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Abstract—LSML is a novel method for learning label-specific
features in multi-label classification with missing labels. Due to
its outstanding performance, LSML has garnered widespread
attention. However, it has certain limitations: A) LSML assumes
that correlated labels share similar label-specific features, which
may not hold true in uncertain cases. B) LSML overlooks local
label correlations that can impact classification performance.
To address these issues, we propose an improved version
of LSML, called LSMLLC, which incorporates both global
and local label correlations. First, we introduce a label-level
regularizer to capture global label correlations directly from
the label output, rather than relying on the coefficient matrix.
Second, we account for local label correlations using a k-
nearest neighbor mechanism. Finally, we employ the accelerated
proximal gradient algorithm to efficiently solve the classifica-
tion model. Extensive experimental results demonstrate that
LSMLLC outperforms existing methods in multi-label learning
tasks.

Index Terms—multi-label classification, missing labels, label-
specific features, label correlation learning

I. INTRODUCTION

TO address the issue that an instance may have multi-
ple labels in the real world, multi-label learning has

emerged. Multi-label learning algorithms can be categorized
into two primary groups: problem transformation (PT) meth-
ods and algorithm adaptation (AA) methods. PT methods
transform the multi-label classification problem into multiple
single-label classification tasks. Its representative algorithms
are Binary Relevance (BR) [1], calibrated label ranking [2],
random-k-labelsets [3], and classifier chains [4]. AA methods
directly apply the existing classification algorithm to multi-
label datasets. Its representative algorithms are Multi-label
Decision Tree [5], Rank-SVM [6], ML-KNN [7], and CML
[8].

The traditional algorithms typically assume that all labels
share the same features [9]. However, in multi-label clas-
sification tasks, each label has its corresponding features.
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The label-specific feature learning algorithm extracts distinct
features for each label, enhancing classification performance.
Its representative algorithms are LIFT [10], LLSF [11],
LLSF-DL [11], LSML [12], and CLML [13].

The labels are also correlated with each other [14]. Ac-
cording to the label correlation, multi-label learning algo-
rithms can be divided into three main categories. First-
order strategy ignores the correlations between the labels. Its
representative algorithms are ML-KNN [7], LIFT [10], ML-
localkNN [15], and MLSAkNN [16]. Second-order strategy
considers pairwise correlations between labels. Its represen-
tative algorithms are Rank-SVM [6], LLSF [11], LSML [12],
CLML [13] and RFSFS [17]. High-order strategy considers
the correlations between a label and all other labels. Its
representative algorithms are LLSF-DL [11], GLOCAL [18],
KLLI [19], LFFS [20], and GLFS [21].

LSML is an efficient multi-label classification algorithm
with missing labels, which utilizes the label correlation
coefficient matrix to recover the missing labels, and learns the
label-specific features in the new supplementary label matrix.
Due to the excellent performance of LSML, it has been
gained widespread attention. However, LSML has certain
limitations. A) LSML [12] bases on a assumption: if labels
are associated, they have similar label-specific features. How-
ever, this assumption is not always right in uncertain cases
[13]. B) LSML ignores local label correlations that affect
the classification performance. To address above issues, we
propose an improved LSML based on the global and local
label correlations (LSMLLC). First, we introduce a novel
assumption: if labels exhibit strong correlations, the label
outputs should be similar, rather than their coefficient ma-
trices. Further, we utilize a label-level regularizer to capture
the global label correlation on the label outputs instead of
the coefficient matrix. Second, we also consider the local
label correlation through the k-nearest neighbor mechanism.
Finally, the accelerated proximal gradient algorithm is em-
ployed to solve the classification model efficiently. Exten-
sive experimental results show that our proposed LSMLCL
achieves better performance in multi-label learning tasks.

This paper is organized as follows. Section 2 presents an
overview of relevant works on multi-label learning. Section 3
introduces our LSMLLC method, including the classification
model, decision function, optimization, proofs and analysis
of complexity. Section 4 analyzes the experimental result and
investigates parameter sensitivity. Finally, we conclude the
paper in Section 5.

II. RELATED WORKS

A. Multi-Label Learning with Label-Specific Features learn-
ing

Zhang et al. proposed LIFT [10] algorithm, which learned
the label-specific features through conducting clustering anal-
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ysis, and using these new features to build the model.
Subsequently, Huang et al. proposed LLSF [11] algorithm,
which introduced a novel strategy for learning label-specific
features. LLSF made the assumption that each label was
associated with only a subset of features. Based on this
assumption, LLSF effectively identified the discriminative
features for each label using the l1-norm of the coefficient
matrix. LLSF-DL [11] extended LLSF by using a sparse
stacking approach. LLSF-DL treated the label matrix pre-
dicted by LLSF as additional features to be added to the
training set for training. However, LLSF ignored instance
correlation learning and common feature learning. To address
above issues, Li et al. proposed CLML [13] algorithm, which
effectively learned both label-specific and common features
by leveraging the relationships between labels and instances.
This approach took into account the associated information
to capture the underlying correlations, allowing for a more
comprehensive representation of the data.

