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Abstract—This paper investigates identical synchronization
in networks composed of n reaction-diffusion systems of the
Hindmarsh-Rose 3D type with arbitrary topological structures.
We design a controller for these networks aimed at achieving
the desired synchronization, with the synchronization error
defined in R. The effectiveness of this controller is demonstrated
through theoretical proofs. Additionally, we present numerical
results to further validate the theoretical findings.

Index Terms—Hindmarsh-Rose 3D model, identical syn-
chronization, networks with arbitrary topological structure,
reaction-diffusion systems.

I. INTRODUCTION

SYNCHRONIZATION has been extensively studied
across various fields and natural phenomena [1], [3], [4],

[5], [6], [7], [8]. Mathematically, ”synchronization” refers to
different systems exhibiting the same behavior at the same
time [1]. In recent years, there has been a growing interest
in complex dynamical networks due to their large-scale
applicability in domains such as information processing, the
World Wide Web, biological systems, and neural networks
[20], [21], [22], [23].

Synchronization is regarded as a fundamental problem
in cooperative control, requiring all subsystems within a
network to converge to a target state or a common value. This
phenomenon is commonly referred to as identical synchro-
nization, and most theoretical research on synchronization in
complex networks has focused on this aspect [1], [2], [10],
[11], [15], [16], [18].

Additionally, most of these studies have examined identi-
cal synchronization in networks with specific structures, such
as fully connected networks [15], [16], hierarchical networks
[18], and chain networks [10]. However, these idealized
structures are rarely found in real-world scenarios. Instead,
networks with arbitrary structures are more commonly en-
countered and provide a closer representation of real neural
networks (for example, see Fig. 1).

Motivated by the discussion above, this paper aims to
improve upon previous work by identifying sufficient con-
ditions for achieving identical synchronization in networks
composed of n reaction-diffusion systems of the Hindmarsh-
Rose 3D type with arbitrary topological structures.
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Fig. 1. An example of networks with arbitrary topological structure.

Additionally, we focus on obtaining identical synchro-
nization with the synchronization error defined in R. It is
important to note that all results obtained in prior studies
[10], [11], [15], [16], [18] defined the synchronization error
in the function space L2(Ω), where L2(Ω) is based on a
natural generalization of the 2-norm for finite-dimensional
vector spaces, and Ω ⊂ RN with N as a positive integer.
This represents a significant improvement over previously
published results. However, due to the arbitrary nature of
the network topologies and the synchronization error being
defined in R, achieving the desired outcomes presents certain
challenges since the presence of the Laplace operator in each
subsystem of the network complicates the situation.

To address this, we propose a controller that can be strate-
gically placed within the network to mitigate the influence
of the Laplace operator when calculating the synchronization
error in R. Furthermore, we present numerical results to
validate the effectiveness of our theoretical findings.
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II. IDENTICAL SYNCHRONIZATION IN NETWORKS WITH
ARBITRARY TOPOLOGICAL STRUCTURE OF n

REACTION-DIFFUSION SYSTEMS OF THE
HINDMARSH-ROSE 3D TYPE

In 1952, A. L. Hodgkin and A. F. Huxley published
a paper introducing a mathematical model consisting of
four ordinary differential equations that approximated certain
properties of neuronal membrane potential [2], [7], [4]. Their
remarkable work earned them a Nobel Prize. Building on
their foundational study, many scientists sought to simplify
the Hodgkin-Huxley model while preserving the essential
energizing and biological properties of the cell. Among these
researchers were J. L. Hindmarsh and R. M. Rose, who
introduced the Hindmarsh-Rose 3D model in 1984 [7], [9].
This model comprises three ordinary differential equations
that simplify Hodgkin-Huxley’s system and help describe
neuronal voltage dynamics [6].

The model includes two primary variables, u and v, as well
as a third variable w. The first variable, u = u(t), represents
the transmembrane voltage of the cell, while v = v(t)
and w = w(t) account for various physical quantities,
such as the electrical conductivity of ion currents across the
membrane. The ordinary differential equations that define the
Hindmarsh-Rose 3D model are detailed below [2], [7], [9]:

du

dt
= ut = f(u) + v − w + I,

dv

dt
= vt = 1− bu2 − v,

dw

dt
= wt = r(s(u− c)− w),

(1)

where f(u) = −u3 + au2; a, b, c, r, s are constants
(a, b, r, s > 0); I presents the external current; t presents
the time.

