
 

  

Abstract—Theoretically, a piezoelectric 6-degree-of-freedom 

accelerometer can measure six-dimensional acceleration values 

through linear operations. However, due to the influence of 

calibration equipment, signal conditioning devices, and 

materials, the output often exhibits nonlinear characteristics. In 

addition, the current fixed, non-feedback solution method 

cannot meet the sensor's measurement requirements, 

necessitating research into high-precision and efficient 

decoupling methods. First, the measurement principles of the 

piezoelectric 6-degree-of-freedom accelerometer are analyzed. 

Then, to enable adaptive decoupling based on nonlinear 

compensation, the linear decoupling model is adjusted using the 

sensitivity curve obtained from nonlinear fitting, with iterative 

updates to the solution matrix. Finally, to achieve high accuracy 

and efficiency, the number of iterations in the nonlinear 

compensation adaptive decoupling model is analyzed and 

optimized. The linear decoupling model is compared and 

evaluated against the existing nonlinear decoupling method. 

The errors from linear decoupling, neural network decoupling, 

and nonlinear compensation decoupling are analyzed. 

Experimental results show that, compared with linear 

decoupling and neural network decoupling, the nonlinear 

compensation decoupling model reduces the average solution 

error of linear acceleration from 0.1170% and 0.0690% to 

0.0067%, and the average solution error of angular acceleration 

from 6.0185% and 2.2899% to 0.8989%. The time for linear 

decoupling is 0.000004 seconds, for neural network decoupling 

0.02458 seconds, and for nonlinear compensation decoupling 

0.00047 seconds, demonstrating the effectiveness and 

practicality of the adaptive decoupling algorithm with 

nonlinear compensation. 

 
Index Terms—6-degree-of-freedom accelerometer, decoupled, 

Nonlinear, Reparation 
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I. INTRODUCTION 

ULL information dynamic parameter testing of six 

degrees of freedom (6-DOF) is critically important for 

the monitoring, prediction, control, and risk management of 

equipment and products operating in 6-DOF vibration 

environments, especially within aerospace and robotics. For 

instance, such testing is essential for satellite high-attitude 

jitter control, in-orbit engine vibration testing, and prediction 

of vibration faults in aircraft [1]. It is also relevant for the 

development of gyro-free strapdown inertial navigation 

systems capable of handling large attitude angles and high 

maneuver states [2][3][4]. Further applications include the 

complete decoupling of six-dimensional forces in robots, 

collaborative robot manpower control systems, and other 

scenarios requiring both linear and angular acceleration 

measurements [5]. The 6-DOF accelerometer is a novel 

sensor capable of simultaneously measuring linear 

acceleration along the X, Y, and Z axes, as well as angular 

acceleration across three axes. 

As a multi-input and multi-output system, the 6-DOF 

accelerometer exhibits both linear and nonlinear coupling 

relationships between its inputs and outputs due to 

measurement principles, calibration equipment, and material 

influences. The coupling relationships involve more than 36 

parameters, making decoupling a central research focus for 

6-DOF accelerometers. Decoupling algorithms must ensure 

both high decoupling accuracy and efficiency to make these 

sensors viable for practical applications. Given the 

complexity of designing 6-DOF accelerometers and 

achieving effective decoupling, current research primarily 

focuses on static decoupling. For example, Yu et al. 

developed a linear decoupling method [6][7][8] for 

strain-based 6-DOF accelerometers using a Stewart platform 

structure, achieving a linear acceleration decoupling error of 

2.6%. However, limitations in experimental equipment 

precluded testing of angular acceleration, and decoupling 

time was not reported. Subsequently, the team proposed a 

gray-box extreme learning machine decoupling algorithm [9] 

employing sparrow search for nonlinear decoupling of 

parallel six-dimensional accelerometers, achieving a 

maximum class I error of 0.023%, a class II error of 0.046%, 

and a decoupling time of 1.095 seconds. You et al. developed 

a decoupling algorithm for a six-degree-of-freedom 

accelerometer based on a 12-link preloaded parallel 

mechanism. By integrating the dynamic equations with the 

decoupling algorithm in a four-dimensional configuration 

space, a relative error of 0.62% was achieved, confirming the 

feasibility of the design [10]. Later, the same group of people 

constructed decoupling algorithms across bitmap, phase, and 

hybrid spaces to assess the impact of output errors, initial 

moment alignment errors, and decoupling parameter 

identification errors on the accuracy of sensitive elements in a 
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6-DOF accelerometer based on a 12-6-body Stewart platform, 

achieving a maximum laboratory static decoupling relative 

error of 8.87% and a decoupling time of 4.6 seconds [11][12]. 