B. Multi-Label Learning with Missing labels

He et al. proposed MLMF [22] algorithm, which explored
label correlations. The algorithm constructed a conditional
dependence network, where input features and other label
variables served as parent nodes for each label. Simultane-
ously, MLMF introduced the l1-norm regularizer to select
the sparse feature structure. However, MLMF neglected the
importance of matrix completion. Reshma Rastogi and Sayed
Mortaza proposed MLLCRS-ML [23] algorithm that utilized
the structural property of the datasets along with pairwise
label correlations (both positive and negative) to recover
missing labels. Further, Sanjay Kumar and Reshma Rastogi
proposed a new algorithm to recover the missing labels,
called LRMML [24], which introduced the auxiliary label
matrix to recover missing label information. LRMML lever-
aged the auxiliary label matrix and the low-rank constraint
to capture label correlations. Additionally, LRMML enforced
maximum separation between different label subspaces in
order to distinguish labels, enhancing classification perfor-
mance.

C. Multi-Label Learning with Label Correlations Learning

Cheng et al. proposed LSLC-ML [25] algorithm, which
detected both positive and negative relationships among
labels in datasets with incomplete label information. The al-
gorithm retrieved the missing labels and used these obtained
label-specific features. However, LSLC-ML neglected the in-
stance correlations that affect the classification performance.
To address this issue, Feng et al. proposed RMFL [26]
algorithm, which represented a multi-label learning approach
aimed at resolving the problem of missing labels through
the use of regularized matrix factorization. The algorithm
encapsulated the latent information pertaining to instances
and labels, optimizing the model by integrating both instance
space data and label correlations. Sun et al. proposed the
GLC [27] algorithm that introduced a new matrix aimed at
leveraging the global structural information of labels derived
from different subspaces and captured local correlations
among labels.

D. LSML

Let X = [x1, x2, . . . , xn]
⊤ ∈ Rn×d represent the

training data with n samples and d dimensions. Let Y =
[y1, y2, . . . , yn]

⊤ ∈ {−1, 0, 1}d×l be the corresponding
class labels of the training data, where yij = 1 denotes the
i-th example has the j-th label and yij = −1 denotes the i-th
example does not have the j-th label and yij = 0 denotes
the label of the i-th sample is unobserved.

LSML utilized the label correlation coefficient matrix
to recover missing labels. It then extracted label-specific
features for each label based on the newly completed label
matrix. The final objective function can be reformulated into
an equation.

min
W,C

(
1

2
∥XW − Y C∥2F +

λ1
2
∥Y C − Y ∥2F

)
+
(
λ2∥C∥1 + λ3∥W∥1 + λ4 tr

(
WLWT

))
, (1)

where λ1, λ2, λ3 and λ4 are penalty parameters.

III. LSMLLC

A. Multi-label learning with missing labels and label-
specific features

In this paper, we utilize the l1-norm regularizer to obtain
the label-specific features. The original problem is defined

min
W

1

2
∥XW − Y ∥2F + λ1∥W∥1, (2)

where W =
[
w1, w2, . . . , wd

]
∈ Rd×1 represents the

coefficient matrix of the regression model, λ1 is the trade-off
parameter that adjust the sparse regularization term.

The traditional algorithms typically assume that all labels
for the training samples are available. However, in real-world
applications, only a subset of the labels can be observed.
[28]–[30]. To address the issue, we assume that missing
labels can be reconstructed by using their correlations with
other labels. Thus, the incomplete label matrix is augmented
into a new label matrix through using the label correlation
coefficient matrix. We defined

min
W,C

1

2
∥XW−Y C∥2F +

α

2
∥Y C−Y ∥2F +λ1∥W∥1+λ2∥C∥1, (3)

where C ∈ Rl×l represents the label correlations coefficient
matrix. We obtain the new label matrix through the label
correlation coefficient matrix. The model enables the redef-
inition of each label by considering high-order correlations
among labels. Besides, in practical applications, a class label
is only related to a subset of labels. Thus, the label correla-
tions coefficient matrix C is constrained by l1-norm that can
select the most important label correlation information.