The system (1) is inadequate for accurately capturing the
propagation of action potentials. To resolve this issue, we
will apply the cable equation to enhance our model by
incorporating the Laplace operator into the first equation of
the system (1). This addition allows us to effectively de-
scribe the propagation of action potentials. Furthermore, this
mathematical framework is based on a circuit representation
of the cell membrane, which includes both the intracellular
and extracellular spaces. It provides a quantitative analysis
of current flow and voltage changes within and between neu-
rons. This approach enables us to achieve a comprehensive
understanding of cellular function, both quantitatively and
qualitatively. Consequently, we will consider the reaction-
diffusion system of the Hindmarsh-Rose 3D type (HR),
which is as follows: ut = f(u) + v − w + I + d∆u,

vt = 1− bu2 − v,
wt = r(s(u− c)− w),

(2)

where u = u(x, t), v = v(x, t), w = w(x, t), (x, t) ∈ Ω×
R+, d is a positive constant, ∆u is the Laplace operator of
u, Ω ⊂ RN is a regular bounded open set with Neumann zero
flux boundary conditions, and N is a positive integer. This
model allows the appearance of many patterns and relevant
phenomena in physiology, and presents the distribution of

the membrane potential along the axon of a single cell [6],
[7]. Hereafter, system (2) is considered as a neural model,
and a network of n coupled systems (2) is constructed as
follows:

uit = f(ui) + vi − wi + I + d∆ui +
n∑

j=1

cijh(ui, uj),

vit = 1− bu2i − vi,
wit = r(s(ui − c)− wi),
i, j = 1, ..., n, i 6= j,

(3)
where (ui, vi, wi), i = 1, 2, ..., n, is defined as in (2). The
coefficients cij are the elements of the connectivity matrix
Cn = (cij)n×n, defined by: cij > 0 if neuron ith and jth
are coupled, cij = 0 if neuron ith and jth are not coupled,

and cii = −
n∑

j 6=i,j=1

cij , where i, j = 1, 2, ..., n, i 6= j. This

matrix also illustrates the network topology. The function
h describes the coupling function, which defines the type
of connection between the i-th and j-th cells. As is well
known, neurons connect via synapses, resulting in two types
of connections between cells: chemical and electrical. Math-
ematically, when neurons are connected through chemical
synapses, the coupling function is nonlinear [10], [11], [2]
and is expressed by the following formula: h(ui, uj) = −gsyn(ui − Vsyn)

1

1 + exp(−λ(uj − θsyn))
,

i = 1, 2, ..., n,
(4)

where uj , j = 1, 2, ..., n, presents the node jth connected to
the node ith; gsyn is a positive number and represents the
coupling strength; Vsyn is the reversal potential and must be
larger than ui(x, t), for all i = 1, 2, ..., n, and x ∈ Ω, t ≥ 0
since synapses are supposed excitatory; θsyn is the threshold
reached by every action potential for a neuron; λ is a positive
number [2], [14]. The bigger λ is and the better we approach
the Heaviside function.

If the neurons connect through electrical synapses, the
coupling function is linear [2], [15] and is described by the
following formula:

h(ui, uj) = −gsyn(ui − uj), i, j = 1, 2, ..., n, (5)

where gsyn is positive number presenting the coupling
strength.

To achieve identical synchronization in the network de-
scribed in (3), we need to reformulate this system as follows:

u1t = f(u1) + v1 − w1 + I + d∆u1 +
n∑

j=1

c1jh(u1, uj),

v1t = 1− bu21 − v1,
w1t = r(s(u1 − c)− w1),

uit = f(ui) + vi − wi + I + d∆ui +
n∑

m=1
cimh(ui, um),

vit = 1− bu2i − vi,
wit = r(s(ui − c)− wi),
i = 2, 3, ..., n, , i 6= 1, i 6= m, j 6= 1.

(6)
The definition of identical synchronization is as follows:

Definition 1 (see [1], [11]). Let
n∑

i=2

|eui |+ |evi|+ |ewi | be

the identical synchronization error, where eui = ui−u1, evi =
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vi − v1, e
w
i = wi − w1, for all i = 2, ..., n. We say that

the network (6) achieves identical synchronization if the
synchronization error approaches zero as time t approaches
infinity.

Before presenting the main results, we need to consider
the following remark that assists in proving our desired
outcomes.

Remark 1 (see [19]). The function f satisfies the following
condition:

|f(ui)− f(uj)| ≤ α |ui − uj | , i, j = 1, 2, ..., n, (7)

where ui, uj present the transmembrane voltages, and α is a
positive number.

Remark 2 (see [19]). The function h defined by (4) and (5)
satisfies the following condition:{

|h(ui, uk)− h(uj , ul)| ≤ β |ui − uj | ,
i, j, k, l = 1, 2, ..., n, i 6= k, j 6= l,

(8)

where ui, uj , uk, ul present the transmembrane voltages, and
β is a positive number.