Later, this team introduced a synthesis method [13] for 

configuring the Stewart-type six-dimensional acceleration 

sensing mechanism. This method applies the Newton-Euler 

approach to establish forward decoupling equations, analyzes 

the isotropy, and formulates a configuration synthesis 

procedure. The resulting 12-6 Stewart mechanism achieved a 

maximum citation error of 0.169% in virtual experiments, 

confirming its excellent isotropic performance. Zhang et al. 

developed a dynamic decoupling method [14] for parallel 

six-dimensional acceleration-sensing mechanisms. By 

analyzing the scale constraints of hinge points, they 

constructed an output coordination equation for the 12-6 

mechanism and solved the forward decoupling equation for 

two configurations. Experimental results showed the 

method's effectiveness, achieving real-time decoupling with 

maximum citation errors of 4.23% and 6.53%, respectively. 

In summary, existing decoupling methods fall short in 

meeting the accuracy and efficiency requirements necessary 

for practical measurement applications with 6-DOF 

accelerometers. Therefore, there is an urgent need to develop 

high-accuracy, high-speed decoupling algorithms for 6-DOF 

accelerometers. 

In this paper, we address the static decoupling challenges 

of a piezoelectric 6-DOF accelerometer by proposing both a 

linear decoupling model and a nonlinear adaptive decoupling 

model, building on the analysis of the measurement 

principles of the six-output piezoelectric 6-DOF 

accelerometer developed by our team [15][16][17]. 

Experimental results verify the effectiveness of both models. 

We compare and analyze the decoupling accuracy and speed 

of the linear decoupling model, the nonlinear adaptive 

decoupling model, and a neural network model, 

demonstrating that the nonlinear adaptive decoupling model 

enhances decoupling accuracy while achieving real-time 

measurement speeds. These findings offer new insights into 

adaptive decoupling for six-output piezoelectric 6-DOF 

accelerometers. 

 

II. PIEZOELECTRIC 6-DOF ACCELEROMETER’S 

MEASUREMENT PRINCIPLE 

Figure 1 illustrates the structure of the six-output 

piezoelectric 6-DOF accelerometer. This accelerometer uses 

piezoelectric quartz as the sensing element and comprises a 

cover (1), a pre-tensioning bolt (2), an inertial mass block (3), 

piezoelectric wafers (4), a base (5), and a lead electrode (6). 

Figure 2 shows the planar layout of the piezoelectric wafers 

within the sensor. In this layout, wafers No. 2, 4, and 6 are 

aligned tangentially and respond to normal loads, while 

wafers No. 1, 3, and 5 are also tangentially aligned and 

respond to tangential loads. Six sets of piezoelectric wafers 

are evenly distributed around the circumference at a specific 

initial angle. 

The inertial mass block serves as the sensor's load response 

component, enabling the detection of six-dimensional 

acceleration. When subjected to six-dimensional acceleration, 

the inertial mass generates a corresponding six-dimensional 

inertial force/moment on the piezoelectric wafers. The charge 

signals produced are then converted into voltage signals 

through a charge amplifier, allowing the calculation of 

six-dimensional acceleration information from the sensor's 

six output signals. 

 

III. LINEAR DECOUPLING 

A. The decoupling principle  

Let the output charges of the six groups of piezoelectric 

elements be denoted as Q1, Q2, Q3, Q4, Q5, and Q6. The charge 

sensitivities corresponding to these groups under linear 

acceleration Ai applied in the direction of the 6-DOF 

accelerometer i (where i=X, Y, Z) are represented as SAi1, 

SAi2, SAi3, SAi4, SAi5, and SAi6. When angular acceleration αi is 

applied in the same direction, the charge sensitivities of the 

six groups of piezoelectric elements become Sαi1, Sαi2, Sαi3, 

Sαi4, Sαi5, and Sαi6, respectively. The displacement change 

induced by the inertial mass is linear over the sensor's 

measuring range. Consequently, in a composite acceleration 

field, the output charges from the dispatching chips 

corresponding to each dimension can be linearly summed, 

which can be expressed as Equation (1).  

In practical measurements, to derive the acceleration 

signal in six dimensions from the six charge signals output by 

the sensor, Equation (1) must be transformed into Equation 

(2), which can further be expressed as Equation (3).  

Here, S represents the sensor calibration matrix, S-1 

denotes the sensor resolution matrix, and Q is the matrix of 

sensor output charge signals. After calibrating the 6-DOF 

accelerometer, the solution matrix is stored in the solver's 

solution module, allowing for the calculated six-dimensional 

acceleration to be obtained through linear operations. 

B. Linear decoupling experiment 

Figure 3 illustrates the linear decoupling schematic for the 

6-DOF accelerometer. The experimental system comprises a 

shaker, a piezoelectric six-dimensional acceleration 

transducer, a charge amplifier, and a signal processing 

system. 

Currently, there is no specialized calibration equipment or 

method specifically designed for 6-DOF accelerometers. 

