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Abstract—In the real industry field application, the signal 

collected across various working scenarios shows obvious 
distribution discrepancy. Adversarial domain adaptation 
networks have been extensively investigated in varying 
working condition fault diagnosis scenario. However, exist 
adversarial domain adaptation methods have no regard for the 
task-specific decision boundaries across domain and the 
characteristics of the discriminative embedded feature, which 
may damage the inherent properties of target data distinction 
and deteriorate the fault diagnosis performance. To resolve 
these concerns, a discrepant adversarial domain adaptation 
network (DADAN) is proposed to align embedded features 
across domains and locate the optimized category decision 
boundaries simultaneously. Specifically, in the domain-wise 
level, the double adversarial learning and the domains feature 
center clustering alignment are combined to facilitate the 
extraction of the underly distinguishing characteristics across 
domains. In the class-wise level, the dual distinct classifiers with 
different structures are designed to obtain the decision 
boundaries from different perspectives. Utilizing discrepancy 
measurement strategy of dual different classifiers, the internal 
structural discriminative information of target domain 
instances can be captured, which is conducive to achieve better 
decision boundaries. Two case studies with several transfer 
tasks under varying working conditions are taken to assess the 
effectiveness of DADAN. Moreover, the outcomes indicate that 
DADAN outperforms the leading-edge approaches. 

 

Index Terms—Discrepant adversarial, domain adaptation, 
Dual classifiers, Feature center alignment, Varying working 
condition, Fault diagnosis. 
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I. INTRODUCTION 

olling bearing is known as “joint” in mechanical 
systems such as in industry robot, CNC machine and 

wind turbine, etc. Its working status heavily influences the 
functionality of the mechanical systems [1-3]. Bearing fault 
diagnosis is significantly crucial to secure the secure and 
dependable performance of mechanical system [4-6]. 
Researchers have come up with a range of intelligent fault 
diagnosis methods, such as support vector machine. [7], 
random forest [8] and artificial neural network [9] etc. Lately, 
the methods of deep learning have emerged as a mainstream 
approach in bearing fault diagnosis [10-11]. Unlike 
conventional machine learning approaches, the deep 
learning methods reveal better classification performance as 
they can automatically learn depth features [9]. The methods 
such as convolutional neural network [12], auto-encoder 
[13], and long short-term memory [14] were investigated for 
fault diagnosis.  
 

     

 
Fig. 1. Domain bias 
 

The above deep learning-based methods gain outstanding 
performance with sufficient labeled training data and abide 
by the basic assumption that the attribute distribution 
between the training and testing samples should be 
consistent. [15]. Nevertheless, in practical industrial 
applications, obtaining a sufficient amount of labeled fault 
data is often impractical. Moreover, due to the various tasks 
in industrial process, the speed and load of mechanical 
systems are variable [16]. Consequently, there is always 
distributional difference between the source and target 
training data, as illustrated in Fig.1. As a result, the above 
deep learning methods will perform poorly or even not work 
when face the fault diagnosis tasks with variable working 
conditions. Hence, it is critically essential to explore fault 
diagnosis frameworks incorporating domain adaptation 
capabilities to achieve precise fault identification in 
unlabeled target domains. 
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Domain adaptation serves as a representative approach 
within the realm of transfer learning, which learns hidden 
representation from source domain with numerous labeled 
samples and then adapt to target domain with unlabeled 
samples. Due to superiority of domain adaptation method for 
addressing domain transfer problems, it has been embedded 
in deep learning framework for mechanical system fault 
diagnosis.  

At present, there are two main kinds of approaches which 
embed domain adaptation into deep network frameworks for 
fault diagnosis. The first type is called statistical 
discrepancy-based methods, which seek to minimize 
statistical discrepancy between feature distributions. The 
very popular methods include maximum mean discrepancy 
(MMD) [19] and its improvement methods such as MK-
MMD [20] and CORAL [21-22]. In the MMD approach, a 
loss function is designed based on feature distribution to 
minimize domain bias between source and target domain. 
The second approach is termed as an adversarial-based 
method, which leverages a two-player minimax game 
combined with adversarial optimization to align feature 
distributions of source and target domains. The first player 
is trained to maximize the differentiation between the two, 
while the other one is designed to identify the features that 
remain consistent across domains [23]. The distance of 
embedded feature distribution in the source and target 
domain is continuously reduced in confrontation between 
the two architectures. Given the outstanding performance of 
adversarial-based methods, they arouse close attention from 
researchers. Han, T. et al. [24] developed a deep adversarial 
convolutional neural network (DACNN) method for bearing 
fault diagnosis. It added an additional discriminative 
classifier, which was designed to refine the convolutional 
blocks using partitioned data subsets. Chai, Z et al. [25] 
introduced a fine-grained adversarial network (FANDA) 
method for domain adaptation. FANDA employed 
competition against multiple-domain discriminators to learn 
features, attaining comprehensive alignment between the 
two domains, along with precise alignment for each specific 
fault category. Li, F. et al. [26] introduced a deep 
convolution domain-adversarial transfer learning (DCDATL) 
approach for rolling bearing fault diagnosis. In this approach, 
a deep convolutional residual network was designed to 
extract high-level feature representations. Additionally, 
domain adversarial training was implemented by leveraging 
the joint distribution of labeled instances from the source 
domain and unlabeled samples from target domain. Qin, Y. 
et al. [27] introduced a parameter sharing adversarial domain 
adaptation network (PSADAN). To streamline the network 
architecture, the proposed approach introduces an integrated 
classification module that merges the functionalities of fault 
identification and domain discrimination into a single 
framework. Additionally, the CORAL loss was incorporated 
into the adversarial process to enhance domain alignment.  

