptimal
detection performance. While YOLOv3 represents an
improvement over two-stage detection methods, it involves
numerous downsampling operations, which tend to result in
the loss of features of small targets. Furthermore, due to its
limited scale level, YOLOv3 lacks the fineness and
comprehensiveness required for feature extraction and
fusion, resulting in less than optimal detection performance.
Finally, when comparing the models YOLOv5s,
YOLOv5m, YOLOv8s, and other mainstream one-stage
models in this paper, the model proposed in this paper
attains the highest levels of accuracy, detection precision,
and recall, showcasing exceptional overall performance.

Fig. 7. Comparison chart of experimental results

TABLE I
ABLATION EXPERIMENT DATA

Comparison of each parameter of ablation experiment target detection
Models mAP@0.50 mAP@0.50:0.95 Parameters GFLOPs

YOLOv8s 65.7 43.7 11.13M 28.5
YOLOv8s-WIOU 66.4 44 11.13M 28.5

YOLOv8s-WIOU-ELAN 66.5 44.4 14.79M 34.9
YOLOv8s-WIOU-ELAN-Triplet

Attention 67.2 44.8 15.66M 38.1

YOLOv8s-WIOU-ELAN-Triplet
Attention-RFAConv 67.4 45.4 15.78M 39.1
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TABLE II
COMPARATIVE EXPERIMENTAL DATA

Models P R mAP@50
Faster-RCNN 67.5 56.4 59.9

SSD 66.1 49.6 53.3
RetinaNet 67.8 55.5 59.0

YOLOv3 67.9 51.8 55.7
YOLOv5s 73.3 60.4 65.8
YOLOv5m 73.4 62.5 67.5
YOLOv8s 74.9 60.0 65.7
Ours 75.8 61.7 67.4

F. Ablation Experiment
The comparative analysis, grounded in real-world

scenario applications, is presented hereinafter. As depicted
in Figure 8, the sequence from left to right showcases the
labeled information intended for detection in the original
image, the detection outcome yielded by the original
YOLOv8 algorithm model, and the detection result
obtained using the model introduced in this paper. Upon
scrutiny, it becomes apparent that while seven small
vehicles were originally present for detection, the original
model only identified five. In stark contrast, the model
proposed herein successfully detected all seven small
vehicles, markedly alleviating the issue of missed
detections. Furthermore, it augmented the confidence score
of the leftmost small vehicle from 0.4 to 0.6.
Figure 9(a) illustrates a multi-target category scenario,

necessitating the identification of 7 small vehicles, 2 ports,
and 4 ships. Upon examining Figure 9(b), it is evident that
the original algorithm model detected 8 small vehicles
(including one false positive), 2 ports, and 2 ships, missing
2 ships due to their minuscule size. Conversely, our
proposed model accurately identified all targets, as
exhibited in Figure 9(c).
Figure 10(a) presents a detection scenario where both

large and small targets coexist, requiring the identification
of 3 airplanes and 1 small vehicle. In contrast, Figure 10(b)
reveals that the original algorithm model predominantly
focused on detecting large targets, neglecting the small
target object. However, Figure 10(c) underscores that the
model introduced in this paper precisely detected the
overlooked small vehicle.
Figure 11 contrasts the experimental results, undersco-

ring the enhanced capability in detecting scenes with
multi-sized objects in complex environments. In Figure
11(a), the objectives encompassed identifying 1 swimming
pool, 7 baseball diamonds, 1 tennis court, and 1 ground
track field. The output from the original algorithm model in
Figure 11(b) not only failed to detect one baseball diamond
but also erroneously detected a soccer field instead of a
swimming pool, notably missing the swimming pool in the
upper left corner. In sharp contrast, the model proposed in
this paper accurately detected all targets, as delineated in
Figure 11(c).
Upon scrutinizing and comparing these four sets of

images, it becomes unequivocally clear that the original
YOLOv8s model exhibits instances of missed detections
and false positives. In stark contrast, the refined model
introduced in this paper demonstrates an unerring ability to
correctly detect all targets. Additionally, in Figure 8, the
confidence score for the small vehicle in image (c)

surpasses that in image (b). Similarly, in Figures 9, 10, and
11, the confidence scores for the identified targets in image
(c) are consistently higher than those in image (b). This
comparison conclusively attests to the superior accuracy of
the algorithm presented in this paper compared to the
original YOLOv8s algorithm.