Therefore, this experiment employs a method utilizing a 

linear and angular shaking table, equipped with a mounting 

fixture to apply six-dimensional acceleration. Linear 

acceleration is calibrated by comparison with a linear 

vibration table, while angular acceleration is calibrated using 

an angular vibration table, with the set values of the angular 

vibration table serving as the reference. 

Figures 4 (a-c) depict the 6-DOF accelerometer and the 

linear and angular vibration table used in this experiment 

(provided by the 26th Research Institute of China Electronics 

Technology Group). Static calibration measurements for the 

6-DOF accelerometer are conducted using LabVIEW 

software. The steps of the linear decoupling experiment are 

as follows: 

⚫ Loading Point Determination: The loading points are 

divided into 10 equal intervals within the operational range of 

the loading device and the 6-DOF accelerometer. Linear 

acceleration is assessed at 4 points ranging from 1 to 37, 

while angular acceleration is evaluated at 17.64 points, 

spanning from 17.64 to 335.12. 

⚫ Measurement Data Recording: Acceleration is 
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incrementally loaded from minimal to maximal values at the 

designated points. The calibration software records and 

averages 1000 measurements once the vibration stabilizes. 

⚫ Sensor Solution Matrix Calculation: Utilizing the 

calibration data, the calibration matrix and the solution 

matrix for the sensor are determined. 

⚫ Real-Time Measurement Experiment: The solution matrix 

is integrated into a 6-DOF accelerometry software system to 

conduct real-time measurements and assess the algorithm's 

effectiveness. 

Figure 5 presents the input-output characteristic curve of 

the piezoelectric 6-DOF accelerometer. It is evident that 

under the influences of AX, AY and AZ, the input-output 

characteristics of each sensor channel, calibrated using a 

comparative method, exhibit linearity. In contrast, when 

subjected to angular accelerations αX, αY and αZ, the angular 

vibration table is utilized to establish the angular acceleration 

as the calibration standard. The input-output characteristics 

of the sensor demonstrate linearity only when the angular 

acceleration exceeds 125rad/s2. This nonlinearity at lower 

angular acceleration values can be attributed primarily to a 

low signal-to-noise ratio and poor stability, compounded by 

the inherent nonlinearity of the angular shaker, which 

adversely affects the sensor’s output. Consequently, data 

below 125rad/s2 should be excluded from the calibration 

matrix processing. 

Table Ⅰ is the sensitivity of each output from the 

piezoelectric 6-DOF accelerometer, and it can be derived by 

linearly fitting the 36 input-output curves depicted in Figure 5. 

According to Table Ⅰ, the calibration matrix S and the 

resolution matrix S-1 can be calculated using Equations 4 and 

5. Tables Ⅱ and Ⅲ present the results of the linear decoupling 

solutions for both linear and angular acceleration. The 

experimental software environment utilized is MATLAB, 

while the hardware comprises an Intel(R) Core (TM) i5-3470 

CPU with 12GB of installed memory. In this configuration, 

the solution time for the six directional outputs is 0.0000044 s, 

0.0000040 s, 0.0000043 s, 0.0000042 s, 0.0000046 s, and 

0.0000044 s, respectively. The reference error provided in the 

tables is calculated as the absolute error divided by the 

system measurement range, with the measurement ranges for 

the six directions being 0~37g, 0~37g, 0~37g, 

0~335.12rad/s2, 0~335.12rad/s2, 0~335.12rad/s2. 

It is noteworthy that the decoupling error in the linear 

acceleration direction of the piezoelectric 6-DOF 

accelerometer is less than 0.3%, which is consistent with the 

sensor's linearity of better than 0.5%. In the angular 

acceleration direction, however, the decoupling error peaks at 

14.15% in the section below 125rad/s2, which does not align 

with the transducer's tangential and longitudinal load 

response linearity, also better than 0.5%. This suggests that 

the nonlinearity introduced by the angular shaker has resulted 

in a significant increase in calibration error. Although 

excluding data from the section below 125 rad/s2 reduces the 

maximum error to 7.06%, the influence of the angular 

shaker's nonlinearity has not been completely mitigated. 

 

IV. DECOUPLING METHOD BASED ON CAT SWARM BP 

NEURAL NETWORK 

 

A. Cat Swarm BP Neural Network 

In practice, sensors are rarely completely linear. To reduce 

sensor decoupling errors, a decoupling effect test is 

performed using a Cat Swarm BP Neural Network. The BP 

neural network can have multiple input nodes, multiple 

output nodes, and several hidden layers between the input 

and output layers. As shown in Figure 6, the input layer 

consists of l neurons, the hidden layer has m neurons, and the 

output layer has n neurons. Each layer is connected via 

weights, and the network is trained using sample data to 

establish a nonlinear mapping relationship between the inputs 

and outputs. The Cat Swarm Optimization (CSO) algorithm 

is an optimization technique inspired by the behavioral 

patterns of cats. It simulates cats' hunting behavior, which 

includes two modes: seeking mode and tracing mode. The 

seeking mode has four key definitions: Search Memory Pool 

(SMP), Search Range of Dimension (SRD), Counts of 

Dimension to Change (CDC), and Self-Position 

Consideration (SPC). SMP refers to the size of the cat's 

memory pool, where the cat selects suitable positions from 

the memory pool. SRD indicates the search range in a 

particular dimension. CDC represents the number of 

dimensions each cat needs to change. SPC is a Boolean value 

(0 or 1) that determines whether the current position of the cat 

is included in the selection. 