In this work, we aim to investigate the sufficient condi-
tions for achieving identical synchronization in the network
described by system (6), where the identical synchronization
error is defined in R. However, the presence of the Laplace
operator for ui (for all i = 1, 2, . . . , n) complicates this
goal. To address this challenge, the author proposes the
introduction of a controller at node i (for i 6= 1) within
the network (6). This controller is designed to mitigate
the effects of the Laplace operator and facilitate identical
synchronization, with the synchronization error still defined
in R. With this approach, the network (6), after the addition
of the controller denoted as Γi (for i = 2, 3, . . . , n), can be
expressed as follows:



u1t = f(u1) + v1 − w1 + I + d∆u1 +
n∑

j=2

c1jh(u1, uj),

v1t = 1− bu21 − v1,
w1t = r(s(u1 − c)− w1),
uit = f(ui) + vi − wi + I + d∆ui

+
n∑

m=1
cimh(ui, um) + Γi,

vit = 1− bu2i − vi,
wit = r(s(ui − c)− wi),
i = 2, 3, ..., n, , i 6= 1, i 6= m, j 6= 1,

(9)
where the controller Γi = Γi(x, t) is designed as follows:

Γi = −d∆ui + d∆u1 −
n∑

m=1,m6=i

cimh(u1, um)

+
n∑

j=2

c1jh(u1, uj)− kieui ,
(10)

with the updated rules defined as follows:

kit = ri(e
u
i )2, (11)

where ki = ki(x, t); ri is a arbitrary positive constant, for
all i = 2, ..., n.

Under the action of the controller designed as above, the
error dynamic equations of the system (9) are described as:

eit = (uit − u1t)

= f(ui) + vi − wi + I + d∆ui +
n∑

m=1,m6=i

cimh(ui, um)

+Γi − f(u1)− v1 + w1 − I − d∆u1 −
n∑

j=2

c1jh(u1, uj)

= f(ui)− f(u1) + evi − ewi

+
n∑

m=1,m6=i

cim(h(ui, um)− h(u1, um))− kieui ,

(12)
evit = vit − v1t = 1− bu2i − vi − (1− bu21 − v1)

= −b(ui + u1)eui − evi ,
(13)

and

ewit = wit − w1t = rs(ui − c)− rwi − rs(u1 − c) + rw1

= rs(ui − u1)− r(wi − w1)
= rseui − rewi ,

(14)
for i = 2, ..., n.

Next, we explore the sufficient condition for the identical
synchronization problem of network (9). The main result is
presented in the following theorem.

Theorem 1. The network (9) identically synchronizes with
the identical synchronization error in R under the adaptive
controllers (10) and updated rules (11).

Proof: To prove this theorem , we construct the Lya-
punov function as follows:

V (x, t) =
1

2

n∑
i=2

(
(eui )

2
+ (evi )2 +

1

rs
(ewi )2 +

1

ri
(ki − k)

2

)
,

(15)
where k is a positive constant to be determined.

By calculating the time derivative of V (x, t) along the
error systems (12), (13) and (14), we get:

∂V (x, t)

∂t
=

n∑
i=2

[
eui e

u
it + evie

v
it +

1

rs
ewi e

w
it +

1

ri
(ki − k)kit

]
=

n∑
i=2

[eui (f(ui)− f(u1)− evi − ewi − kieui )

+eui
n∑

m=1,m6=i

cim(h(ui, um)− h(u1, um))

evi (−b(ui + u1)eui − evi ) +
1

rs
ewi (rseui − rewi )

+(ki − k)(eui )2
]

=
n∑

i=2

[eui (f(ui)− f(u1)) + eui e
v
i

−beui evi (ui + u1)

+eui
n∑

m=1,m6=i

cim(h(ui, um)− h(u1, um))

−1

s
(ewi )2 − (evi )2 − k(eui )2

]
.

(16)
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By using Remarks 1-2, it is easy to obtain:

∂V (x, t)

∂t
≤

n∑
i=2

[
α(eui )2 + |eui |.|evi |(1 + b(|ui|+ |u1|))

+
n∑

m=1,m6=i

β|cim|(eui )2 − 1

s
(ewi )2 − (evi )2 − k(eui )2

]
≤

n∑
i=2

[
α(eui )2 + |eui |.|evi |(1 + b(|ui|+ |u1|))

+β(n− 1) max
1≤m≤n,m6=i

|cim|(eui )2

−1

s
(ewi )2 − (evi )2 − k(eui )2

]
.

(17)
By using the Young’s inequality for every δ > 0, we can

see:
|eui | |evi| (1 + b(|ui|+ |u1|)) ≤

≤ (1 + b(|ui|+ |u1|))(
1

2δ
(eui )2 +

δ

2
(evi )2)

≤ M

2δ
(eui )2 +

Mδ

2
(evi )2,

(18)
where M is a positive constant, since ui, i = 1, 2, ..., n are
bounded (see [17]).

Combining (17)-(18) yields:

∂V (x, t)

∂t
≤

n∑
i=2

[
α(eui )2 +

M

2δ
(eui )2 +

Mδ

2
(evi )2

+β(n− 1) max
1≤m≤n,m6=i

|cim|(eui )2

−1

s
(ewi )2 − (evi )2 − k(eui )2

]
≤

n∑
i=2

[
(α+

M

2δ
+ β(n− 1) max

1≤m≤n,m6=i
|cim| − k)(eui )2

(
Mδ

2
− 1)(evi )2 − 1

s
(ewi )2

]
.

