
 

  

Abstract—With the rapid development of communication 

systems, we are facing unprecedented challenges that require 

real-time and meticulous processing of massive amounts of 

wireless signals. For complex electromagnetic environments, 

signals can be usually affected by various interferences and 

noise, resulting in changes in the waveform, frequency, phase, 

and other characteristics of the signal. In response to this issue, 

we propose an efficient classifier based on convolutional neural 

network (CNN) with attention mechanism, aiming to improve 

the automatic modulation classification (AMC) accuracy in 

complex electromagnetic environments. The dynamic weighting 

function is achieved through attention mechanism, allowing the 

model to focus on the more important parts of the input signal, 

thereby improving AMC accuracy. Furthermore, the model is 

able to capture the global features of the signal rather than local 

features based on the global information perception ability of 

attention mechanism, which further enhances the model’s 

generalization capability. In addition, the adaptive learning 

characteristics of attention mechanism are utilized to enable the 

model to adaptively adjust attention weights during the training 

process, thus to better adapt to different modulation schemes 

and parameter changes. This characteristic enables the model 

to maintain high classification accuracy in the face of complex 

electromagnetic environments and diverse modulation schemes. 

Finally, through the resource optimization function of attention 

mechanism, both the computational complexity and storage 

requirements of CNN can be effectively reduced, and the 

operational efficiency is improved. Using the proposed method 

that combines CNN and attention mechanism, AMC accuracy 

of over 90% under 11 different modulation schemes is achieved, 

with four schemes even achieving an accuracy rate of 100% at 

+18 dB. Even in harsh environments of -6dB, the accuracy 

remains above 52.82%, which is 9.4% higher than traditional 

methods. Experiments have demonstrated the effectiveness and 

reliability of the proposed method in AMC task in complex 

electromagnetic environments. 

 
Index Terms—automatic modulation classification, attention 

mechanism, frequency-domain analysis, deep learning, wireless 

communication. 
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I. INTRODUCTION 

N the field of wireless communication, signal modulation 

recognition technology plays a crucial role. From a civilian 

perspective, it can not only supervise the legitimate operation 

of communication and prevent illegal encroachment and theft 

of resources, but also effectively avoid the radio interference, 

spectrum optimization, and the reliability and intelligence 

improvement of cognitive radio systems [1][2][3][4]. In the 

military field, the AMC is also a key technology for space 

electromagnetic countermeasures [5][6][7] and information 

acquisition [8][9][10][11], which is of great significance for 

ensuring the wireless communication security. As the core 

technology of wireless communication [12], AMC is help for 

ensuring communication quality [13], spectrum management 

[14], and signal monitoring [15][16][17][18]. However, the 

accurate identification of various modulation schemes in the 

complex real-world communication environments remains a 

highly challenging task [19][20][21]. 

At present, AMC is mainly divided into the following two 

categories: likelihood-based methods [22][23] and feature 

based methods [24] [25][26]. The likelihood-based method 

utilizes probability theory and statistical decision to infer the 

modulation scheme of the received signal based on its 

statistical characteristics. It is widely used in the performance 

evaluation of wireless communication system [27] and signal 

reconnaissance in electronic warfare [28]. The feature-based 

methods extract features representing modulation schemes 

from the signal for AMC, which is suitable for real-time 

demodulation of wireless communication systems and radar 

target recognition scenarios [29].  

With the rapid development of deep learning technology, 

models such as convolutional neural networks (CNN) [30] 

[31][32][33] and Transformers [34][35][36][37] have shown 

strong potential in communication signal processing. CNN 

excels at capturing the spatial local features of signals while 

Transformer and its inherent attention mechanism emphasize 

understanding and modeling the global information of signals 

[38][39][40]. In response to the unique demand for AMC of 

radio signals [41][42][43][44], we propose a hybrid deep 

learning model that combines CNN and attention mechanisms 

in Transformer in this paper. The time-domain attention 

mechanism is used to capture the dynamic evolution features 

of signals over time, while the frequency-domain attention 

mechanism reveals the key patterns of signals in spectral 

distribution, thereby effectively processing the time-series 

and frequency-domain characteristics of communication 

signals. Finally, the proposed method has been validated and 

optimized on the widely used RadioML 2016.10A dataset, 

aiming to improve the accuracy and robustness of AMC, and 
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provide more reliable signal monitoring and recognition 

technology for the sixth generation (6G) and beyond 6G 

wireless communication systems. 