It should be noted that the above adversarial network-
based fault diagnosis methods mainly seek to align the 
feature boundaries of dataset across domain. The efficacy of 
these methods heavily depends on the precision of source 
classifiers. However, the collected samples are frequently 
affected by noise and large random impulses [2-3]. The 
vibration signal features of the two differ, indicating that one 
may have unique category boundaries. 

Consequently, the performance will significantly degrade 
when the domain discrepancy becomes substantial. 

Therefore, it is necessary to consider the unique 
classification boundaries across domain for adaptation. Saito 
et.al [28] presented a new network framework which uses 
two classifiers to compete with each other to gain the task 
specific boundaries of the target domain, Wu et al [29] 
developed a adversarial optimization to maximize inter-
classifier divergence, effectively aligning feature 
representations across distinct data domains through a 
discriminative feature integration strategy. Jiao et.al [30] 
introduced a double-level adversarial domain adaptation 
network (DL-ADAN). The DL-ADAN architecture 
comprises a deep convolutional network-based feature 
extractor, a domain discriminator, and two label classifiers. 
Through the use of two minimax adversarial processes, DL-
ADAN achieved remarkable performance for fault diagnosis. 
However, the above methods still confront several 
limitations, as outlined below. Firstly, the structure of the 
two classifiers is the same, which will generate similar 
classification boundaries. However, in the industry 
application, due to heavy background noise, the actual 
vibration signal of rolling bearings with different fault 
categories may exhibit a very similar characteristic. In this 
case, the fault pattern in the high dimension embedded space 
may be very close or even overlap to each other. The ideal 
classification boundaries may not be obtained for fault 
detection using the two same classifiers, as demonstrated in 
Fig.2. Moreover, the embedded feature structural similarity 
of same fault category between the two domains may not 
been fully aligned in the latent embedded space, which will 
hinder the performance of fault classification.  

 

                    

 
Fig. 2. Domain adaptation based on dual classifiers with same structure 

 
Aiming at above limitations, a new DADAN is proposed. 

In the domain-wise level, the DADAN algorithm pursues to 
obtain the domain invariant feature through simultaneously 
adversarial learning. In the class-wise level, two classifiers 
with different structures are designed to compete against 
with the feature extractor for detecting and discriminating 
the ambiguous features near class boundaries. Moreover, 
consider the feature structural similarity of the same fault 
category across domains, the feature center alignment is 
employed to mitigate the effect of cross-domain 
mismatching, as demonstrated in Fig.3. To sum up, the 
proposed network not only considers the task-specific 
decision boundaries across domains but also pays attention 
of feature similarity of same fault category across domains, 
thus solves the issue of misclassification of target domain 
samples when the domain gap is over large. Furthermore, the 
dataset collected from two test rigs serves to assess the 
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performance of proposed DADAN approach in bearing fault 
detection. Finally, five advanced approaches are utilized for 
comparative analysis. Experimental results reveal that the 
DADAN significantly outperforms existing solutions in 
diagnosing bearing defects across diverse operating 
scenarios. 

 

 

 
Fig. 3. Domain adaptation based on dual classifiers with different 
structures 

 
The contributions of this paper are summarized as follows: 
(1) A novel DADAN approach is introduced for bearing 

fault detection. This method aims to align domain-wise level 
and class-wise level adaptations to achieve effective cross-
domain fault identification. 

(2) The dual task-specific classifiers are designed to 
establish task-specific decision boundaries within the target 
domain. Improved decision boundaries in target domain are 
achieved through the employment of dual classifiers. 

(3) The feature center alignment across domains is 
proposed to facilitate extraction of domain-invariant features 
and alignment of class-level between domains. 

(4) Two trials are performed to evaluate the efficacy of 
DADAN. Furthermore, five advanced approaches are 
compared to prove the superiority of DADAN.  

The rest part of this paper is arranged as described below: 
Section 2 provides the foundational theory. Section 3 
thoroughly explains the DADAN. In Section 4, two 
evaluations are performed to validate performance of 
DADAN. Section 5 presents the concluding remarks. 