(1) The seeking mode consists of the following steps: 

⚫ Copy the current position of the cat into the memory pool. 

⚫ Adjust and modify each individual in the memory pool 

based on CDC and SRD, generating new individuals. 

⚫ Calculate the fitness of all individuals in the memory pool, 

where fitness evaluates the quality of the results. 

⚫ Select the individual with the best fitness to replace the 

current cat's position, completing the update. 

(2) The tracing mode consists of the following steps: 

⚫ Update velocity: 
𝜈𝑘,𝑑(𝑡) = 𝜈𝑘,𝑑(𝑡 − 1) + 𝑟1 ∙ 𝑐1 ∙ [𝑥𝑏𝑒𝑠𝑡,𝑑(𝑡 − 1) − 𝑥𝑘,𝑑(𝑡 − 1)] 

where 𝜈𝑘,𝑑(𝑡 − 1)  is the velocity before the update, 

𝜈𝑘,𝑑(𝑡) is the updated velocity, 𝑥𝑏𝑒𝑠𝑡,𝑑(𝑡 − 1) is the position 

of the best individual from the previous iteration, 𝑥𝑘,𝑑(𝑡 − 1) 

is the current position, 𝑟1 is a random number between 0 and 

1, and 𝑐1 is a constant defined based on specific conditions. 

⚫ Ensure the updated velocity remains within a given range， 

if it exceeds the range, replace it with the boundary value. 

⚫ Update position: 
𝑥𝑘,𝑑(𝑡) = 𝑥𝑘,𝑑(𝑡 − 1) + 𝑣𝑘,𝑑(𝑡) 

(3) Overall algorithm process: 

⚫ First, initialize and generate the cat swarm. 

⚫ Divide the cat swarm into two modes, seeking mode and 

tracking mode, based on the grouping rate MR. 

⚫ Perform updates in the different modes. 

⚫ Calculate the fitness of each cat and select the best one. 

⚫ Check the termination condition and decide whether to 

continue looping. 

B. Principle of Decoupling Based on Cat Swarm BP 

Neural Network 

In the decoupling calculation, the piezoelectric 

six-dimensional accelerometer has 6 inputs, namely Q1, Q2, 

Q3, Q4, Q5, Q6, which correspond to the input layer neurons of 

the neural network. The outputs are also 6, namely AX, AY, 

AZ, αX, αY, αZ. To reduce computational complexity and 
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interference from mutual coupling, the 6 outputs are trained 

separately, forming 6 independent networks. The BP neural 

network can have several hidden layers, but typically, one 

hidden layer is sufficient in most cases. M represents the 

number of neurons in the hidden layer. Currently, there is no 

definitive theory for selecting M, and it is generally 

determined by the empirical formula M = √m + n + a, where 

m is the number of neurons in the input layer, n is the number 

of neurons in the output layer, and a is a constant between 0 

and 10. The designer then tests and selects the value. In this 

study, M=6 was chosen as the number of neurons in the 

hidden layer. The CSO algorithm was incorporated to modify 

the connection weights of the neural network, with 

parameters set as follows: SMP = 3, CDC = 0.2, SRD = 0.2, 

MR = 0.8. The cat swarm size and the number of training 

iterations were both set to 30, and the fitness function was the 

sum of the absolute errors of the output layer after 

normalization. The training used the neural network toolbox 

in MATLAB, and figure 7 show the training fitness curves 

for the 6 acceleration directions. The horizontal axis 

represents the number of iterations, the vertical axis 

represents the fitness, both are specific numerical values, and 

the curve represents the relationship between the fitness 

obtained and the number of iterations as the iterations 

increase. 

C. Decoupling Experiment Based on Cat Swarm BP 

Neural Network 

As can be seen from the figures, with the increase in the 

number of training iterations, the error decreases 

significantly, demonstrating the effectiveness of the method. 

However, it is also apparent that the training performance in 

the linear acceleration direction seems better than that in the 

angular acceleration direction. This is due to the sensitivity 

difference between linear and angular acceleration. The error 

in linear acceleration also influences the angular acceleration, 

leading to a more significant effect. 

Using the trained network for testing, Table Ⅳ and Ⅴ 

display the decoupling results and errors in the main 

directions under single-dimensional loading. Overall, the 

decoupling error based on the Cat Swarm BP Neural Network 

is lower than the error in linear decoupling, although there are 

still a few points where the decoupling performance is 

suboptimal. The largest reference error is around 1%. 