B. Multi-label learning with global and local label correla-
tions

In real applications, it is assumed that labels with correla-
tion exhibit similar label-specific features. This assumption
may not always be accurate. To address this issue, we
propose another new assumption that two labels exhibit
a strong correlation, their corresponding outputs may be
similar. We utilize the new output matrix XW instead of
the coefficient matrix W . Finally, we introduce a graph
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Laplacian regularization term to enhance model stability. The
objective function is then defined

l∑
i,j=1

Gij ∥(XW )i − (XW )j∥ = tr
(
(XW )(G∆ −G)(XW )T

)
= tr

(
(XW )L1(XW )T

)
,

(4)

where Gij ∈ G is the label correlation between label yi
and yj , which is determined by the cosine similarity. L1 =
G∆ − G is the l × l label Laplacian matrix of G. G∆ is
the diagonal matrix and G∆

ii =
∑l

j=1Gij . The objective
function is then defined

min
W,C

(
1

2
∥XW − Y C∥2F +

α

2
∥Y C − Y ∥2F

+
β

2
tr((XW )L1(XW )T ) + λ1∥W∥1 + λ2∥C∥1

)
(5)

In our approach, we thoroughly analyze both global and
local correlations among labels. However, the evaluating
ability of the cosine similarity is limited to noise and
redundant features. Thus, we utilize the k-nearest neighbors
(KNN) method to evaluate an instance similarity matrix H .
For instance, the similarity of the i-th and j-th instances is
defined

Hij =

{
1, if xi ∈ KNN(xj) or xj ∈ KNN(xi)
0, otherwise (6)

If two instances exhibit a strong correlation, their predicted
labels are likely to be similar. To achieve this, we employ a
graph Laplacian regularization term, defined as follows:

n∑
i,j=1

Hij ∥(xiW )− (xjW )∥ = tr
(
(XW )TL2(XW )

)
,

(7)
where L2 is the n× n laplacian matrix of H .

The final objective function can be reformulated into an
equation.

min
W,C

(
1

2
∥XW − Y C∥2F +

α

2
∥Y C − Y ∥2F

+
β

2
tr((XW )L1(XW )T ) +

γ

2
tr((XW )TL2(XW ))

+ λ1∥W∥1 + λ2∥C∥1

)
,

(8)

where α, β, γ, λ1 and λ2 are penalty parameters.

C. Optimization

Due to the non-smooth nature of the l1-norm regularization
term, the optimization problem (7) is convex in nature, but
it is non-smooth overall. Therefore, this paper employs the
accelerated proximal gradient descent algorithm to address
problem (7). The model has two solution variables; we
denote ϕ as W and C. Simplifying the objective framework
to:

min
ϕ
{Γ(ϕ) = ℏ(ϕ) + ψ(ϕ)}, (9)

where

ℏ(ϕ) =
1

2
∥XW − Y C∥2F +

α

2
∥Y C − Y ∥2F

+
β

2
tr
(
(XW )L1(XW )T

)
+
γ

2
tr
(
(XW )TL2(XW )

)
(10)

ψ(ϕ) = λ1∥W∥1 + λ2∥C∥1 (11)

Both ℏ(ϕ) and ψ(ϕ) are convex, but ψ(ϕ) is non-smooth.
For any L > 0, we define the second-order approximation
of the former:

QL

(
ϕ, ϕ(k)

)
= ℏ

(
ϕ(k)

)
+

〈
∇ℏ

(
ϕ(k)

)
, ϕ− ϕ(k)

〉
+
L

2

∥∥∥ϕ− ϕ(k)
∥∥∥2

F
+ ψ(ϕ)

(12)

For any L ≥ Lf , it can be stated that QL(ϕ, ϕ
k) ≥ Γ(ϕ),

where Lf is the Lipschitz constant. We do not directly min-
imize Γ(ϕ), the proximal gradient algorithm approximates
the objective function Lf by minimizing many separable
quadratic approximations. By defining the update F (k) =
ϕ(k) − 1

L∇ℏ
(
ϕ(k)

)
, the solution for ϕ can be obtained

through the function QL

(
ϕ, ϕ(k)

)
.

ϕ∗ = argmin
ϕ
QL

(
ϕ, ϕ(k)

)
= argmin

ϕ

(
g(ϕ) +

L

2

∥∥∥ϕ− F (k)
∥∥∥2
F

)
,

(13)

where F (k) = ϕ(k) − 1
L∇ℏ

(
ϕ(k)

)
, by setting tk in a se-

quence, the convergence of the model can be accelerated, and
the update of ϕ is given by ϕ(k) = ϕk+

tk−1−1
tk

(ϕk − ϕk−1),
where t2k+1 − tk+1 ≤ t2k and ϕk is the k-th iteration.

1) Updating W : First, C is fixed to update W , and the
partial derivative ∂

∂W is computed.

∇Wℏ(ϕ) = XTXW −XTY C + βXTXWL1

+ γXTL2XW
(14)

The update process for W can be obtained through equa-
tion (13).

W (k) =Wk +
tk−1 − 1

tk
(Wk −Wk−1)

W (k+1) = proxε

(
W k − 1

L
∇f

(
W (k), C

))
,

(15)

where τ represents the step size, regarding ψ(ϕ), the l1-norm
of W can be derived from the element-wise soft-thresholding
operator:

proxε (Wij) = (|Wij | − τ)+ sign (Wij) , (16)

where (·)+ = max(·, 0).
2) Updating C: First, W is fixed to update C, and the

partial derivative C is computed.