II. PROPOSED METHOD  

A. Problem definition 

In the industry application, the mechanical system often 
works in varying working condition. For example, the speed 
and load of industry robot end operators are always changing 
when conducting a range of tasks in the automation assembly 
workshop. Therefore, the discrepancy in distribution 
between the training and testing samples exhibits a 
significant divergence. Domain adaptation becomes the 
mainstream approach for resolving this difficulty. Given a 
source domain containing labeled sample,

1{ , } {( , )} sni i
s s s s s iD X Y x y   which contains

sn labeled samples, 

also with a target domain 1{ , } {( , )} tj n
jt t

j
t t tD X Y x y   with 

tn
unlabeled samples, the spread of the source and target 
domain can be represented as ( )s sP x  and ( )t tP x . It should be 

noting that the ( ) ( )s s t tP x P x for a fault detection across 
domains task. The main goal for domain adaptation fault 
diagnosis task is to design a new algorithm, which can 
discover a shared common latent space between the source 
and target domains, allowing the target samples to be 
classified under the supervision of the source domain. 

B. The framework of DADAN 

The architecture of DADAN is illustrated in Fig. 4. The 
DADAN considers the class-specific decision boundaries for 
classification across different classes. which has better 
performance for dealing with the cross-domain adaptation 
problem. DADAN has a feature extractor F , a domain 
discriminator D and the dual classifier 1C  and 2C  .The 

feature generator F and the discriminator D  engage in 
adversarial learning to extract domain-invariant features 
between source and target domains. Note that the dual 
classifier 1C  and 2C has different structure for obtaining 

better classification boundaries from different perspective. 
The classifier 1C  is a dense neural network classifier while 

2C  is prototype classifier. The two classifiers with different 

structures are capable of precisely distinguishing the target 
samples that are distinct from source samples. Meanwhile, 
the feature center alignment loss is added to align source and 
target sample center to obtain better prediction result. 
Detailed introduction of DADAN is illustrated in following 
sections.  

 

 

 
Fig.4 The proposed DADAN intelligent diagnostic framework
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C. The dual classifier with different properties 

Inspired by Prototypical Networks [31] and adversarial 
dual classifiers [32], we utilize two classifiers to extract and 
represent the latent discriminative features from different 
viewpoints. The dual classifier can obtain different 
prediction results to identify the target sample beyond the 
scope of source supervision. Specifically, 1C  is conventional 

multi-layer nonlinear classifier, which can be called fully 
connected neural classifier. The classifier 1C  is defined as： 

                1, , 11
( )


 

K

p i k ik
C p softmax C F x             (1) 

Moreover, we design the classifier 2C  based on clustering 

characteristics in embedded feature space, which have no 
trainable parameters. The classifier can enhance the latent 
target discrimination information through discriminative 
clustering in the feature space Z , which can automatically 
give the predication probability with input signal in 
embedded feature space Z . For the instance feature

( ),i iz F x the predication probability vector ,i kp  of soft 

cluster assignments can be obtained as follows [31, 33]:  
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where k  is learnable embedded feature centers of both 

source and target samples in embedded space, ε is protection 
parameter which can avoid that the denominator becomes 
zero. The predication probability of classifier 2C  is depicted 

as： 

2 , , 1{ } K
p i k kC p                               (3) 

The embedded feature centers of the two domains are 
calculated as follows:  

                         
,

1

,
1

n

i k i
i

k n

i k
i

p z
u

p









                             (4) 

More specifically, p is the predication probability gained 
by the trainable network classifier 1C  .It is noteworthy that 

, ,i k i kp y  when calculating the cluster feature center of 

source domain, where  , 1

K

i i k k
y y


  is true label of samples.  

D. Domain boundaries alignment 

Similar to the Domain-Adversarial Training of Neural 
Networks (DANN) [23], discriminator D  should 
distinguish the feature extracted by feature extractor F  from 
source and target domain, while F aims to effectively 
deceive discriminator D . Meanwhile, feature extractor F and 
trainable classifier 1C  need to reduce classification error rate 

of source domain sample as much as possible. Hence, the 
constructed network can simultaneously align the domain 
feature boundary while obtaining the accurate classifier on 
source domain. At this phase, the objective loss function 
contains prediction loss and domain loss, which can be 
formulated as: 

1, 2,
1

( , , ) [ ( , ) ( , )]
t s

d F c D c p i c p i
x Ds

F L C y L C y
n

  


     

                    
1

( ( ( )), )
i s t

d i i
x D Ds t

L D F x d
n n  

 


                    (5)   

where cL  denotes the cross-entropy loss for two classifiers 

and dL is binary cross entropy (BCE) loss for the 

discriminator. iy  is a true label of samples and id  represents 

the domain label. Specifically, dL  is expressed as follows: 