(19)
We choose δ <

2

M
and

k > α+
M

2δ
+ β(n− 1) max

1≤m≤n,m6=i
|cim|,

then (19) can be estimated as:

∂V (x, t)

∂t
≤ −γ 1

2

n∑
i=2

(
(eui )

2
+ (evi )2 +

1

rs
(ewi )2

)
,

(20)
where

γ = min

{
2(k − α− M

2δ
− β(n− 1) max

1≤m≤n,m6=i
|cim|),

2(1− Mδ

2
), 2r

}
.

From (20), it can be seen that 0 ≤ V (x, t) ≤ V (x, 0),
this together with (15) implies that V (x, t) is bounded. It is
based on Lyapunov stability theory and LaSalle’s invariance
principle [13], we have:

lim
t→+∞

n∑
i=2

|eui |+ |evi|+ |ewi | = 0.

Therefore, it implies that the network (9) achieves identical
synchronization in the sense of Definition 1. The theorem is
proved.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present specific examples to evaluate
the effectiveness of the proposed method discussed in the
theoretical section for two cases: Ω ⊂ R and Ω ⊂ R2. The
integration is conducted using R. The simulation results were
obtained with the following parameter values [14], [2], [15],
[16]:

f(u) = −u3 + au2, a = 3, b = 5, s = 4, r = 0.008,

c = −1

2
(1 +

√
5), I = 3.25, d = 0.05,

λ = 10, Vsyn = 2, θsyn = −0, 25.

A. Example 1.

In this example, we examine a chain network consisting
of two nodes that are linearly coupled. We will construct a
controller, as described in the theoretical section, to achieve
identical synchronization. Specifically, the system represent-
ing this chain network of two neurons with linear coupling
is outlined below:

u1t = f(u1) + v1 − w1 + I + d∆u1,
v1t = 1− bu21 − v1,
w1t = r(s(u1 − c)− w1),
u2t = f(u2) + v2 − w2 + I + d∆u2 − gsyn(u2 − u1),
v2t = 1− bu22 − v2,
w2t = r(s(u2 − c)− w2).

(21)
Now, we construct a controller for this network as follows:

u1t = f(u1) + v1 − w1 + I + d∆u1,
v1t = 1− bu21 − v1,
w1t = r(s(u1 − c)− w1),
u2t = f(u2) + v2 − w2 + I + d∆u2

−gsyn(u2 − u1) + Γ2,
v2t = 1− bu22 − v2,
w2t = r(s(u2 − c)− w2),

(22)

where the controller Γ2 is designed as follows:

Γ2 = −d∆u2 + d∆u1 − k2eu2 , (23)

with the updated rule defined as follows:

k2t = r2(eu2 )2, (24)

where r2 is a arbitrary positive constant.
Note that (23) and (24) are constructed as the proposed

controller (10) and the updated rule (11).
Let |eu2 |+ |ev2|+ |ew2 | = |u2−u1|+ |v2−v1|+ |w2−w1| be

the identical synchronization error of the network (22). We
say that this network identically synchronizes if the identical
synchronization error reaches zero as t approaches infinity.

First, we check the effectiveness of the proposed controller
for this example in the following domain:

[0;T ]× Ω = [0; 5000]× [0; 100] ,

i.e., Ω ⊂ R with Neumann zero flux boundary conditions.
Besides, the initial conditions for the first node are defined
as follows:

u1(x, 0) = 1 + sin(2πx),

v1(x, 0) = 1 + sin(2πx),

w1(x, 0) = 1 + sin(2πx),
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for all x ∈ Ω.
The initial conditions for the second node are set so that

the value is 0 everywhere, except for the central point, where
we assign a value of 1.

Fig. 2 illustrates the identical synchronization errors of the
network described by system (21) with a coupling strength
of gsyn = 0.0005. In Fig. 2(a), we simulate the network
without the controller defined in (23) and the updated rule
in (24). The simulation results indicate that the identical
synchronization error does not converge to zero, which
implies that the identical synchronization phenomenon does
not occur.

Furthermore, Fig. 3 displays the time series of all variables
within the system defined by (21), without the controller in
(23) and the updated rule in (24). In Fig. 3(a), the variable u1
is represented by a solid line, while u2 is shown by a dotted
line. Similarly, in Fig. 3(b), v1 and v2 are presented in this
manner, and in Fig. 3(c), w1 and w2 follow the same format.
It is evident that the solid lines do not replicate the behavior
of the dotted lines, further supporting the conclusion that
identical synchronization does not occur in this scenario.

In Fig. 2(b), we simulate the network described by (21),
using the controller specified in (23) and the updated rule
in (24), with r2 = 0.2. The results demonstrate that the
synchronization error between the systems reaches zero,
indicating that:

u1(x, t) ≈ u2(x, t),

v1(x, t) ≈ v2(x, t),

w1(x, t) ≈ w2(x, t).

Fig. 4 illustrates the time series for all variables in the
system defined by (21), under the control of (23) and the
updated rule (24). In Fig. 4(a), the variable u1 is represented
by the solid line, while u2 is depicted with a dotted line.
Similarly, v1 and v2 are shown in Fig. 4(b), and w1 and
w2 in Fig. 4(c). It is evident that the solid lines replicate
the behavior of the dotted ones, confirming that the identical
synchronization phenomenon occurs in this case.