∇Sf(ϕ) = (1 + α)Y TY C − Y TXW − αY TY (17)

Similarly, we can obtain the update process for C:

C(k) = Ck +
tk−1 − 1

tk
(Ck − Ck−1)

C(k+1) = proxε

(
C(k) − 1

L
∇f

(
W,C(k)

))
,

(18)
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where ε represents the step size, regarding ψ(ϕ), the rep-
resentation of the l1-norm of C can be derived from the
definition of the element-wise soft-thresholding operator.

proxε (Sij) = (|Sij | − ε)+ sign (Sij) , (19)

where (·)+ = max(·, 0).

D. Proof of Lipschitz Continuity

Lipschitz is essential in accelerated proximal gradient
algorithms. We give ϕ1 = (W1, C1) and ϕ2 = (W2, C2).
Based on equations (14) and (17), we can obtain the follow-
ing expressions.

∥∇f (ϕ1)−∇f (ϕ2)∥2F

=
∥∥XTX∆W + βXTX∆WL1 + γXTL2X∆W

+ (1 + α)Y TY∆C
∥∥2
F

=
∥∥XTX∆W + βXTX∆CL1 + γXTL2X∆W

∥∥2
F

+
∥∥(1 + α)Y TY∆C

∥∥2
F

≤ 3
(∥∥XTX

∥∥2
2
+
∥∥βXTX

∥∥2
2
· ∥L1∥22 +

∥∥γXTL2X
∥∥2
2

)
∥∆W∥2F + 2

(∥∥Y TY
∥∥2
2
+
∥∥αY TY

∥∥2
2

)
∥∆C∥2F

≤
(
3
(∥∥XTX

∥∥2
2
+
∥∥βXTX

∥∥2
2
· ∥L1∥22 +

∥∥γXTL2X
∥∥2
2

)
+ 2

(∥∥Y TY
∥∥2
2
+
∥∥αY TY

∥∥2
2

))
∥∆W∥2F , (20)

where ∆W =W1 −W2, ∆C = C1 − C2.
Therefore, the objective function for the lipschitz constant

is expressed as

Lf =

√√√√√√√
3

(∥∥∥XTX
∥∥∥2

2
+

∥∥∥βXTX
∥∥∥2

2
· ∥L1∥22 +

∥∥∥γXTL2X
∥∥∥2

2

)
+ 2

(∥∥∥Y TY
∥∥∥2

2
+

∥∥∥αY TY
∥∥∥2

2

)
(21)

Algorithm LSMLLC.
Input: Train data matrix X ∈ Rn×d, train label matrix

Y ∈ Rn×l, and weighting parameters α, β, γ, λ1, and λ2.
Output: Coefficient matrix W ∈ Rd×l.
1) Initialization: W0,W1 ← rand(d, l); C0, C1 ←

rand(l, l); ϕ(1) = {W1, C1}; t0, t1 ← 1; k ← 1;
2) Calculate label correlation matrix S by calculating

cosine similarity on Y ; Calculate H by using k-nearest
neighbors; Calculate the Lipschitz constant Lf ;

3) repeat:
1. W (k) ←Wk + tk−1−1

tk
(Wk −Wk−1);

2. F (k)
W ←W (k) − 1

L∇W f(W (k), Ck);
3. Wk+1 ← proxE

λ1

L (F
(k)
W ) (by according (14)).

4. W (k+1) ←W (k);
5. C(k) ← Ck + tk−1−1

tk
(Ck − Ck−1);

6. F (k)
C ← C(k) − 1

L∇Cf(Wk, C
(k));

7. Ck+1 ← proxε
λ2

L (F
(k)
C ) (by according (17)).

8. C(k+1) ← C(k);

TABLE I
AN OVERVIEW OF THE FRIEDMAN STATISTIC FF (K = 7, N = 5)

ALONG WITH ITS CRITICAL VALUE BASED ON SIX ASSESSMENT
METRICS.

Evaluation Metric FF Critical Value(0.05)

One Error 12.642857

2.363751
Ranking Loss 9.596939

Average Precision 18.750000
Hamming Loss 20.923469

AUC 11.693878

9. tk+1 ←
1+
√

4t2k+1

2 ;
10. k ← k + 1;

4) until converge;
5) Return W ;

E. Analysis of complexity

The time complexity of the LSMLLC algorithm can be
divided into two main parts: preprocessing and iterative
optimization. The primary operations include computing
distances between labels and instances, leading to a time
complexity of O(n2 · d). Iterative optimization involves
updating matrices Wx and Cy in each iteration, with the
number of iterations bounded by ’maxIter’. Each iteration
involves matrix multiplications and updates, resulting in a
time complexity of

O
(
max Iter ×

(
nd2 + ndl + n2d+ nl2 + nld

))
.

Overall, the total time complexity is

O
(
n2d+max Iter ×

(
nd2 + ndl + n2d+ nl2 + nld

))
.