 

V. NONLINEAR DECOUPLING 

A. Principle based on nonlinear compensation 

The input-output characteristics of the piezoelectric 

6-DOF accelerometer exhibit nonlinearity due to factors such 

as calibration equipment, signal conditioning instruments, 

and the properties of piezoelectric materials. To enhance the 

measurement accuracy of the sensor, nonlinear correction 

and compensation are essential. In this study, a high-order 

polynomial fitting method based on the least squares 

technique is employed to model the input-output relationship 

of the sensor, followed by nonlinear compensation of the 

sensor's output. 

For sensors with a single input and single output, the input 

value can be directly calculated using Equation (6) upon 

measuring the output value. However, for multi-input 

multi-output sensors, the relationship between inputs and 

outputs is not a straightforward one-to-one correspondence 

but rather a many-to-many mapping. Therefore, the fitted 

high-order polynomials cannot be directly used to compute 

input values when output values are known. 

To address this complexity, we propose an iterative 

decoupling method that employs nonlinear compensation in 

conjunction with linear decoupling. Figure 8 illustrates the 

flowchart of the adaptive decoupling algorithm based on 

nonlinear compensation. The steps of this method are as 

follows: 

(1) Based on the calibration experimental data, the sensor's 

sensitivity is linearly fitted using the least squares method, 

resulting in the sensitivity matrix S and the calibration matrix 

S-1. 

(2) Utilizing the calibration data, higher-order polynomial 

fitting yields 36 input-output curves for the piezoelectric 

crystal group under six-dimensional acceleration loading. 

These curve equations are represented in the matrix of 

higher-order equations L (Equation 7), simplified as 

Equation (8). Each input-output curve in L is expressed as an 

eighth-order curve equation as shown in Equation (6). Where 

α8, α7, α6, α5, α4, α3, α2, α1, α0, are the coefficient of the 

polynomial, which do not involve integration and can be 

uniquely obtained by simple linear operations. 

(3) Using the sensor's output value Q and the calibration 

matrix S-1, the acceleration input value A can be computed 

via Equation (3). 

(4) The acceleration input value A derived in step (3) is 

substituted into the respective six curves to obtain the output 

value for each curve at the current acceleration input. This 

output value is then divided by the input to recover the 36 

sensitivities, which replace the previous linear fit. This 

results in a new calibration matrix S, denoted as the adaptive 

sensitivity matrix S1. The solving matrix S1
-1 is also 

computed, referred to as the adaptive solving matrix S1'. The 

replacement update process can be expressed by Equation 

(9).  

Take the acceleration in the X direction as an example: LAX 

represents the high-order fitting curve of the input and output 

of the piezoelectric wafer when the linear acceleration in the 

X direction is loaded in a single dimension; LAX (AX) means 

that the AX that has been calculated by linear decoupling is 

substituted into the higher-order fitting curve LAX to obtain 

the ordinate of AX in LAX. LAX(AX)/AX is the recalculated 

sensitivity in the current initial solution state, and so on to 

obtain 36 new sensitivities. 

(5) Steps (3) and (4) are repeated, replacing the old 

calibration matrix with the new one, until the error falls 

below a predetermined threshold or after a specified number 

of iterations. 

Figure 9 presents a graph depicting the citation error as a 

function of the number of iterations in the directional solving 

process. The citation error is recorded at 0.03% when no 

iterations are performed. After the first iteration, the citation 

error decreases to 0.0014243%, and following the second 

iteration, it further reduces to 0.0010885%. While subsequent 

iterations continue to improve the error, the enhancements 

become less pronounced. To optimize solving efficiency, the 

experiment is limited to two iterations. 

In MATLAB software environment, utilizing an Intel(R) 
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Core (TM) i5-3470 CPU with 12GB of installed memory, the 

adaptive decoupling operation time for nonlinear 

compensation is measured at 0.00047 seconds. This 

demonstrates the high precision and efficiency of the 

adaptive decoupling algorithm utilizing nonlinear 

compensation. 

Tables Ⅵ and Ⅶ present the nonlinear decoupling results 

for the 6-DOF accelerometer in each direction after 2 

iterations. The decoupling error in the linear acceleration 

direction is found to be less than 0.0318%. Furthermore, 

when excluding data from the angular acceleration segment 

below 125 rad/s2, specifically with αx=335.12 rad/s2 and 

αY=335.12 rad/s2 (which are classified as coarse errors 

according to the Grabs criterion after reviewing the raw 

voltage data), the decoupling errors in the angular 

acceleration direction are all below 1%. 