Next, we check the effectiveness of the proposed controller
for this example in the following domain:

[0;T ] = [0; 500] ; Ω = [0; 1]× [0; 1] ,

i.e., Ω ⊂ R2 with Neumann zero flux boundary conditions.
Besides, the initial conditions for the first node are defined
as follows:

u1(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

v1(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

w1(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

for all x = (x1, x2) ∈ Ω.
The initial conditions for the second node are defined as

follows:
u2(x, 0) = −x21 − x22,

v2(x, 0) = −x21 − x22,

w2(x, 0) = −x21 − x22,

for all x = (x1, x2) ∈ Ω.

Fig. 5 represents the identical synchronization errors of
the network (21) with respect to the coupling strength
gsyn = 0.0005. Specifically, in Fig. 5(a), we simulate the
network (21) without controller (23) and the updated rule
(24). The simulation shows that the identical synchroniza-
tion error does not reach zero, which means the identical
synchronization phenomenon does not occur. Clearly, Fig. 6
represents the patterns of all state variables of the system
(21) without controller (23) and the updated rule (24) in Ω.
Specifically, Fig. 6(a) represents the pattern of u1(x, 500),
for all x = (x1, x2) ∈ Ω (respectively, v1(x, 500) in
Fig. 6(b); w1(x, 500) in Fig. 6(c); u2(x, 500) in Fig. 6(d);
v2(x, 500) in Fig. 6(e); w2(x, 500) in Fig. 6(f)). We can see
that the pattern of u1(x, 500) and the pattern of u2(x, 500)
are not the same (respectively, v1(x, 500) and v2(x, 500);
w1(x, 500) and w2(x, 500)). In other words, the identical
synchronization phenomenon does not occur in this case.

However, in Fig. 5(b), we simulate the network (21) with
controller (23) and the updated rule (24), i.e., the system (22).
The simulation shows that the identical synchronization error
reaches zero, which means:

u1(x, t) ≈ u2(x, t), v1(x, t) ≈ v2(x, t), w1(x, t) ≈ w2(x, t).

Fig. 7 represents the patterns of all state variables of
the system (21) with controller (23) and the updated rule
(24) in Ω. Specifically, Fig. 7(a) represents the pattern
of u1(x, 500), for all x = (x1, x2) ∈ Ω (respectively,
v1(x, 500) in Fig. 7(b); w1(x, 500) in Fig. 7(c); u2(x, 500)
in Fig. 7(d); v2(x, 500) in Fig. 7(e); w2(x, 500) in Fig. 7(f)).
We can see that the pattern of u1(x, 500) and the pattern
of u2(x, 500) are the same (respectively, v1(x, 500) and
v2(x, 500); w1(x, 500) and w2(x, 500)). In other words, the
identical synchronization phenomenon occurs in this case.

B. Example 2.

In this example, we examine a full network consisting of
two nodes with nonlinear coupling and design a controller,
as described in the theoretical section, to achieve identical
synchronization. Specifically, the system representing a full
network of two neurons with nonlinear coupling is outlined
as follows:

u1t = f(u1) + v1 − w1 + I + d∆u1

−gsyn(u1 − Vsyn)
1

1 + exp(−λ(u2 − θsyn))
,

v1t = 1− bu21 − v1,
w1t = r(s(u1 − c)− w1),
u2t = f(u2) + v2 − w2 + I + d∆u2

−gsyn(u2 − Vsyn)
1

1 + exp(−λ(u1 − θsyn))
,

v2t = 1− bu22 − v2,
w2t = r(s(u2 − c)− w2).

(25)
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Fig. 2. Identical synchronization errors in the network described by (21) with a coupling strength of gsyn = 0.0005, Ω = [0; 100] ⊂ R.

Now, we construct a controller for this network as follows:

u1t = f(u1) + v1 − w1 + I + d∆u1

−gsyn(u1 − Vsyn)
1

1 + exp(−λ(u2 − θsyn))
,

v1t = 1− bu21 − v1,
w1t = r(s(u1 − c)− w1),
u2t = f(u2) + v2 − w2 + I + d∆u2

−gsyn(u2 − Vsyn)
1

1 + exp(−λ(u1 − θsyn))
+ Γ2,

v2t = 1− bu22 − v2,
w2t = r(s(u2 − c)− w2),

(26)
where the controller Γ2 is designed as follows:

Γ2 = −d∆u2 + d∆u1 − k2eu2
−gsyn(u1 − Vsyn)

1

1 + exp(−λ(u1 − θsyn))

+gsyn(u1 − Vsyn)
1

1 + exp(−λ(u2 − θsyn))
,

(27)

with the updated rule defined as follows:

k2t = r2(eu2 )2, (28)

where r2 is a arbitrary positive constant.
Note that (27) and (28) are constructed as the proposed

controller (10) and the updated rule (11).
Let |eu2 |+ |ev2|+ |ew2 | = |u2−u1|+ |v2−v1|+ |w2−w1| be

the identical synchronization error of the network (26). We
say that this network identically synchronizes if the identical
synchronization error reaches zero as t approaches infinity.