IV. EXPERIMENTS AND EVALUATION

We conduct a comparative evaluation of our algorithm
against six existing algorithms for label-specific feature
learning and label correlation learning across seven dis-
tinct datasets. The performance and parameter sensitivity
are analyzed using five evaluation metrics. The experiments
are conducted on an Intel(R) Xeon(R) CPU E5-2678 v3
processor running at 2. 50GHz, with 32 GB of memory.
These algorithms have been developed and run in MATLAB
R2021a [31].

A. Datasets

We conduct experiments on seven multi-label benchmark
datasets to evaluate the performance of LSMLLC. The
summary of experimental dataset characteristics is shown in
Table II.

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 898-912

 
______________________________________________________________________________________ 



TABLE II
THE CHARACTERISTICS OF THE EXPERIMENTAL DATASETS.

Dataset Domain #Complete-Sample #Missing-Sample #Sample #Feature #Label

genbase biology 451 194 645 1186 27
emotions music 415 178 593 72 6
yeast biology 1691 725 2416 103 14
arts text (web) 3500 1500 5000 462 26
science text (web) 3500 1500 5000 743 40
bibtex text 5176 2219 7395 1836 159
delicious text (web) 11273 4832 16105 500 983

TABLE III
AVERAGE_PRECISION OF SIX DIFFERENT ALGORITHMS ON SEVEN DATASETS.

Algorithm Average_precision↑
genbase emotions yeast art science bibtex delicious

LIFT 0.9696± 0.0015 0.6414± 0.0108 0.7408± 0.0016 0.5748± 0.0045 0.5111± 0.0042 0.4236± 0.0014 0.2896± 0.0006
LLSF 0.9373± 0.0144 0.6245± 0.0027 0.6874± 0.0057 0.6057± 0.0036 0.5258± 0.0041 0.4508± 0.0063 0.2783± 0.0004
LLSF-DL 0.9654± 0.0031 0.6133± 0.0102 0.7191± 0.0080 0.4549± 0.0044 0.5245± 0.0073 0.4412± 0.0033 0.3464± 0.0008
LSML 0.9828± 0.0025 0.6122± 0.0108 0.7399± 0.0010 0.5856± 0.0032 0.5525± 0.0063 0.5019± 0.0014 0.3513± 0.0006
CLML 0.9654± 0.0022 0.6086± 0.0063 0.6676± 0.0043 0.5917± 0.0071 0.5230± 0.0222 0.4322± 0.0059 0.2560± 0.0004
LRLSF 0.9888± 0.0052 0.5806± 0.0297 0.7119± 0.0016 0.5888± 0.0058 0.5874± 0.0031 0.4246± 0.0019 0.3000± 0.0006
LSMLLC 0.9898± 0.0015 0.7002± 0.0069 0.7430± 0.0016 0.6108± 0.0045 0.5702± 0.0042 0.5031± 0.0014 0.3520± 0.0006

TABLE IV
ONE_ERROR OF SIX DIFFERENT ALGORITHMS ON SEVEN DATASETS.

Algorithm One_error↓
genbase emotions yeast art science bibtex delicious

LIFT 0.0000± 0.0000 0.4568± 0.0170 0.2458± 0.0056 0.5265± 0.0092 0.6133± 0.0036 0.5053± 0.0051 0.3885± 0.0025
LLSF 0.0000± 0.0000 0.5136± 0.0060 0.3058± 0.0135 0.4810± 0.0080 0.5849± 0.0127 0.5032± 0.0084 0.4737± 0.0062
LLSF-DL 0.0000± 0.0000 0.5284± 0.0164 0.2339± 0.0038 0.7093± 0.0126 0.5983± 0.0131 0.5254± 0.0043 0.3670± 0.0047
LSML 0.0050± 0.0055 0.5056± 0.0170 0.2634± 0.0029 0.4732± 0.0030 0.5133± 0.0073 0.4344± 0.0010 0.3421± 0.0021
CLML 0.0000± 0.0000 0.5062± 0.0000 0.3619± 0.0133 0.5053± 0.0106 0.6036± 0.0256 0.5414± 0.0118 0.5057± 0.0049
LRLSF 0.0000± 0.0000 0.5062± 0.0269 0.2203± 0.0000 0.4922± 0.0048 0.4951± 0.0084 0.5393± 0.0064 0.4083± 0.0042
LSMLLC 0.0000± 0.0000 0.4136± 0.0157 0.2403± 0.0056 0.4677± 0.0092 0.5247± 0.0036 0.4132± 0.0051 0.3387± 0.0025

TABLE V
RANKING_LOSS OF SIX DIFFERENT ALGORITHMS ON SEVEN DATASETS.