B. Discussion of decoupling effects 

Figure 10 illustrates a comparison of the quoted errors 

among linear decoupling, neural network decoupling, and 

nonlinear compensation decoupling methods under varying 

loading values. All metrics for the three decoupling 

algorithms were obtained in a MATLAB software 

environment, utilizing an Intel(R) Core (TM) i5-3470 CPU 

with 12GB of installed memory. Table Ⅷ presents the 

decoupling parameters for the neural network algorithm, 

while Table Ⅸ compares the solving time, average solving 

error for linear acceleration, average solving error for angular 

acceleration, and the deviation degree of the three decoupling 

algorithms. The deviation degree d is calculated using 

Equation (10), where a smaller deviation indicates a more 

stable overall decoupling method with reduced fluctuations. 

In this formula, Ax', AY', Az', αx', αY', αz' represent the solution 

values for each direction, and Ax, AY, Az, αx, αY, αz denote the 

true values for each direction. 

The error associated with the nonlinear compensation 

decoupling algorithm is significantly lower than that of the 

linear and neural network decoupling algorithms. 

Specifically, the average reference error for linear 

acceleration decreases from 0.1170% and 0.0690% to 

0.0067%, while the average reference error for angular 

acceleration drops from 6.0185% and 2.2899% to 0.8989%. 

In terms of solving time, the linear decoupling algorithm 

requires 0.000004 seconds, the neural network decoupling 

algorithm takes 0.02458 seconds, and the nonlinear 

compensation decoupling algorithm operates at 0.00047 

seconds. Although the solving time for the nonlinear 

compensation algorithm is longer than that of the linear 

decoupling algorithm, it remains significantly shorter than 

that of the neural network decoupling algorithm, thus 

meeting the demands for real-time measurement. 

 

VI. CONCLUSIONS 

This paper investigates the linear and nonlinear decoupling 

methods for the piezoelectric six-dimensional acceleration 

sensor, comparing and analyzing the effects of linear 

decoupling, neural network decoupling, and nonlinear 

adaptive decoupling algorithms. The experiments 

demonstrate that the nonlinear adaptive decoupling method 

can effectively enhance solving accuracy while fulfilling 

real-time measurement requirements within a MATLAB 

software environment and an Intel(R) Core (TM) i5-3470 

CPU with 12GB of installed memory. The key findings of 

this research are as follows: 

(1) The proposed nonlinear compensation adaptive 

decoupling model shows significant improvement over the 

traditional linear decoupling model, with the average solving 

error for linear acceleration reduced from 0.1170% to 

0.0067%, and for angular acceleration from 6.0185% to 

0.8989%. While the decoupling time increases from 

0.000004 seconds to 0.00047 seconds, it remains sufficient 

for real-time measurement needs. 

(2) Compared to the neural network decoupling model, the 

average solution error for linear acceleration decreases from 

0.0690% to 0.0067%, and for angular acceleration from 

2.2899% to 0.8989%. In the same environment, the settling 

time for nonlinear compensation adaptive decoupling is 

0.00047 seconds, significantly shorter than the 0.02458 

seconds required for neural network decoupling. This 

indicates that the nonlinear compensation decoupling method 

is more efficient and accurate, making it more suitable for 

practical applications. 

(3) While high-order polynomial curve fitting is effective, 

it may not always represent the optimal method. Overly 

complex fittings can lead to overfitting, wherein the iterative 

process becomes trapped in local optimal solutions. Future 

research should focus on exploring alternative fitting 

methods or developing new algorithms, while remaining 

cautious of the potential impact on the real-time 

measurement capabilities of the sensor. 

 

Appendix 

The formulas, figures, and tables utilized in this article are 

summarized as follows. The first list includes Figures 1 to 10, 

which are referenced throughout the paper. Notably, Figure 5 

and 7 are positioned after Figure 9 due to its larger size. 
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Fig. 1.  Schematic diagram of piezoelectric six-axis accelerometer. 
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Fig. 2.  Piezoelectric element layout. 
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Fig. 8.  Input-output characteristics curves of piezoelectric six-axis 

accelerometer prototype. 
 

 
Fig. 3.  Schematic diagram of linear decoupling experiment. 

 

 
Fig. 9.  The relation curve between the calculation error and the number of 
iterations in AX direction. 

 

 
Fig. 6. 3-layer BP network. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  (a) Six-axis accelerometer; (b) Line vibrator; (c) Angular vibrato. 
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(a)         (b) 

 

 
(c)                                                                                                                    (d) 

 

 
(e)                                                                                                                       (f) 

Fig. 5.  (a) Input-output characteristics of AX； (b) Input-output characteristics of AY； (c) Input-output characteristics of AZ；(d) Input-output characteristics 

of αX； (e) Input-output characteristics of αY； (f) Input-output characteristics of αZ. 
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         (a)              (b)  

 

  
       (c) (d) 

 

 

  
        (e)       (f)  

 

Fig. 7.  (a) Training diagram of 𝐴𝑋-axis; (b) Training diagram of 𝐴Y-axis; (c) Training diagram of 𝐴Z-axis; (d) Training diagram of 𝛼𝑋-axis; (e) Training 

diagram of 𝛼Y-axis; (f) Training diagram of 𝛼Z-axis. 
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Fig. 10.  (a) Comparison of decoupling effects in the AX-direction; (b) Comparison of decoupling effects in the AY-direction; (c) Comparison of decoupling 

effects in the AZ-direction; (d) Comparison of decoupling effects in the αX-direction; (e) Comparison of decoupling effects in the αY-direction; (f) 
Comparison of decoupling effects in the αZ-direction. 
 