The rest of the paper is organized as follows. Section II 

introduces the proposed method for AMC. In Section III, we 

describe the experimental results and corresponding analysis. 

Finally, the conclusion and future work are summarized in 

Section IV.  

II. THE PROPOSED METHOD 

The processing flow of the proposed CNN based method is 

consisted of the following steps: signal preprocessing, feature 

extraction, residual module, attention mechanism, global 

average pooling, fully connected, and classification module, 

as shown in Fig. 1. Firstly, the received signal is preprocessed 

to obtain the signal representation that adapts to subsequent 

processing requirements, such as noise suppression, signal 

smoothing, normalization, etc. Next, we utilize the powerful 

feature extraction capability of combining CNN feature 

extraction module with residual module, multi-scale features 

of the signal are extracted, and high-dimensional feature 

detail maps are output. Then we use both the time-domain 

attention and the frequency-domain attention mechanism to 

focus on the dynamic characteristics of signal evolution over 

time and learn the key patterns of signal distribution in the 

spectrum. Through the global average pooling module, the 

feature dimensionality and parameter can be reduced, and 

classification results through the classification module can be 

finally output. The following is a detailed introduction to 

each part. 

A. Dataset and Preprocessing 

⚫ Dataset 

The RadioML 2016.10A dataset is one of the widely used 

standard datasets in the field of signal modulation recognition, 

aiming at supporting and evaluating the AMC performance 

of various methods. This dataset includes two categories: 

analog modulation and digital modulation, covering a total of 

11 modulation formats. Analog modulation schemes include: 

double-sideband amplitude modulation (AM-DSB), single- 

sideband amplitude modulation (AM-SSB), and broadband 

frequency modulation (WBFM), while digital modulation 

schemes contain 8-phase shift keying (8PSK), binary phase 

shift keying (BPSK), continuous phase shift keying (CPFSK), 

high frequency shift keying (GFSK), four level pulse 

amplitude modulation (PAM4), multiple levels of orthogonal 

amplitude modulation (16QAM, 64QAM), and orthogonal 

phase shift keying (QPSK). 

All modulated signals are digitized at a sampling rate of 

200KHz, with each symbol corresponding to 8 sampling 

points, ensuring sufficient sampling accuracy to capture 

signal features. The signal-to-noise ratio (SNR) in the dataset 

is set between -20 dB and +18 dB, adjusted every 2 dB to 

simulate a wide range of noisy environments. This setting 

enables the evaluation of the recognition performance of 

various methods under different noise levels. 

At each specified SNR level, each modulation scheme has 

1000 independent data samples. Each data sample contains 

128 sampling points and is organized in a 2×128 matrix form, 

where two dimensions represent the real (I) and imaginary (Q) 

components of the radio signal, fully reflecting the complex 

characteristics of the received signal. 

When the SNR is at +8 dB, the time-domain and 

frequency-domain plots of each modulation scheme can 

visually display their characteristics as shown in Fig. 2. These 

graphs are very helpful for understanding and analyzing the 

performance of different modulation methods under specific 

noise conditions. 

The RadioML 2016.10A dataset provides researchers with 

a comprehensive and rich resource for developing and 

validating various AMC methods. By utilizing this dataset, 

the performance of a series of methods can be evaluated, 

compared and improved to promote the further development 

of AMC technology. 

⚫ Pretreatment 

 The deep learning network designed by combining CNN 

and Transformer has strong expressive power, and one 

important factor is the massive and diverse data support. In 

practical communication environments, not all datasets meet 

the requirements of complexity and diversity. Therefore, 

effective data denoising techniques can not only reduce noise 

interference, scale inconsistency or distribution differences in 

signal data, but also effectively avoid reducing the model 

overfitting problem. Therefore, we adopt data normalization 

to enhance the diversity of the dataset. 

In order to better prepare the input feature matrix of the 

deep neural network model, we further implement the data 

normalization steps for data sequences containing complex 

components, i.e., in-phase (I) and orthogonal (Q) components, 

with particular attention to the processing of phase data. 