First, we check the effectiveness of the proposed controller
for this example in the following domain:

[0;T ]× Ω = [0; 5000]× [0; 100] ,

i.e., Ω ⊂ R with Neumann zero flux boundary conditions.
Besides, the initial conditions for the first node are defined
as follows:

u1(x, 0) = 1 + cos(2πx),

v1(x, 0) = 1 + cos(2πx),

w1(x, 0) = 1 + cos(2πx),

for all x ∈ Ω.
The initial conditions for the second node are defined so

that the value is 0 everywhere, except at the central point,
where we set the value to 1.

Fig. 8 illustrates the identical synchronization errors in the
network described by system (25) with a coupling strength
of gsyn = 0.0005. Specifically, in panel (a) of Fig. 8,
we simulate the network without the controller given by
equation (27) and the updated rule described in (28). The
simulation results indicate that the identical synchronization
error does not converge to zero, signifying that identical
synchronization does not occur.

Fig. 9 displays the time series for all variables in the
system defined by system (25), again without the controller
from (27) and the updated rule from (28). In panel (a) of
Fig. 9, the variable u1 is represented by a solid line, while
u2 is shown with a dotted line. Similarly, panel (b) displays
v1 and v2, and panel (c) shows w1 and w2. It is evident
that the solid lines do not mimic the behavior of the dotted
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Fig. 3. The time series for all variables in the system described by system (21) without the controller referenced in (23) and the updated rule from (24).

lines, further confirming that identical synchronization does
not occur in this scenario.

In Fig. 8(b), we simulate the network described by system
(25) using the controller from equation (27) and the updated
rule from equation (28), with r2 = 0.01. This corresponds
to the system outlined in system (26). The simulation results
indicate that the identical synchronization error approaches
zero, which implies the following relationships hold true:

u1(x, t) ≈ u2(x, t), v1(x, t) ≈ v2(x, t), w1(x, t) ≈ w2(x, t).

Fig. 10 displays the time series for all variables of the
system described by system (25) under the aforementioned
controller and updated rule. In Fig. 10(a), the variable u1 is
represented by a solid line, while u2 is shown as a dotted line.
Similarly, Fig. 10(b) presents v1 and v2 with solid and dotted
lines, respectively, and Fig. 10(c) does the same for w1 and

w2. The results show that the solid lines mirror the behavior
of the dotted lines, indicating that identical synchronization
occurs in this scenario.

Next, we check the effectiveness of the proposed controller
for this example in the following domain:

[0;T ] = [0; 500] ; Ω = [0; 1]× [0; 1] ,

i.e., Ω ⊂ R2 with Neumann zero flux boundary conditions.
Besides, the initial conditions for the first node are defined
as follows:

u1(x, 0) = −(x1 − 1)2 − (x2 − 1)2,

v1(x, 0) = −(x1 − 1)2 − (x2 − 1)2,

w1(x, 0) = −(x1 − 1)2 − (x2 − 1)2,

for all x = (x1, x2) ∈ Ω.
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Fig. 4. The time series for all variables in the system (21) with the controller described in (23) and the updated rule in (24).

The initial conditions for the second node are defined as
follows:

u2(x, 0) = −x21 − x22,

v2(x, 0) = −x21 − x22,

w2(x, 0) = −x21 − x22,

for all x = (x1, x2) ∈ Ω.
Fig. 11 represents the identical synchronization errors of

the network (25) concerning the coupling strength gsyn =
0.0005. Specifically, in Fig. 11(a), we simulate the network
(25) without controller (27) and the updated rule (28). The
simulation shows that the identical synchronization error
does not reach zero, which means the identical synchro-
nization phenomenon does not occur. Fig. 12 represents the
patterns of all state variables of the system (25) without

controller (27) and the updated rule (28) in Ω. Specifi-
cally, Fig. 12(a) represents the pattern of u1(x, 500), for all
x = (x1, x2) ∈ Ω (respectively, v1(x, 500) in Fig. 12(b);
w1(x, 500) in Fig. 12(c); u2(x, 500) in Fig. 12(d); v2(x, 500)
in Fig. 12(e); w2(x, 500) in Fig. 12(f)). We can see that
the pattern of u1(x, 500) and the pattern of u2(x, 500)
are not the same (respectively, v1(x, 500) and v2(x, 500);
w1(x, 500) and w2(x, 500)). In other words, the identical
synchronization phenomenon does not occur in this case.

However, in Fig. 11(b), we simulate the network (25) with
controller (27) and the updated rule (28), i.e., the system (26).
The simulation shows that the identical synchronization error
reaches zero, which means:

u1(x, t) ≈ u2(x, t), v1(x, t) ≈ v2(x, t), w1(x, t) ≈ w2(x, t).

Fig. 13 represents the patterns of all state variables of
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Fig. 5. Identical synchronization errors in the network (21) concerning the coupling strength gsyn = 0.0005, Ω = [0; 1] × [0; 1] ⊂ R2.