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 958-970

 
______________________________________________________________________________________ 



 

The second list is equation (1) to (10), which are used in 

this article. Because the equation (4) and (5) are too long, 

they are placed after equation (9). 
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The third list is table Ⅰ to Ⅸ, which are used in this article.  

 

TABLE I 

THE OUTPUT SENSITIVITY OF EACH PIEZOELECTRIC CHIP OF THE PIEZOELECTRIC 6-DEGREE-OF-FREEDOM ACCELEROMETER 

Sensitivity Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 

AX (pC/g) 2.2910E-04 2.0726E-04 1.2088E-03 -1.1963E-03 -9.1292E-04 7.6942E-04 

AY (pC/g) -1.9241E-03 1.2318E-03 1.0779E-03 -4.8432E-04 -4.1488E-04 -8.3676E-04 

AZ (pC/g) -2.8144E-05 -6.5640E-04 -7.1163E-05 -7.4483E-04 1.0748E-04 -7.2944E-04 

αX (pC/rad·s-2) 7.6305E-08 -3.2765E-06 -1.9335E-06 9.1219E-07 6.3776E-07 2.4870E-06 

αY (pC/rad·s-2) 2.6660E-07 3.6326E-07 2.3676E-06 -3.5753E-06 -2.0510E-06 1.8013E-06 

αX (pC/rad·s-2) -8.2363E-07 -5.5556E-07 -1.6865E-06 3.6384E-07 -2.4357E-07 1.3308E-07 

 

 
TABLE Ⅱ 

THE LINEAR DECOUPLING SOLUTION FOR LINEAR ACCELERATION RESULTS 

Input value (g) AX AY AZ 

 Solved value (g) Reference error Solved value (g) Reference error Solved value (g) Reference error 

1 1.0164 0.0444% 0.9924 0.0206% 0.9955 0.0122% 

5 5.0543 0.1468% 4.9748 0.0681% 4.9765 0.0635% 

9 9.0857 0.2315% 8.9626 0.1010% 8.9834 0.0449% 

13 13.0989 0.2672% 12.9651 0.0943% 13.0487 0.1317% 

17 17.0860 0.2325% 16.9632 0.0995% 17.0637 0.1723% 

21 21.0810 0.2189% 20.9685 0.0852% 21.0835 0.2257% 

25 25.0662 0.1790% 24.9927 0.0197% 25.0567 0.1533% 

29 29.0636 0.1719% 28.9956 0.0120% 29.0151 0.0409% 

33 33.0322 0.0871% 33.0082 0.0220% 33.0232 0.0627% 

37 37.0011 0.0030% 36.9592 0.1102% 36.9206 0.2145% 

 

 
TABLE Ⅲ 

THE LINEAR DECOUPLING SOLUTION FOR ANGULAR ACCELERATION RESULTS 

Input value (rad/s2) αX αY αZ 

 
Solved value 

(rad/s2) 
Reference error 

Solved value 

(rad/s2) 
Reference error 

Solved value 

(rad/s2) 
Reference error 

17.64 3.7437 4.147% 5.7049 3.561% 4.9055 3.800% 

52.91 10.5375 12.644% 12.7590 11.981% 11.2851 12.421% 

88.19 40.7736 14.149% 42.1413 13.741% 41.5382 13.921% 

123.46 94.0128 8.787% 95.9174 8.219% 91.1027 9.655% 

158.74 143.8893 4.431% 143.2706 4.616% 139.8109 5.648% 

194.02 175.2428 5.603% 177.9403 4.798% 172.4619 6.433% 

229.29 211.5531 5.293% 210.9696 5.467% 207.6498 6.457% 

264.57 245.3812 5.726% 244.9468 5.856% 242.1452 6.692% 

299.84 277.7967 6.578% 278.8106 6.275% 281.5519 5.457% 

335.12 311.4537 7.062% 314.5417 6.141% 313.5342 6.441% 

 
 

TABLE Ⅳ 
THE LINEAR ACCELERATION RESULTS SOLVED THROUGH DECOUPLING BASED ON A CAT SWARM BP NEURAL NETWORK 

Input value (g) AX AY AZ 

 Solved value (g) Reference error Solved value (g) Reference error Solved value (g) Reference error 