Then we use mean elimination and amplitude adjustment: 

The initialization step involves subtracting the overall mean 

E (a (n)) from each data sample a (n) to eliminate bias effects 

in the data and generate the intermediate variable ac (n). 

Subsequently, amplitude standardization was achieved by 

dividing each element of ac (n) by its maximum absolute 

value in its set, ensuring that the processed data an (n) is 

constrained within a clear range, as expressed by 

 

'( ) ( ) - aac n a n =                            (1) 
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Fig. 1.  Flow chart of modulation recognition method. 
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where 𝜇a represents the average value of a (n), which ensures 

the scale consistency of the data. 

Normalization of phase data: When processing phase data, 

it is important to note that directly using the [0,2Π] range may 

lead to phase wrapping. To avoid this, phase values should be 

remapped to the [-Π, Π] range. This processing maintains the 

continuity and intuitiveness of phase information, avoiding 

unnecessary periodic repetition. 

Amplitude and phase extraction: During the construction 

of the feature matrix, the amplitude A and phase of the signal 

are calculated using I/Q data ϕ, which can be computed by 

 
2 2'A I Q= +                                 (3) 

 

( )' tan 2 ,a Q I =                            (4) 

 

where the usage of the atan2 function ensures the accurate 

calculation of all quadrant phases. By compared it to the 

traditional arctan function, it can provide the correct phase 

angle for the four quadrants. 

B. Model Structure 

⚫ CNN Feature Extraction Module 

The self-attention mechanism of Transformer can capture 

the dependency relationships between different positions in 

the input sequence, thereby better modeling the long-distance 

dependencies, which enables the model to possess better 

performance in processing sequence data, especially when 

capturing relationships between distant elements. However, 

due to the lack of handling of local details in the Transformer, 

it may overlook the local features in the sequence and the 

relationship between adjacent elements. To compensate for 

the shortcomings of Transformer in local detail processing, 

CNN and residual convolution are used in the front end of the 

network model to extract signal detail features to enhance the 

model’s ability to capture local information and improve its 

ability to process local details. 

To extract the multi-scale features of signals, we propose 

to use a feature extraction module as shown in Fig. 2. The 

feature extraction layer in CNN first uses the 2D convolution 

kernels of size 1×8 to expand the channel of input sequence 

signal to 32, and then uses batch normalization to accelerate 

the training process of the neural network. As the network 

parameters are constantly changing according to the gradient 

descent, the distribution of each network layer will change 

differently. Therefore, batch normalization normalizes the 

model to pay more attention to the overall distribution of the 

data, which helps the model learn more common features and 

improve its generalization ability. In deep neural networks, as 

the number of layers increases, the gradient may gradually 

decrease or even approach 0 during the back-propagation 

process, resulting in the problem of “gradient vanishing”. 

This makes it difficult for the model to update parameters 

during the training process, thereby affecting the training 

effectiveness. Since ReLU activation function output 0 when 

the input is less than or equal to 0, and is able to output the 

input value itself when the input is greater than 0. This 

non-linear processing way enables ReLU to better handle 

non-linear problems and improve the model’s representation 

ability. Therefore, incorporating a ReLU activation function 

helps the model better fit the complex data distribution and 

improve the model performance. 

 Originating from the problem of network degradation that 

deep neural networks may encounter during training, it may 

gradually decrease during back-propagation process, making 

it difficult for the model to update parameters during training, 

thereby affecting training effectiveness. We propose to use 

the residual block to solve this problem, as shown in Fig3. In 

the residual module, two layers of feature extraction are used 

to enhance the feature extraction capability. By using the skip 

  
Fig. 2.  Time domain distribution (left) and frequency domain distribution (right) of different modulation signals. 
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connection, information is directly transmitted from shallow 

layers to deep layers, introducing more hierarchical features 

and improving the efficiency of the training process. This 

structure ensures the avoidance of gradient vanishing during 

backpropagation. 

⚫ Attention Mechanism Module 

When processing signal data, it can cause critical temporal 

information to be overwhelmed, as wireless communication 

signals, particularly continuous time series signals, typically 

contain a large amount of information. Only a small portion 

of this information is crucial for specific processing tasks. 

However, due to the complexity and redundancy of signal 

data, this key temporal information may be submerged in a 

large amount of data, making it difficult for the model to 

accurately identify and extract them. In response to this issue, 

we use a time-domain attention mechanism module to solve 

the problem of key information flooding. 