( ( ( )), ) log( ( ( )))d i i i iL D F x d d D F x            

                       (1 )log(1 ( ( )))i id D F x                              (6)  

where id  is defined as follows:  

                          
0,
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i s

i
i t

x D
d

x D


 





                          (7) 

E. Classification boundaries alignment 

Through domain feature boundary alignment, the feature 
distribution across domains can be adapted. So far, the 
similarity in the feature distributions across domain are 
augmented. However, the vibration signal samples collected 
from different domain have the unique classification 
boundaries. Naturally, it is extremely important to exploit 
the tasks-specific boundaries alignment for accurate 
machinal fault diagnosis and prediction. Therefore, we 
devise a new strategy to align the classification boundaries 
while detecting target samples near decision boundaries 
using two different labels predict classifiers. In this process, 
the divergence across the two classifiers is leveraged to 
recognize target instances that deviate from distribution of 
source domain. Firstly, we freeze feature extractor F and 
enhance the divergence given target features. With this 
operation, the target instances close to the decision boundary 
are distinguished. Note that classifier 1C  and 2C  have 

different structures. Therefore, the latent information can be 
captured from different perspectives. After that, the weights 
of the dual classifiers are fixed while the feature extractor F  
is trained to reduce the disparity. During this process, the 
ambiguous features near decision boundaries can be pushed 
to the source domain samples which have clear classification 
boundaries. As a result, the classification boundaries 
alignment can be achieved. With this process, the different 
fault categories can be accurately distinguished. Formally, 
the loss function has the following definition: 

   
1 2, 1, 2,

1
( , ) , ,

i s

y F c c c p i c p i
x Ds

F L C y L C y
n

  


      

                      1, 2,
1

( , ))
i t

dis p p
x Dt

L C C
n 

                   (8) 

The discrepancy loss disF between the dual classifiers is 
formulated as:  

           1 2, 1, 2,
1

, ( , )
t t

dis F c c dis p p
x Dt

F L C C
n

  


              (9) 

where the discrepancy loss is calculated as:  

              2

1, 2, 1, 2,
1

1
,

N

dis p p p p
i

L C C C C
N 

                 (10) 

where disL denotes the mean square deviation, which 
serves to evaluate the discrepancy between the two 
classifiers. Moreover, in the classification boundaries 
alignment stage, the cluster feature center alignment across 
domain is employed to obtain better prediction result and 
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convergence performance. The objective loss function is 
expressed as follows. 

                        ( , )t s
cen cenF L                         (11) 

Similarly, the feature center alignment loss can be 
computed by: 

               2

1

1
( , ) ( )

N
t s t s

cen n n
i

L
N

   


                 (12) 

where t and s  represent the feature centroids 

corresponding to the target instances and the thK category 
within the embedded feature space, respectively.  

III. FAULT DIAGNOSIS OF BEARINGS USING DADAN  

A. The trains steps of DADAN 

According to the above introduction, the proposed 
DADAN consists of two boundaries alignment: domain-
level boundaries alignment and the class-level boundaries 
alignment. In domain-level boundaries alignment, the 
domain feature boundary alignment is obtained via the 
adversarial interaction between the feature extractor F and 
the discriminator D . In the class-level boundaries alignment, 
the dual classifiers with different structures are designed to 
identify target domain instances that do not conform to the 
source distribution. Moreover, the loss of cluster centers 
across source and target domains is incorporated to achieve 
better classification performance. Specifically, the training 
process of proposed DADAN is outlined as follows: 

    Step 1. We conduct training on the feature extractor F 
and the classifier 1C  within the source domain. Note that the 

classifier 2C  has no trainable parameters. Naturally, only the 

weights of the feature extractor F, the classifier 1C and the 

discriminator D will be updated. The goal of this step is to 
optimize a satisfied network for classifying the source 
domain samples and aligning the domain feature boundary. 
The objective formulation is expressed as follows: 

                   ,min ( , , )    
F c d F c Darg F                     (13) 

and  

                 max ( , , )   
D d F c Darg F                         (14) 

 
    Step 2. On the premise of ensuring the good ability of 

classifying the source domain samples, we optimize the dual 
discrepant classifiers by enhancing the distribution 
divergence between them over target domain instances. In 
this phase, the feature extractor F remains unchanged, while 
the classifier 1C  undergoes weight updates. Similarly, the 

classifier 2C  has no trainable parameters. The goal of this 

step is to identify target domain instances that deviate 
significantly from the source domain samples. The training 
optimization objective function is: 

                   min ( , , )
c y F c Darg F                             (15) 

Step 3. To align the classifier boundary between the two 
kinds of domains, we minimize the divergence in 
distributions captured by the dual classifiers on the target 
domain. In this process, we keep the weights of classifier 1C

while optimizing the parameters of feature extractor F. 
Meanwhile, we minimize the cluster centers of source and 
target sample. Therefore, the feature extractor tends to make 
the features of both domains more similar. The objective 
function is: 