Algorithm Ranking_loss↓
genbase emotions yeast art science bibtex delicious

LIFT 0.0333± 0.0006 0.3850± 0.0146 0.1835± 0.0015 0.1432± 0.0027 0.1427± 0.0027 0.1367± 0.0015 0.1471± 0.0005
LLSF 0.0132± 0.0041 0.4003± 0.0045 0.2649± 0.0063 0.1333± 0.0029 0.1254± 0.0053 0.1404± 0.0041 0.1777± 0.0014
LLSF-DL 0.0355± 0.0035 0.4229± 0.0111 0.1805± 0.0015 0.1735± 0.0006 0.1133± 0.0040 0.1023± 0.0022 0.1229± 0.0005
LSML 0.0067± 0.0019 0.3927± 0.0146 0.1875± 0.0011 0.1893± 0.0028 0.1682± 0.0018 0.1138± 0.0016 0.1530± 0.0015
CLML 0.0357± 0.0032 0.4218± 0.0196 0.2708± 0.0024 0.1308± 0.0027 0.1286± 0.0041 0.1539± 0.0035 0.1311± 0.0002
LRLSF 0.0351± 0.0035 0.4560± 0.0132 0.2440± 0.0027 0.1702± 0.0042 0.1443± 0.0017 0.1219± 0.0067 0.3824± 0.0016
LSMLLC 0.0020± 0.0006 0.2798± 0.0103 0.1805± 0.0015 0.1531± 0.0027 0.1320± 0.0027 0.1125± 0.0015 0.1520± 0.0005

TABLE VI
HAMMING_LOSS OF SIX DIFFERENT ALGORITHMS ON SEVEN DATASETS.

Algorithm Hamming_loss↓
genbase emotions yeast art science bibtex delicious

LIFT 0.0086± 0.0030 0.3146± 0.0076 0.2701± 0.0015 0.0604± 0.0002 0.0384± 0.0005 0.0140± 0.0000 0.0185± 0.0000
LLSF 0.0361± 0.0030 0.3572± 0.0223 0.2423± 0.0028 0.0564± 0.0004 0.0345± 0.0002 0.0149± 0.0002 0.0255± 0.0001
LLSF-DL 0.0046± 0.0003 0.3844± 0.0137 0.3041± 0.0002 0.0618± 0.0000 0.0340± 0.0006 0.0148± 0.0000 0.0186± 0.0000
LSML 0.0057± 0.0035 0.3148± 0.0076 0.2666± 0.0011 0.0543± 0.0001 0.0309± 0.0005 0.0135± 0.0000 0.0185± 0.0001
CLML 0.0468± 0.0015 0.3317± 0.0008 0.3001± 0.0011 0.0619± 0.0000 0.0349± 0.0008 0.0213± 0.0002 0.0541± 0.0002
LRLSF 0.0295± 0.0058 0.3074± 0.0112 0.2740± 0.0042 0.0566± 0.0001 0.0340± 0.0039 0.0369± 0.0008 0.0368± 0.0002
LSMLLC 0.0040± 0.0030 0.3239± 0.0109 0.2701± 0.0015 0.0550± 0.0005 0.0308± 0.0005 0.0135± 0.0000 0.0184± 0.0000
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TABLE VII
AUC OF SIX DIFFERENT ALGORITHMS ON SEVEN DATASETS.

Algorithm AUC↑
genbase emotions yeast art science bibtex delicious

LIFT 0.9459± 0.0011 0.6029± 0.0157 0.8031± 0.0014 0.8205± 0.0029 0.8345± 0.0017 0.8637± 0.0013 0.8583± 0.0007
LLSF 0.9430± 0.0063 0.5802± 0.0040 0.7241± 0.0059 0.8208± 0.0025 0.8502± 0.0051 0.8515± 0.0064 0.8199± 0.0017
LLSF-DL 0.9433± 0.0040 0.5626± 0.0078 0.7871± 0.0065 0.7959± 0.0009 0.8567± 0.0034 0.8934± 0.0008 0.8772± 0.0007
LSML 0.9826± 0.0029 0.5694± 0.0157 0.7997± 0.0010 0.7648± 0.0020 0.8030± 0.0023 0.8798± 0.0013 0.8453± 0.0009
CLML 0.9432± 0.0037 0.5579± 0.0160 0.7157± 0.0023 0.8381± 0.0026 0.8373± 0.0124 0.8314± 0.0043 0.8717± 0.0002
LRLSF 0.9453± 0.0025 0.5339± 0.0097 0.7497± 0.0024 0.7912± 0.0036 0.8268± 0.0017 0.8801± 0.0022 0.7674± 0.0008
LSMLLC 0.9899± 0.0011 0.6902± 0.0088 0.8053± 0.0014 0.8115± 0.0029 0.8403± 0.0017 0.8813± 0.0013 0.8461± 0.0007

TABLE VIII
AVERAGE_PRECISION RANK OF SIX COMPARED ALGORITHMS ACROSS SEVEN DATASETS.

Algorithm Average_precision
genbase emotions yeast art science bibtex delicious Average

LIFT 4 2 3 6 7 7 5 4.85714
LLSF 7 3 6 2 4 3 6 4.42857
LLSF-DL 6 4 4 7 5 4 3 4.71428
LSML 3 5 2 5 3 2 2 3.14285
CLML 5 6 7 3 6 5 7 5.57142
LRLSF 2 7 5 4 1 6 4 4.14285
LSMLLC 1 1 1 1 2 1 1 1.14285

TABLE IX
ONE_ERROR RANK OF SIX COMPARED ALGORITHMS ACROSS SEVEN DATASETS.