 The core of the time-domain attention module is to extract 

key features in the time domain by introducing the multi head 

self-attention mechanism. To achieve this goal, we construct 

an architecture consisting of four Transformer encoders 

stacked together as shown in Fig. 4. Since Transformer was 

originally designed to process sequential data, we need to 

serialize and transform the two-dimensional feature map 

output by the channel attention module before inputting the 

features into Transformer encoder. The conversion process of 

serialization is as follows. We first calculate the query vector 

Qi for each position i, key vector Kj, and value vector Vj, 

where j traverses all positions. Then we can calculate the 

attention weight aij, which reflects the attention of i to 

position j. The specific calculation is given by 
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where dk is the dimension of the key vector kj, which is used 

to scale the dot product attention score to avoid excessive 

gradients or small country sizes during the training process. T 

represents the total number of positions in the sequence. 

After obtaining the attention weights, the value vectors can 

be weighted and summed based on these weights to obtain 

the output vectors for each position as shown in 
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T
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=                                 (6) 

 

where oi denotes the weighted combination of all positional 

information in the original input sequence, where the key 

information can receive more attention. 

 During conducting the above transformation, we adopt a 

specific strategy as follows. we first segment the feature 

maps into multiple segments along the timeline and then use 

the linear transformation to map these segments to high- 

dimensional space to create the segment level serialized 

representation. To ensure that these serialized elements retain 

their relative positional information in the original feature 

map, we further combine these serialized representations 

with corresponding positional embedding vectors to obtain 

the final input sequence, which can be used as input to the 

Transformer encoder for subsequent processing. This design 

enables us to effectively convert two-dimensional feature 

maps into serialized data that Transformers can process, and 

capture key features in the time domain through self-attention 

mechanisms, providing powerful tools for signal analysis. 

Signals can be usually affected by various noises and 

interferences during transmission and acquisition, which can 

mask useful information in the signal and cause interference 

in the model during signal processing, thereby reducing the 

performance. In this case, we further adopt the frequency 

domain attention mechanism, as shown in Fig. 5. By 

converting the signal from time domain to frequency domain, 

the model can analyze the characteristics of the frequency 

components in the signal and focus on those frequency 

components that contain useful information. Meanwhile, the 

frequency domain attention mechanism can also reduce the 

impact of noise and interference on the model performance, 

and improve the robustness of the model. 

In the processing of radio signals, samples usually have 
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Fig. 3.  Efficient feature extraction module. 
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Fig. 5.  Frequency domain attention mechanism. 
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different frequency components in frequency, which reflect 

the changing characteristics of the signal at different time 

scales. However, due to the complexity of the signal, it may 

contain a large amount of redundant information and noise, 

which are difficult to distinguish and remove in the time 

domain. Based on this issue of redundancy and noise, we 

adopt the frequency domain attention mechanism. Firstly, the 

input signal is preprocessed into a matrix that contains batch 

size, channels, height, and width. Then, the time-domain 

signal is converted to the frequency-domain after undergoing 

a two-dimensional Fourier transform, as calculated by  

 

( ) ( )
1 1 2

0 0

, ,

mk nlheight width j
height width

m n

F k l X m n e


 − − − + 
 

= =

=              (7) 

 

where k and l are frequency indices, j is an imaginary unit, 

e-j2Π represents the complex exponential function to calculate 

the contribution of different frequency components. 

Considering that the frequency domain representation is a 

complex matrix, the complex processing layer is shown in Eq. 

(8), followed by a multi-layer perceptron (MLP) as shown in 

Eq. (9). Finally, the frequency domain features and attention 

weights are multiplied as Eq. (10), and the calculated results 

show the weighted frequency domain features. The method 

based on frequency domain attention mechanism can reduce 

the weight of noises and redundant information, thereby 

achieving suppression of these components. 

 

, Pr ( )real imagA A ocessComplex F=               (8) 

 

where Areal and Aimag denote the processed real and imaginary 

features, respectively. 

 

( )( )max combineda Soft MLP A=                 (9) 

 

where Acombined is the input that combines the features of the 

real and imaginary parts, while the Softmax function ensures 

that the total weight is 1, achieving a probability distribution. 