           1 2,min , ( , )
F

t s
dis F c c cenarg F L


             (16) 

The pseudocode for the training procedure of DADAN is 
presented below: 

Algorithm 1 Training process of the DADAN method 

Input: labeled source domain data     
1

, , ,


 
sn

i i
s s s s s

i
D X Y x y

unlabeled target domain data 1{ } { }   snj
t t t jD X x  

1: Randomly initialized network F , D and 1C  
2: for epoch in epochs do: 
3: Compute the center of source data feature and target data feature 

according to Eq. (4) 
4: for batch in batches do: 

5: Sample batch 1{( , )}
i i b
s s ix y  and 1{ }

i b
t ix  from sD and tD  

6: Train F , 1C , D according to Eq. (13) and Eq. (14) 
7: Train 1C according to Eq. (15) 
8: end for 
9: Train F according to Eq. (16) 
10: end for 
11: until reach maximum iterations or convergence  

B. The fault diagnosis procedures using DADAN  

The overall structure of the bearing fault detection 
identification utilizing DADAN is illustrated in Fig. 5. Key 
steps of the process are outlined below: 

Step 1: The oscillation data from the bearing are gathered 
using the piezoelectricity acceleration sensors and DAQ card.  

Step 2: Based on the segmentation and normalization 
technique, the signals are equally split into the samples. The 
processed samples are categorized into the training set, the 
validation set and the testing set.  

Step 3: The samples collected in various operating 
conditions are set as source and target domain. Then the 
samples are fed into DADAN.  

Step 4: Finally, the health condition of the unlabeled 
vibration signals of the bearing in varying working 
conditions is predicated by DADAN.  

Ⅳ. EXPERIMENTS AND ANALYSIS 

We utilize two datasets to assess the effectiveness of 
DADAN. The first bearing fault dataset is sourced from the 
open database of Case Western Reserve University (CWRU) 
diagnostic platform [34]. The second dataset is gathered 
from the platform that we designed. Regarding the 
computational aspect, all analyses are carried out on a 
computer featuring a Core Intel i7-6700 CPU and two Nvidia 
GTX-2080 GPU. This setup provides the necessary 
computational power to handle the complex computations 
involved in validating DADAN. Also, we compare DADAN 
with five mainstream methods. All the tested methods are 
implemented using the TensorFlow. The classification 
accuracy, confusion matrix, convergence performance, t-
distributed stochastic neighbor embedding (t-SNE) [35] and 
kernel density estimation [36] are applied to showcase the 
performance of all approaches.
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Fig. 5. The fault diagnosis procedures utilizing the proposed DADAN
 

A. Implement details 

During the implement process, the 1D CNN serves as 
feature extractor. The main parameters are illustrated in 
TABLE I, where operations of convolution and max pooling 
are denoted as Conv1D and Pool. Moreover, Padding refers 
to the zero-padding operation. BN denotes batch 
normalization, while ReLU signifies the rectified linear unit. 
Learning rate is set to its default value. The training process 
for DADAN is presented in algorithm 1, where the epoch is 
set to 300, the ratio of training data in source to target domain 
is set as 1:1. Moreover, without loss of generality, the 
proportion of training data to testing data in target domain is 
set as 7:3. The random seed is set to 𝑖. All the methods are 
repeated five times to obtain the more objective 
classification accuracy results.  
 
TABLE I: The structure parameters of the proposed method. 

Network Layer detail 

Feature 
extractor 𝐹 

Conv1D 1 
Kernel 16x32, Stride 1, Padding, Relu, 
BN, Max-pool 2, Stride 2 
 

Conv1D 2 
Kernel 32x16, Stride 1, Padding, Relu, 
BN, Max-pool 2, Stride 2 
 

Conv1D 3 
Kernel 64x5, Stride 1, Padding, Relu, 
BN, Max-pool 2, Stride 2 
 

Conv1D 4 
Kernel 128x3, Stride 1, Padding, Relu, 
BN, Max-pool 2, Stride 2 
 

Fc 5 Neuron 512, BN, Relu, Dropout 0.5 

Classifier1 1C  Fc Neuron Number of categories 

Classifier 2C  \ 

Discriminator  
D  

Fc1 Neuron 256, Relu, Dropout 0.5 
Fc2 Neuron 128, Leaky-relu, Dropout 0.5 
Fc3 Neuron 2, Leaky-relu 

B. Comparison methods 

To emphasize the benefits of the DADAN approach, we 
compare it with five widely used deep learning-based 
methods, including: Convolution neural network (CNN), 
Convolution neural network based on MMD loss 
(CNN+MMD) [37-38], Domain adversarial neural network 
(DANN) [24], Maximum classifier discrepancy for 
unsupervised domain adaptation (MCD-UDA) [28] and 
Double-level adversarial domain adaptation network (DL-
ADAN) [30]. 