Fig. 6. The patterns of all state variables of the system described by (21) without the controller (23) and the updated rule (24) in the domain
Ω = [0, 1] × [0, 1].
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Fig. 7. The patterns of all state variables in the system described by (21), using the controller (23) and the updated rule (24), in the domain Ω =
[0, 1] × [0, 1].

Fig. 8. Identical synchronization errors in the network (25) with respect to the coupling strength gsyn = 0.0005, Ω = [0; 100] ⊂ R.
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Fig. 9. The time series for all variables in the system described by (25) without the controller (27) and the updated rule (28).

the system (25) with controller (27) and the updated rule
(28) in Ω. Specifically, Fig. 13(a) represents the pattern of
u1(x, 500), for all x = (x1, x2) ∈ Ω (respectively, v1(x, 500)
in Fig. 13(b); w1(x, 500) in Fig. 13(c); u2(x, 500) in Fig.
13(d); v2(x, 500) in Fig. 13(e); w2(x, 500) in Fig. 13(f)).
We can see that the pattern of u1(x, 500) and the pattern
of u2(x, 500) are the same (respectively, v1(x, 500) and
v2(x, 500); w1(x, 500) and w2(x, 500)). In other words, the
identical synchronization phenomenon occurs in this case.

C. Example 3.

In this example, we will examine a network composed of
four nodes that are linearly coupled, as illustrated in Fig.
14. In this figure, arrows indicate unidirectional coupling,
while edges without arrows represent bidirectional coupling.
To achieve identical synchronization, we will construct a

controller based on the theoretical framework discussed
earlier. Specifically, we will describe the system of the four-
node network, structured as shown in Fig. 14, with linear
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Fig. 10. The time series for all variables in the system (25), with the controller (27), along with the updated rule (28).

coupling as follows:

u1t = f(u1) + v1 − w1 + I + d∆u1
−gsyn(u1 − u2)− gsyn(u1 − u3),

v1t = 1− bu21 − v1,
w1t = r(s(u1 − c)− w1),
u2t = f(u2) + v2 − w2 + I + d∆u2

−gsyn(u2 − u1)− gsyn(u2 − u3),
v2t = 1− bu22 − v2,
w2t = r(s(u2 − c)− w2),
u3t = f(u3) + v3 − w3 + I + d∆u3

−gsyn(u3 − u1)− gsyn(u3 − u2),
v3t = 1− bu23 − v3,
w3t = r(s(u3 − c)− w3),
u4t = f(u4) + v4 − w4 + I + d∆u4

−gsyn(u4 − u3),
v4t = 1− bu24 − v4,
w4t = r(s(u4 − c)− w4).

(29)

Now, we construct a controller for this network as follows:

u1t = f(u1) + v1 − w1 + I + d∆u1
−gsyn(u1 − u2)− gsyn(u1 − u3),

v1t = 1− bu21 − v1,
w1t = r(s(u1 − c)− w1),
u2t = f(u2) + v2 − w2 + I + d∆u2

−gsyn(u2 − u1)− gsyn(u2 − u3) + Γ2,
v2t = 1− bu22 − v2,
w2t = r(s(u2 − c)− w2),
u3t = f(u3) + v3 − w3 + I + d∆u3

−gsyn(u3 − u1)− gsyn(u3 − u2) + Γ3,
v3t = 1− bu23 − v3,
w3t = r(s(u3 − c)− w3),
u4t = f(u4) + v4 − w4 + I + d∆u4

−gsyn(u4 − u3) + Γ4,
v4t = 1− bu24 − v4,
w4t = r(s(u4 − c)− w4).

(30)
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Fig. 11. Identical synchronization errors within the network described by (25) concerning the coupling strength gsyn = 0.0005, Ω = [0; 1]× [0; 1] ⊂ R2.

Fig. 12. The patterns of all state variables of the system described by (25), without the controller (27) and following the updated rule (28), over the
region Ω = [0, 1] × [0, 1].
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Fig. 13. The patterns of all state variables in the system (25) with the controller (27) and the updated rule (28), in the domain Ω = [0, 1] × [0, 1].

where the controller Γ2 is designed as follows:

Γ2 = −d∆u2 + d∆u1 + gsyn(u1 − u3)
−gsyn(u1 − u2)− gsyn(u1 − u3)− k2eu2 ,

Γ3 = −d∆u3 + d∆u1 + gsyn(u1 − u2)
−gsyn(u1 − u2)− gsyn(u1 − u3)− k3eu3 ,

Γ4 = −d∆u4 + d∆u1 + gsyn(u1 − u3)
−gsyn(u1 − u2)− gsyn(u1 − u3)− k4eu4 ,

(31)
with the updated rule defined as follows: k2t = r2(eu2 )2,

k3t = r3(eu3 )2,
k4t = r4(eu4 )2.

(32)

where r2, r3, r4 are arbitrary positive constants.
Note that (31) and (32) are constructed as the proposed

controller (10) and the updated rule (11).