 

( ) ( ) ( ), , ,attF k l a k l F k l=                  (10) 

 

We apply the obtained attention weight a to the original 

frequency domain feature F to obtain the weighted frequency 

domain feature Fatt. In this way, the contribution of important 

frequency components in the signal is amplified, while the 

contribution of noise and redundant information is relatively 

reduced, improving the model’s attention and robustness to 

useful signal components. 

⚫ Global Average Pooling and Classification Module 

 In order to effectively reduce the input dimension of the 

classification module, a global average pooling operation is 

performed on the output values processed in the time and 

frequency domains, taking the average of all elements in each 

feature map to generate a single scalar value. Due to the 

strong robustness of the global average pooling to changes in 

the spatial position, it can also enhance the generalization 

capability of the model. After global average pooling, the 

probabilities of each category are obtained through linear 

mapping and Softmax function, thereby achieving AMC. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Configuration 

To test the performance of the proposed method, the dataset 

RadioML 2016.10A dataset was used for evaluation. The 

dataset is consisted of 220000 signals, with 60% used as the 

training set, 20% used as the testing set, and 20% used as the 

validation set. Three deep learning models including ResNet, 

LSTM, and CNN are selected for comparative experiments. 

During the training process, the optimizer uses Adam, the 

loss function uses cross entropy, the initial learning rate is set 

as 0.0001, the factor is 0.5, the training batch size is 256, and 

the epoch is 100. When the loss on the validation set is not 

decreasing, the learning rate is reduced to half of the original 

until the training process is end. 

B. Evaluating Indicator 

We use commonly used evaluation indicators for AMC to 

quantitatively evaluate the performance of the model. These 

indicators include accuracy (A), accuracy (P), recall (R), F1 

score (F1), and confusion matrix, which can be computed 

using Eqs. (11), (12), (13), and (14). 
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where A represents accuracy, TP represents the number of 

samples that are actually positive and predicted to be positive. 

FN denotes the number of samples that are actually positive 

and predicted to be negative. FP represents the number of 

samples that are actually negative and predicted to be positive. 

TN is the number of samples that are actually negative and 

predicted to be negative. F1 considers both accuracy and 

recall rate, and is a comprehensive indicator that reflects the 

overall performance of the network. 

C. Experimental Results and Analysis 

⚫ Experimental Result 

To observe the AMC efficiency of different modulation 

schemes in depth, the confusion matrix can be a powerful 

analytical tool and is shown in Fig. 6, which shows the 

confusion matrix of the proposed method under a series of 

SNRs. As the SNR gradually increases, the classification 

accuracy of modulated schemes also shows a significant 

improvement. Taking the extreme SNR levels of -6 dB and 

18 dB as examples, the AMC accuracy of modulated signals 

in different wireless communication conditions can be clearly 

observed. 

In the environment with low SNR of -6dB, communication 

conditions are relatively noisy, but the recognition rate of the 

modulated signal can still reach 52.82% even under such 

unfavorable conditions, indicating a certain adaptability of 

the modulation method in complex environments. In the 
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environment with a high SNR of 18dB, the communication 

quality has been significantly improved and the interference 

is reduced. At this time, the recognition rate of the modulated 

signal is as high as 92.18%, fully demonstrating the excellent 

performance of the proposed AMC method in clear and stable 

communication scenarios. 

 By conducting a detailed analysis of the recognition rates 

at these two extreme but representative SNR levels, we can 

gain a more comprehensive and in-depth understanding of 

the adaptability and robustness of various modulation 

schemes in different communication scenarios. This not only 

helps us choose the appropriate modulation method in actual 

communication systems, but also provides a strong data 

support for the optimization and improvement of future AMC 

technologies. 

 By analyzing the trend of accuracy changing with SNR, it 

can be found that the model exhibits high accuracy in 

identifying 8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, 

 

 
Fig. 6.  Confusion matrix under different SNRs. 
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GFSK, 4-PAM, 16-QAM, 64-QAM, and QPSK signals. Due 

to the similarity between WBFM and AM-DSB signals, the 

model often misjudges WBFM signals and mistakenly 

identifies them as AM-DSB signals. Due to the inherent 

similarity between these two types of signals, the method 

proposed in this paper has limitations in feature extraction, 

resulting in misclassification of WBFM and AM-DSB. This 

question indicates that an important direction for future 

research is how to improve the model to better capture and 

distinguish subtle differences in identifying highly similar 

signals. In Fig. 7 and Fig. 8, we present the time-domain and 

frequency-domain plots of 8PSK and QAM16 modulated 

signals extracted from RML2016.10A dataset, respectively. 