1 0.963055 0.100% 0.977164 0.062% 0.996391 0.010% 

5 4.976881 0.062% 4.959129 0.110% 4.998509 0.004% 

9 8.975494 0.066% 9.006661 0.018% 8.994228 0.016% 

13 12.9565 0.118% 13.01338 0.036% 13.01118 0.030% 

17 16.93573 0.174% 16.99279 0.019% 17.01589 0.043% 

21 20.93118 0.186% 21.00299 0.008% 21.02475 0.067% 

25 24.95504 0.122% 24.99719 0.008% 25.02033 0.055% 

29 28.98843 0.031% 29.00497 0.013% 29.03098 0.084% 

33 32.99531 0.013% 33.00142 0.004% 33.03731 0.101% 

37 36.88027 0.324% 36.9981 0.005% 37.03667 0.099% 

 
 

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 958-970

 
______________________________________________________________________________________ 



 

 

TABLE Ⅶ 

THE ANGULAR ACCELERATION RESULTS SOLVED THROUGH ADAPTIVE DECOUPLING BASED ON NONLINEAR COMPENSATION. 

Input value (rad/s2) αX αY αZ 

 
Solved value 

(rad/s2) 
Reference error 

Solved value 
(rad/s2) 

Reference error 
Solved value 

(rad/s2) 
Reference error 

17.64 11.0625 1.963% 4.4046 3.949% 4.2281 4.002% 

52.91 65.1357 3.648% 169.6561 34.837% 78.8232 7.732% 

88.19 43.5962 13.307% 45.8789 12.626% 45.2023 12.828% 

123.46 102.5511 6.931% 104.8864 5.542% 71.9010 15.385% 

158.74 158.4649 0.0821% 158.2184 0.156% 157.2985 0.430% 

194.02 191.3080 0.809% 192.6065 0.422% 191.7406 0.680% 

229.29 231.7132 0.723% 230.6243 0.398% 230.6541 0.407% 

264.57 263.2156 0.404% 263.1548 0.422% 263.2265 0.401% 

299.84 300.2198 0.113% 300.0717 0.069% 299.7254 0.034% 

335.12 328.9536 1.840% 313.5429 6.439% 334.0372 0.3223% 

 

 

TABLE Ⅴ 
THE ANGULAR ACCELERATION RESULTS SOLVED THROUGH DECOUPLING BASED ON A CAT SWARM BP NEURAL NETWORK 

Input value (rad/s2) αX αY αZ 

 
Solved value 

(rad/s2) 
Reference error 

Solved value 

(rad/s2) 
Reference error 

Solved value 

(rad/s2) 
Reference error 

194.02 191.9684 0.612% 193.3083 0.212% 191.0059 0.899% 

229.29 228.1874 0.329% 229.9041 0.183% 226.1936 0.924% 

264.57 263.3018 0.378% 264.4417 0.038% 264.1043 0.139% 

299.84 300.2293 0.116% 299.5057 0.100% 300.0306 0.057% 

335.12 335.5328 0.123% 335.1694 0.015% 338.5377 1.020% 

 

TABLE Ⅵ 

THE LINEAR ACCELERATION RESULTS SOLVED THROUGH ADAPTIVE DECOUPLING BASED ON NONLINEAR COMPENSATION 

Input value (g) AX AY AZ 

 Solved value (g) Reference error Solved value (g) Reference error Solved value (g) Reference error 

1 1.0013 0.0036% 0.9980 0.0055% 0.9965 0.0095% 

5 4.9989 0.0029% 5.0028 0.0075% 5.0037 0.0099% 

9 9.0019 0.0052% 8.9955 0.0123% 8.9950 0.0134% 

13 12.9972 0.0077% 13.0032 0.0086% 13.0118 0.0318% 

17 17.0010 0.0027% 17.0010 0.0027% 16.9964 0.0098% 

21 21.0015 0.0040% 20.9961 0.0105% 21.0023 0.0062% 

25 24.9964 0.0098% 25.0053 0.0142% 25.0012 0.0032% 

29 29.0012 0.0033% 28.9981 0.0050% 29.0022 0.0059% 

33 32.9997 0.0007% 33.0003 0.0007% 33.0006 0.0015% 

37 37.0000 0.0001% 36.9979 0.0003% 36.9993 0.0020% 

 
 

TABLE Ⅷ 

NEURAL NETWORK DECOUPLING ALGORITHM PARAMETERS 

Number of neurons in hidden 

layer 
memory pool domain of variation variable classification rate 

6 3 0.2 0.2 0.8 

 

TABLE Ⅸ 

PERFORMANCE COMPARISON OF THREE TYPES OF DECOUPLING ALGORITHMS 

Decoupling algorithm Linear decoupling Neural network decoupling 
Nonlinear compensation 

decoupling 

Solution time 0.000004s 0.02458s 0.00047s 

Average linear acceleration solution 

error 
0.1170% 0.0690% 0.0067% 

Average angular acceleration solution 
error 

6.0185% 2.2899% 0.8989% 

Degree of deviation 1.52683 0.67994 0.15672 
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