(1) CNN: The basic architecture of CNN approach has a 
feature extractor and the classifier. The feature extractor 
includes four convolutional layers (Conv1-Conv2), four 
max-pooling layers (Pool1- Pool4) and one fully connected 
layer FC1. In the process of network training, the source 
domain is used for training while the target domain is 
employed for testing. Detailed parameters of the kernel size 
and the step size for each layer in CNN can be found in 
TABLE I. 

(2) CNN-MMD: MMD is a loss function commonly for 
quantifying distributional discrepancies across different 
domains. Within the CNN-MMD framework, cross-domain 
feature alignment is achieved through the optimization 
process that reduces the MMD metric between the source 
and target feature distributions. The final objective function 
of the CNN-MMD network is combined by the classification 
loss and the MMD loss [38]. To ensure an equitable 
evaluation, the architecture and fundamental settings of the 
CNN, which extracts the latent embedded features in RKHS 
space, are kept identical to those of the proposed DADAN 
network. The main parameters of MMD can refer to [20].  

(3) DANN: DANN is a prominent transfer learning 
approach for bearing fault classification [24]. The DANN 
contains a feature extractor, a domain discriminator and a 
classifier. The structure of DANN can be found in the Ref. 
[24]. The front convolutional blocks in CNN are employed 
as the feature extractor. Similarly, all the configurations and 
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settings of the feature encoder and domain classifier are 
configured similarly to those in the proposed method. The 
classifier is set the same as 1C  in the DADAN.  

 (4) MCD-UDA: MCD-UDA is a popular adversarial 
learning network [28]. Different from DANN, the 
architecture of MCD-UDA is formed by a feature extractor 
and two identical classifiers. The detailed information of 
MCD-UDA can be found in [28].  Likewise, the feature 
extractor is identical to DADAN while the dual classifier is 
set the same as 1C . 

(5) DL-ADAN: DL-ADAN [30] is a network which 
combines the advantages of DANN and CADAN, which can 
be regarded as the ablation study of this paper. It shows 
excellent performance in fault diagnosis experiment. The 
network contains a feature extractor, a domain discriminator 
and two classifiers. The dual classifiers have same structure, 
where the parameters are set the same as 1C  in DADAN. In 

the same vein, the domain discriminator is set the same as 
DADAN.  

Throughout model training, the objective functions are 
optimized with the Adam algorithm for a fair comparison. 
The initial learning rate is assigned to be the default value, 
while the training epochs are configured to be 300. The batch 
size is configured as 64, and the proportion of training to 
testing data in the target domain is maintained at 7:3. All 
approaches are tested five times. We document the best 
result from each test when the models are in the convergence 
state. The average classification accuracy is calculated for 
comparison. 

C. CWRU bearing fault diagnosis result analysis 

We utilize the dataset from the CWRU to assess the 
effectiveness of DADAN. Fig. 6 illustrates the structural 
arrangement of the experimental setup, consisting of a 1.5 
kW motor, a torque sensor with an encoder, and a power 
meter. An acceleration sensor was used to capture vibration 
data under four distinct load levels: 0 hp, 1 hp, 2 hp, and 3 
hp. The data were sampled at a frequency of 12 kHz. Each 
operational scenario encompasses four categories of bearing 
signals corresponding to different health conditions: (1) 
normal (N), (2) outer race fault (ORF), (3) inner race fault 
(IRF), (4) roller fault (BF).  

Each fault category includes three severity levels, 
characterized by defect diameters of 0.007 inches (S: minor), 
0.014 inches (M: moderate), and 0.021 inches (L: severe), 
respectively. The dataset encompasses 4 operational states, 
with each state comprising 10 distinct bearing fault classes. 
The labels of the 10 categories of bearing fault are marked 
as SBF, MBF, LBF, SORF, MORF, LORF, SIRF, MIRF, 
LIRF and N, respectively. 

In this situation, 12 transfer fault diagnosis tasks can be 
formed by using the dataset to evaluate the DADAN, as 
displayed in TABLE II. The Gaussian noise is added into 
sample data of target domain to simulate transfer tasks under 
the actual working condition. The signal to noise ratio (SNR) 
is employed to assess the intensity of noise. Specifically, 
2dB Gaussian noise is introduced into the target domain to 
enhance the domain gap, providing a more comprehensive 
evaluation of DADAN. 