Algorithm One_error
genbase emotions yeast art science bibtex delicious Average

LIFT 1 2 4 6 7 4 4 4.00000
LLSF 1 6 6 3 4 3 6 4.14285
LLSF-DL 1 7 2 7 5 5 3 4.28571
LSML 7 3 5 2 2 1 2 3.14285
CLML 1 4 7 5 6 7 7 5.28571
LRLSF 1 5 1 4 1 6 5 3.28571
LSMLLC 1 1 3 1 3 2 1 1.71428

TABLE X
RANKING_LOSS RANK OF SIX COMPARED ALGORITHMS ACROSS SEVEN DATASETS.

Algorithm Ranking_loss
genbase emotions yeast art science bibtex delicious Average

LIFT 4 2 3 3 5 5 3 3.57142
LLSF 3 4 6 2 2 6 6 4.14285
LLSF-DL 6 6 1 6 1 1 1 3.14285
LSML 2 3 4 7 7 3 5 4.42857
CLML 7 5 7 1 3 7 2 4.57142
LRLSF 5 7 5 5 6 4 7 5.57142
LSMLLC 1 1 2 4 4 2 4 2.57142

TABLE XI
HAMMING_LOSS RANK OF SIX COMPARED ALGORITHMS ACROSS SEVEN DATASETS.

Algorithm Hamming_loss
genbase emotions yeast art science bibtex delicious Average

LIFT 4 2 3 5 7 5 2 4.00000
LLSF 6 6 1 3 5 6 5 4.57142
LLSF-DL 2 7 7 6 3 1 4 4.28571
LSML 3 3 2 2 2 3 2 2.42857
CLML 7 5 5 7 3 7 6 5.71428
LRLSF 5 1 6 4 6 4 7 4.71428
LSMLLC 1 4 3 1 1 1 1 1.71428

TABLE XII
AUC RANK OF SIX COMPARED ALGORITHMS ACROSS SEVEN DATASETS.

Algorithm AUC
genbase emotions yeast art science bibtex delicious Average

LIFT 3 2 2 3 5 5 3 3.28571
LLSF 7 3 6 2 2 6 6 4.57142
LLSF-DL 5 5 4 5 1 1 1 3.14285
LSML 2 4 3 7 7 4 5 4.57142
CLML 6 6 7 1 4 7 2 4.71428
LRLSF 4 7 5 6 6 3 7 5.42857
LSMLLC 1 1 1 4 3 2 4 2.28571

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 898-912

 
______________________________________________________________________________________ 



(a) Average precision (b) One error

(c) Ranking loss (d) Hamming loss

(e) AUC

Fig.1. The experimental results of LSMLCL as α increasing across five datasets.
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(a) Average precision (b) One error

(c) Ranking loss (d) Hamming loss

(e) AUC

Fig.2. The experimental results of LSMLCL as β increasing across five datasets.
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(a) Average precision (b) One error

(c) Ranking loss (d) Hamming loss

(e) AUC

Fig.3. The experimental results of LSMLCL as γ increasing across five datasets.
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(a) Average precision (b) One error

(c) Ranking loss (d) Hamming loss

(e) AUC

Fig.4. The experimental results of LSMLCL as λ1 incresing across five datasets.

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 898-912

 
______________________________________________________________________________________ 



(a) Average precision (b) One error

(c) Ranking loss (d) Hamming loss

(e) AUC

Fig.5. The experimental results of LSMLCL as λ2 incresing across five datasets.
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(a) Average precision (b) One error

(c) Ranking loss (d) Hamming loss

(e) AUC

Fig.6. The experimental results of the missing ratio of LSMLCL across four datasets.
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(a) Average precision (b) One error

(c) Ranking loss (d) Hamming loss

(e) AUC

Fig.7. The experimental results of LSMLCL as α increasing across five datasets.
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B. Comparative algorithms

We conduct a comparative analysis of LSMLLC against
six state-of-the-art algorithms. Meanwhile, we select five
evaluation metrics: Average_precision, One_error, Rank-
ing_loss, Hamming_loss and AUC [32], [33]. The descrip-
tions and parameter configurations for these algorithms are
detailed as follows:

LIFT [10] extracts label-specific features through class
clusters and subsequently employs LIBSVM [34] for clas-
sification. It includes one parameter λ1, which is configured
to 0.1 in the experimental arrangement.

LLSF [11] utilizes label-specific features and label correla-
tions learning, which is the pioneering method for leveraging
label-specific features. The parameter values λ1 and λ2 range
from 2−5 to 25 with a step of 1, where threshold τ = 0.5.