⚫ Contrast Test 

 To further evaluate the performance of the proposed 

method, we have conducted comparative experiments on the 

RML2016.10a dataset. All experiments were conducted on 

the same dataset, hyper-parameter settings, and training 

strategy, and compared and analyzed with various types of 

methods. 

 In Fig. 9, we show the classification accuracy of LSTM, 

ResNet18, and KAN models in different modulation 

recognition tasks. The recognition ability of each method for 

specific modulated signals is observed under different SNR 

conditions. Specifically, the LSTM method performs poorly 

in the recognition of QAM16 signals, failing to effectively 

learn signal features at any SNR. In contrast, the overall 

recognition rate of ResNet18 network has been improved at 

various SNRs, indicating its advantage in feature extraction. 

However, ResNet18 still has limitations in distinguishing 

AM-DSB and QAM64 modulation schemes with the low 

recognition accuracy, indicating that its generalization ability 

on complex or high-order modulation signals still needs 

further optimization. 

 The KAN neural network shows significant shortcomings 

in the recognition of 8PSK, QAM64, QPSK, WBFM, and 

QAM16 signals, with generally low recognition rates. This 

indicates that KAN has significant limitations in extracting 

and distinguishing these signal features, especially when 

faced with similar or similar modulation patterns, it is often 

difficult to make accurate judgments, and even leads to 

misidentification or inability to recognize. This phenomenon 

highlights the challenges of existing methods in processing 

complex radio signals, limiting their effectiveness in radio 

signal analysis and applications. Further research is needed to 

address these shortcomings and enhance the robustness and 

identification capabilities of methods to adapt to diverse and 

complex wireless communication environments. 

 In Fig. 10, we show the accuracy performance of our 

proposed method in the same task. As shown in Fig. 10, the 

method proposed in this paper exhibits significant advantages 

in recognition accuracy for multiple modulation signals 

under different SNR conditions. Except for the high 

similarity in modulation characteristics between WBFM 

signal and AM-DSB signal, which results in low recognition 

 
Fig. 7.  Time domain distribution (left) and frequency domain distribution 
(right) of 8PSK. 

 

 
Fig. 8.  Time domain distribution (left) and frequency domain distribution 
(right) of QAM16. 
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Fig. 9.  The accuracy of different modulation recognition. 

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 971-980

 
______________________________________________________________________________________ 



 

accuracy at any SNR, the recognition accuracy of the other 

ten modulation signals exceeds 90%, and in some cases even 

approaches 100%. Even in extremely noisy environment with 

a SNR of -4 dB, the overall recognition accuracy of our 

proposed method can still remain above 80%, demonstrating 

the strong robustness of the method at low SNRs. When the 

SNR is increased to 0 dB or above, the overall recognition 

accuracy of the method is significantly improved, almost 

exceeding 90% across the entire line, approaching the 

optimal performance. This result fully demonstrates the wide 

adaptability and excellent performance of the proposed 

method in complex signal environments, providing reliable 

technical support for efficient modulation recognition in 

wireless communication. Further analysis shows that the 

proposed method can effectively capture and distinguish 

subtle features of different modulation signals, especially 

when facing high-order modulation schemes, demonstrating 

the excellent recognition ability and potential for application 

in modern wireless communication systems. 

 In Fig. 11, we present the training loss curve of the 

proposed model, from which it can be clearly observed that 

the method quickly converges in a short period of time and 

reaches a stable state within the initial epoch. Specifically, 

during the training process, the loss value showed a smooth 

downward trend with small fluctuations, indicating that the 

method has strong robustness and stability in parameter 

adjustment. As the epoch gradually increases, the loss value 

further converges to a stable value, verifying the significant 

advantages of our proposed method in terms of convergence 

speed and accuracy. 