 

 
Fig. 6. The CWRU bearing fault test bench 
 

TABLE II. The transfer tasks under the different working conditions. 
Transfer case Source domain Target domain 

1 2D D  0hp/1797rpm 1hp/1772rpm 

1 3D D  0hp/1797rpm 2hp/1750rpm 

1 4D D  0hp/1797rpm 3hp/1730rpm 

2 1D D  1hp/1772rpm 0hp/1797rpm 

2 3D D  1hp/1772rpm 2hp/1750rpm 

2 4D D  1hp/1772rpm 3hp/1730rpm 

3 1D D  2hp/1750rpm 0hp/1797rpm 

23 D D  2hp/1750rpm 1hp/1772rpm 

43 D D  2hp/1750rpm 3hp/1730rpm 

14 D D  3hp/1730rpm 0hp/1797rpm 

4 2D D  3hp/1730rpm 1hp/1772rpm 

4 3D D  3hp/1730rpm 2hp/1750rpm 

 
The classification outcomes are displayed in TABLE III. 

The overall average accuracy of non-transfer learning 
method (CNN) is only 67.17%. However, the accuracy of 
CNN-MMD immediately increases to 90.34% as it adds 
MMD transfer loss. Hence, we infer that the transfer learning 
method is more meaningful in practical application of fault 
diagnosis due to it can align the domain boundary. 
Meanwhile, in terms of the precision of different approaches, 
it is evident that the overall mean precision of the DADAN 
approach achieves the best classification accuracy, yielding 
an average rate of 97.09%. Specifically, in 9 of the 12 
transfer learning tasks, the DADAN shows the best 
performance. As illustrated in Fig. 7, compared with MCD-
UDA and DL-ADAN, DADAN achieved superior 
performance for bearing fault diagnosis, which may be due 
to dual different architecture task-specific classifiers strategy 
of DADAN. 

 

 

 
Fig. 7. The mean classification accuracy of the six methods.
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Fig. 8. Confusion matrices (%) on CWRU bearing fault platform diagnosis. (a)CNN, (b)CNN-MMD, (c)DANN, (d)MCD-UDA, (e)DL-ADAN, (f)The 

proposed DADAN 
 

The confusion matrix of transfer task 2 1D D is selected 
for analysis, as demonstrated in Fig. 8. As illustrated in Fig. 
8(a), for CNN, the accuracy of some categories is less than 
30%, which greatly exposes the disadvantages of non-
transfer learning. The classification accuracy of CNN-MMD 
is greatly improved, as demonstrated in Fig. 8(b). 
Interestingly, it is manifest that the overall performance of 
adversarial network domain adaptation methods, including 
DANN, MCD-UDA and DL-ADAN is relatively good. It 
can be found that most of the category accuracy obtained by 

the adversarial network domain adaptation methods is over 
90%. However, the ball fault categories are misclassified by 
other methods, except for the proposed DADAN, as 
demonstrated in Fig. 8(c)-(e). Thanks to the unique strategy 
of the dual different classifiers and the feature center 
alignment across domain, the DADAN obtains substantially 
enhanced performance for diagnosis of ball fault with 
different sizes, as illustrated in Fig. 8(f). From the preceding 
discussion, it can be inferred that the proposed approach 
exhibits superior performance.
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Fig. 9. Convergence performance of the six methods 

 
TABLE III. Experimental results on CWRU bearing fault platform 

obtained by six models 

Tasks CNN 
MMD 
CNN 

DAN
N 

MCD-
UDA 

DL 
ADAN 

Proposed 
DADAN  

1 2D D 64.05  90.37  90.99  88.32  95.77  96.03  

1 3D D 64.49  87.27  94.02  89.13  99.14  99.36  

1 4D D 64.42  90.98  95.94  92.55  98.87  98.96  

2 1D D 72.80  87.56  90.17  87.12  92.35  96.46  

2 3D D 69.80  94.34  96.12  96.84  98.99  98.88  

2 4D D 62.60  93.35  96.08  96.62  98.80  98.89  

3 1D D 64.75  86.37  89.07  82.78  91.15  93.68  

23 D D 67.91  92.02  93.05  90.02  93.47  96.39  

43 D D 70.41  87.99  96.55  97.45  98.76  98.81  

14 D D 64.77  87.40  89.56  82.52  94.88  92.36  

4 2D D 67.29  89.75  92.58  90.31  95.73  95.97  

4 3D D 72.74  96.67  96.81  96.79  99.16  99.23  

Averag 67.17 90.34 93.41 90.87 96.42 97.09 

 
To further investigate the superiority of DADAN, the 

performance of the convergence curve of classification 
accuracy that reflects the stability and accuracy of the 
methods are employed for analysis. The convergence curves 
of task 2 1D D with different approaches are indicated in 
Fig. 9. Note that all the convergence curves are plotted using 
the original accuracy data points without any processing. 
Clearly, the convergence curves of the CNN-MMD and 
DANN show heavy fluctuations although they have fast 
convergence performance. The MCD-UDA, DL-ADNN and 
the proposed DADAN show better convergence 
performance, which can converge rapidly and show much 
better stability. Moreover, it is evident that DADAN shows 
superior classification accuracy. Therefore, it is not too 
difficult to spot that the proposed DADAN has the best 
convergence performance, showing its promising 
performance in the actual industry application.   