LLSF-DL [11] learns class-dependent labels in a sparse
superposition and combines higher-order label correlations.
The parameter values λ1, λ2, and λ3 range from 2−5 to 25

with a step of 1, where the threshold τ = 0.5.
LSML [12] is a multi-label classification algorithm de-

signed to tackle the problem of missing labels. It learned
label-specific features for each label in the new complete
label matrix. The parameter values λ1, λ2, λ3, and λ4 range
from 2−5 to 25 with a step of 1, where the threshold τ = 0.

CLML [13] both uses label-specific features and common
features for multi-label classification and investigated label
correlations directly through the labels themselves rather
than relying on coefficient matrices. The parameter values
λ1, λ2, λ3, and λ4 range from 2−5 to 25 with a step of 1,
where the threshold τ = 0.5.

LRLSF [35] proposes a robust global label correlation
strategy by self-expression matrix and incorporates a man-
ifold regularization term to capture local label correlations.
The parameter values λ1, λ2, λ3, and λ4 range from 2−5 to
25 with a step of 1, where the threshold τ = 0.5.

C. Experimental results

We assess the classification performance of each algo-
rithm across five benchmark datasets through five-fold cross-
validation. The detailed results are shown in Tables III
through VII, and the rankings based on these results are
shown in Tables VIII through XII. For each evaluation
metric, ’↓’ indicates that a smaller value signifies better per-
formance, whereas ’↑’ indicates that a larger value signifies
better performance. As shown in Tables VIII through XII, our
LSMLLC method consistently surpasses LIFT [10], LLSF
[11], LLSF-DL [11], LSML [12], CLML [13], and LRLSF
[35] across seven datasets in terms of average metrics.
To assess the notable performance differences between our
approach and the competing algorithms, we conducted a
Friedman test [36]. Table I reports each evaluation metric
along with its corresponding FF and critical value. At an
important level of α = 0.05, we dismissed the null hypothe-
sis suggesting that all competing algorithms perform equally,
as the FF exceeded the critical value, indicating significant
differences among the competing algorithms. We utilized
the Nemenyi test [36] to assess if LSMLLC demonstrates
superior performance in comparison to other algorithms,
designating LSMLLC as the reference algorithm. Compare
the average rank differences between any pair of algorithms

with the critical difference (CD) using the Nemenyi test,
where CD = qα

√
6N
N−1 , CD = 3.4041(K = 7, N = 5)

at a significance level of α = 0.05. The CD diagrams for
each evaluation metric are shown in Fig. 7. Each subplot
displays a comparison of algorithms, where two algorithms
are connected by a line if their average ranks fall within
the same critical difference (CD) range. In other words,
algorithms that are not connected by a line are considered
to have a significant difference in performance for that
evaluation metric. It is clear from the diagrams that LSMLLC
outperforms the other six algorithms.

D. Parameter sensitivity analysis

We use five parameters, namely α, β, γ, λ1, and λ2. In
this context, parameter α regulates the discrepancy between
the recovered label matrix and the original incomplete label
matrix. Parameters β and γ regulate the contributions of the
global and local label correlations, respectively. Parameters
λ1 and λ2 regulate the sparsity of label-specific features and
the label correlations coefficient matrix, respectively. We set
the values of all parameters in the range of [2−5, 25] and
conduct experiments by varying one parameter at a time
while maintaining the others at their optimal settings. Fig. 1
through 5 demonstrate the effect of these parameters across
five datasets: Genbase, Emotions, Yeast, Arts, and Science.

Specifically, Fig. 1 through 5 show how five parameters
affect five datasets. It is clear that small changes in the α
value lead to noticeable variations in performance and results.
In other words, if the weight between the original missing
matrix and the new recovery label matrix is very low, it
is difficult to complete the missing label. As the value of
α increases, its performance tends to stabilize and become
excellent. Increasing the value of β can significantly enhance
performance, as it indicates a higher importance of global
label correlations. When the value of γ is between 1

4 and 4,
the overall performance is optimized, suggesting that local
label correlations within this range have the most significant
effect on performance. The other two parameters λ1 and λ2
have little impact on the overall performance.

We not only analyze the impact of each parameter on
various metrics but also conduct a detailed discussion on the
missing rate metric of our algorithm across four datasets. Fig.
6 shows how different missing rates affect the four datasets:
Genbase, Emotions, Yeast, and Arts.

The performance of most evaluation metrics tends to
deteriorate as the missing rate increases, although certain
metrics may occasionally improve due to the random nature
of the missing data.

V. CONCLUSION

In this paper, we propose a novel method called LSMLLC,
designed to effectively learn label correlations and label-
specific features for multi-label classification with missing
labels. Extensive experimental results demonstrate that miss-
ing labels can severely impact the performance of multi-label
classifiers. Our LSMLLC algorithm achieves superior per-
formance compared to other state-of-the-art methods across
seven benchmark datasets. Additionally, we confirm the
critical role of label correlations and label-specific features
in addressing the challenges posed by missing labels. Future
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research will focus on extending this algorithm into a multi-
view learning framework.
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