 This fast convergence feature not only reduces the time 

cost of model training, but also effectively avoids the 

occurrence of overfitting problems, further proving the 

efficiency and robustness of our proposed method in 

handling complex modulation signal tasks. The experimental 

results have clearly demonstrated the superior performance in 

the model optimization process, especially in the early 

training stage. Its fast reaching of stability enables the model 

to enter the optimal performance state more quickly, laying a 

solid foundation for subsequent signal recognition tasks. This 

performance fully demonstrates the effectiveness of the 

method proposed in this paper and provides strong theoretical 

support for its promotion in practical applications. 

 In Table I, we report the number of parameters and 

recognition accuracy of six different deep learning models on 

the RML2016.10A dataset. The results indicate that although 

our proposed method has increased the number of parameters 

compared to Transformer, LSTM, ResNet18/34, and KAN 

models, it has shown significant performance in parameter 

optimization, with only two-thirds of the total number of 

parameters compared to ResNet18/34. This optimization not 

only reflects the efficiency of our method in structural design, 

but also provides potential solutions for applications with 

limited real-time processing and computing resources. In 

terms of recognition rate, the method proposed in this study 

performs well, with a recognition accuracy of up to 78.5%. 

This result is significantly better than ResNet18’s recognition 

accuracy of 71.4%, and improves the recognition accuracy by 

12.2% compared to the KAN model. Compared to LSTM, 

our proposed method has improved the AMC accuracy by 

15.8%, which further confirms the outstanding performance 

and effectiveness of the proposed method in modulation 

recognition tasks. These results not only demonstrate the 

excellent performance of the proposed method in parameter 

control and AMC accuracy, but also validate the practical 

value and application potential in the field of AMC. Our 

research results indicate that this method has unique 

advantages and competitiveness in AMC, laying a solid 

foundation for future modulation recognition research and 

practical applications. 

IV. CONCLUSION 

This paper delves into an AMC method based on the fusion 

of CNN and attention mechanism. Through the effective 

integration of carefully designed network architecture and 

attention mechanism, the proposed deep learning method has 

shown significant performance improvement in AMC task. 

Compared with existing methods, the recognition accuracy of 

the proposed method can reach 80.18% when SNR > -2dB, 

and the average classification accuracy can even reach up to 

92.18% at SNR of 18 dB. Compared with other algorithms, 

the performance improvement is as high as 12.2%. This result 

 
Fig. 10.  The accuracy of different modulation recognition. 

 

 
Fig. 11.  The accuracy of different modulation recognition. 

 
TABLE I 

THE MODULATION RECOGNITION ACCURACY OF DIFFERENT MODELS 

Models Parameters/KB Accuracy/% 

Transformer 705 63.4 
LSTM-CNN 460 67.5 

ResNet34 994 72.2 

ResNet18 730 71.4 
LSTM 206.4 62.7 

KAN 140.2 66.3 
ours 508 78.5 

 

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 971-980

 
______________________________________________________________________________________ 



 

fully demonstrates the effectiveness and superiority of the 

proposed method in AMC task. 

In the practical wireless communication application, some 

challenges and limitations have been found. Especially in 

environments with extremely low SNRs, the erosion effect of 

noise on radio time-frequency features becomes particularly 

significant. This erosion effect not only damages the integrity 

of the signal, but also seriously affects the expression of its 

time-domain characteristics, making the classifier face huge 

difficulties in feature learning and decision-making process, 

and the misjudgment rate sharply increases. It is particularly 

important to develop more advanced denoising methods in 

response to this issue. In the field of AMC, the denoising 

technology has always been a hot and difficult research topic. 

With the continuous deepening of research, we strive to 

explore more efficient and robust denoising methods. These 

methods not only need to be able to effectively remove noise 

and retain useful information of the signal, but also adapt to 

different communication environments and changes in noise 

distributions, thereby demonstrating stronger generalization 

ability and robustness in practical applications. 

The AMC method based on CNN and attention mechanism 

proposed in this paper has shown significant performance 

improvement. However, in the communication environments 

with extremely low SNRs, the erosion effect of noise on the 

features of radio time-frequency images is still a problem that 

needs to be solved. In the future, we will continue to conduct 

in-depth research on denoising techniques and optimization 

methods to address the complex and ever-changing wireless 

environment and noise challenges, further improving the 

performance and practicality of the AMC methods. 
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