Let
4∑

i=2

|eui |+|evi |+|ewi | =
4∑

i=2

|ui−u1|+|vi−v1|+|wi−w1|
be the identical synchronization error of the network (29). We
say that this network identically synchronizes if the identical
synchronization error reaches zero as t approaches infinity.

First, we check the effectiveness of the proposed controller
for this example in the following domain:

[0;T ]× Ω = [0; 5000]× [0; 100] ,

i.e., Ω ⊂ R with Neumann zero flux boundary conditions.
Besides, the initial conditions for the first node are defined
as follows:

u1(x, 0) = 1 + sin(2πx),

v1(x, 0) = 1 + sin(2πx),

w1(x, 0) = 1 + sin(2πx),

Fig. 14. An example of a graph with four nodes arranged in an arbitrary
structure.

for all x ∈ Ω.
The initial conditions for the second node are defined such

that the value is 0 everywhere except at the central point,
where we set the value to 1.

The initial conditions for the third node are defined as
follows:

u3(x, 0) = sin(2πx),

v3(x, 0) = sin(2πx),

w3(x, 0) = sin(2πx),
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for all x ∈ Ω.
The initial conditions for the fourth node are defined as

follows:
u4(x, 0) = 1 + cos(2πx),

v4(x, 0) = 1 + cos(2πx),

w4(x, 0) = 1 + cos(2πx),

for all x ∈ Ω.
Fig. 15 illustrates the identical synchronization errors

of the network described by system (29) with a coupling
strength of gsyn = 0.0005. In panel (a) of Fig. 15, we
simulate the network (29) without the controller specified
in (31) and the updated rule presented in (32). The results
indicate that the identical synchronization error does not
reach zero, suggesting that identical synchronization does not
occur in this scenario.

Conversely, in panel (b) of Fig. 15, we simulate the
network (29) with the controller from (31) and the updated
rule from (32), using parameters r2 = 0.2, r3 = 0.3, and
r4 = 0.4, corresponding to system (30). The simulation
results show that the identical synchronization error reaches
zero. This indicates that identical synchronization occurs in
this case.

Next, we check the effectiveness of the proposed controller
for this example in the following domain:

[0;T ] = [0; 500] ; Ω = [0; 1]× [0; 1] ,

i.e., Ω ⊂ R2 with Neumann zero flux boundary conditions.
Besides, the initial conditions for the first node are defined
as follows:

u1(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

v1(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

w1(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

for all x = (x1, x2) ∈ Ω.
The initial conditions for the second node are defined as

follows:
u2(x, 0) = −x21 − x22,

v2(x, 0) = −x21 − x22,

w2(x, 0) = −x21 − x22,

for all x = (x1, x2) ∈ Ω.
The initial conditions for the third node are defined as

follows:

u3(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

v3(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

w3(x, 0) = −(x1 − 0.5)2 − (x2 − 0.5)2,

for all x = (x1, x2) ∈ Ω.
The initial conditions for the fourth node are defined as

follows:
u4(x, 0) = −x21 − x22,

v4(x, 0) = −x21 − x22,

w4(x, 0) = −x21 − x22,

for all x = (x1, x2) ∈ Ω.

Fig. 5 illustrates the identical synchronization errors of
the network described in (29) with a coupling strength of
gsyn = 0.0005. In Figure 16(a), we simulate the network (29)
without the controller (31) and the updated rule (32). The
simulation results indicate that the identical synchronization
error does not converge to zero, implying that the identical
synchronization phenomenon does not occur in this scenario.

Conversely, in Figure 5(b), we simulate the network (29)
with the controller (31) and the updated rule (32), represent-
ing the system outlined in (30). The results show that the
identical synchronization error reaches zero, indicating that
the identical synchronization phenomenon does indeed occur
in this case.

Remark 3. The examples provided demonstrate that in both
cases, where Ω ⊂ R and Ω ⊂ R2, achieving identical
synchronization is not possible without the proposed con-
troller discussed in the theoretical section. When utilizing this
controller, the synchronization error defined in R approaches
zero as time t increases significantly.

It is important to note that while the networks investigated
in this study can achieve identical synchronization with a
large enough value of coupling strength [15], [16], [18], the
resulting synchronization error in those cases theoretically
does not remain within R. This study offers a significant
advantage over previous works by the author, as it ensures
that the synchronization error is indeed within R. Moreover,
under the same conditions, the network with the controller
achieves identical synchronization more effectively than a
network without one. In summary, the numerical results are
consistent with the theoretical findings.

IV. CONCLUSION

This paper examines identical synchronization in networks
featuring arbitrary topological structures composed of n
reaction-diffusion systems of the Hindmarsh-Rose 3D type.
We design a nonlinear adaptive controller and construct a
suitable Lyapunov function to achieve the desired synchro-
nization based on the identical synchronization error defined
in R. The numerical results demonstrate the effectiveness of
the proposed method. Specifically, identical synchronization
is not achieved without the proposed controller, whereas the
network successfully attains identical synchronization when
this controller is implemented.
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