IV. CONCLUSION AND FUTUREWORK

A. Conclusion
In this paper, we have presented a novel algorithmic

model aimed at addressing the prevalent issues of leakage
and misdetection in unmanned aerial vehicle (UAV)
imagery. Leveraging the foundational strengths of the
YOLOv8 model, our contributions lie in the introduction of
several innovative components. Specifically, we have
integrated the triplet attention mechanism and the
C2f_RFAConv module into the backbone network to
enhance feature extraction capabilities. Furthermore, we
have incorporated the ELAN module into the neck network
to facilitate more effective feature fusion. Additionally, we
have adopted the Wise-IoU loss function as a replacement
for the original loss function to improve the precision of
object detection.
Through extensive experiments conducted on the

DOTAv1.5 dataset, our results demonstrate that the
proposed improved algorithm achieves notable
performance enhancements across multiple evaluation
dimensions. When compared to other currently popular
object detection algorithms tailored for aerial imagery
captured by drones, our model exhibits superior
performance, highlighting its potential for addressing the
challenges associated with UAV imagery.

B. Innovation Points
(1) Integration of the Triplet Attention Mechanism and

C2f_RFAConv Module: By introducing these components
into the backbone network, we have significantly improved
the model's ability to capture and represent complex
features within UAV imagery. This enhancement is crucial
for detecting small or occluded objects, which are common
in aerial photography.
(2) Incorporation of the ELAN Module: The integration

of the ELAN module in the neck network allows for more
robust and efficient feature fusion. This improvement leads
to better generalization and adaptation of the model to
various scenes and lighting conditions, which are typical in
UAV-captured imagery.
(3) Adoption of the Wise-IoU Loss Function: By

replacing the original loss function with the Wise-IoU loss,
we have achieved more precise bounding box predictions.
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This refinement is essential for improving the overall
accuracy and reliability of object detection in UAV
imagery.

C. Application Value
The proposed algorithm has significant application value

in various domains, including but not limited to military
reconnaissance, disaster response, and urban planning. By
providing a more accurate and reliable object detection
capability, our model can enhance the operational
efficiency and decision-making capabilities of UAV-based
systems. For instance, in military reconnaissance, accurate
detection of targets can provide critical information for
strategic planning and mission execution. In disaster
response, rapid and accurate identification of affected areas
and resources can facilitate more effective emergency
management and resource allocation.

D. Future Work
While the proposed algorithm demonstrates promising

results, there is still considerable room for improvement in

real-time performance and target detection accuracy. Future
research will focus on optimizing the model's architecture
and training process to further enhance its capabilities.
Specifically, we plan to explore more advanced attention
mechanisms and convolutional modules to improve feature
extraction and representation. Additionally, we will
investigate more efficient loss functions and optimization
strategies to refine the bounding box predictions and reduce
computational overhead.
Moreover, we will expand the experimental dataset to

include more diverse and challenging scenarios to evaluate
the robustness and generalization of the proposed model.
This will involve collecting and annotating UAV imagery
from various sources and environments, ensuring that the
model can perform consistently well across different
contexts.
In conclusion, our work presents a significant step forw-

ard in addressing the challenges of UAV imagery- based
object detection. By introducing innovative components
and demonstrating promising results, we hope to inspire
further research and development in this important area.

Fig. 8. Comparison of experimental results on the improvement of single-class target detection scenarios, where
Figure (a) shows the target to be found in the original image, Figure (b) displays the detection results of
YOLOv8s, and Figure (c) presents the detection results of the model proposed in this paper. The circle

content is the main difference between our algorithm and YOLOv8s.

Fig. 9. Comparison of experimental results on the improvement of multi-class target detection scenarios, where
Figure (a) shows the target to be found in the original image, Figure (b) displays the detection results of
YOLOv8s, and Figure (c) presents the detection results of the model proposed in this paper. The circle

content is the main difference between our algorithm and YOLOv8s.
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Fig. 10. Comparison of experimental results on the improvement of detection scenarios with coexisting large
and small targets, where Figure (a) shows the target to be found in the original image, Figure (b) displays
the detection results of YOLOv8s, and Figure (c) presents the detection results of the model proposed

in this paper. The circle content is the main difference between our algorithm and YOLOv8s.

Fig. 11. Comparison of experimental results of the improvement effect of the detection scene with the coexistence
of multi-size objects in a complex scene, where Figure (a) shows the target to be found in the original image,
Figure (b) displays the detection results of YOLOv8s, and Figure (c) presents the detection results of the model

proposed in this paper. The circle content is the main difference between our algorithm and YOLOv8s.
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