Analogously, the t-SNE diagram of the task is presented 
for analysis, as demonstrated in Fig. 10. The various classes 
and domain information are distinguished using different 
colors. As visually demonstrated in Fig. 10(a), it is apparent 

that the distribution of features across domain of the CNN 
are out of alignment. Not surprisingly, the misalignment 
phenomenon of the CNN-MMD is comparatively alleviated 
as the MMD can align the embedded feature extracted by the 
CNN between the source and the target domain, as displayed 
in Fig. 10(b). Through visual inspection, we can find that the 
extracted features from the source and target domains are 
partially aligned for the DANN, UDA, DL-ADAN and the 
DADAN leveraging the domain adversarial learning process, 
as illustrated in Fig. 10(c)-(f). It should be pointed out that 
due to the large domain gap since 2dB noise is added into 
the target domain, the extracted feature by the MCD-UDA, 
the DL-ADAN and the DADAN are still not fully alignment. 
However, as indicated in Fig. 10(c)-(e), It is readily apparent 
that the fault feature of the ball fault in different size for the 
DANN, MCD-UDA and the DL-ADAN are hard to be 
separated in embedded feature space, which is consistent to 
fault diagnosis result displayed in Fig. 8(c)-(e), where the 
recognition accuracy of the ball fault with different size are 
relatively low. In contrast, we can find that the extracted 
feature by the DADAN has the clearest classification 
boundary. As visually demonstrated in Fig. 10(f), samples of 
the same category are clustered together, while samples of 
different categories are distinctly separated. 
Correspondingly, all the fault categories include the ball 
fault with different sizes are accurately detected by DADAN. 
According to the above analysis, it’s not hard to see that the 
DADAN has best performance for bearing fault diagnosis.  

Finally, the estimated feature representation across source 
and target domains for the transfer task 2 1D D  is 
employed for visual analysis. During this process, the t-SNE 
is utilized to compress the dimensionality of the learned 
transferable features by the CNN feature extractor. Then we 
employ the kernel density estimation [38, 39] to fit the 
distribution of each component. The results of the above six 
methods are demonstrated in Fig.11- Fig.13.  Clearly, we can 
find that the transferable features, such as Component 1 to 
Component 5, learned by CNN exhibit significant 
distribution divergence, as indicated in Fig. 11(a). After 
adding the MMD loss, the distribution discrepancy is a bit 
relieved, as indicated in Fig.11(b).  
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Fig.10 The t-SNE visualization of embedded features on the source and 
target domain, where the labels of 10 categories of bearing fault are 
marked from 1 to 10, respectively (a)CNN, (b)CNN-MMD, (c)DANN, 
(d)MCD-UDA, (e)DL-ADAN, (f)The proposed DADAN. 
 

 

 
Fig.11. The estimated feature distribution between the source and target 

domain. (a)CNN, (b) CNN-MMD 
 
For DANN, MCD-UDA, and DL-ADAN, the distribution 

discrepancy is diminished to a certain degree, as 
demonstrated in Fig. 12 and Fig. 13. However, some 
components still show serious distribution discrepancy. For 
example, the components 2 and 4 are seriously misaligned 
for the DL-ADAN, as illustrated in Fig.13 (a). On the 
contrary, we can find that the domain-wise feature 
discrepancy is greatly reduced by DADAN. where the five 
feature components are fully aligned, as demonstrated in 
Fig.13(b). The findings reveal that the proposed DADAN 
exhibits the best performance, which underlines the 
importance of the dual different classifiers structure and the 
discriminative feature center alignment across domain 

strategy. 

 

 
Fig.12. The estimated feature distribution between the source and target 
domain. (a)DANN, (b)MCD-UDA 
 

D. Motor to brake bearing fault diagnosis analysis 

To comprehensively assess performance and distinctive 
features of DADAN, supplementary cross-domain bearing 
fault diagnosis tests were conducted utilizing a customized 
experimental platform designed for this investigation. The 
challenging transfer fault diagnosis scenario can be tested on 
our own platform since it can stimulate the working 
conditions with large variation. Therefore, the superiority of 
DADAN can be revealed through the experimental platform. 
The test rig comprises a servo motor, a magnetic particle 
brake, a planetary gear system and the faulty bearing, as 
illustrated in Fig. 14. The servo motor is driven by a servo 
controller, supplying power to the test rig. The load is 
simulated using a magnetic powder brake. The planetary 
gear system operates with a reduction ratio of 3. The bearing 
fault signals are collected using the accelerometer under 
different load and rotational speed settings. Throughout the 
experiment, four typical operating conditions are considered 
as follows: (1) normal (N), (2) outer race fault (ORF), (3) 
inner race fault (IRF) and (4) roller fault (BF) with different 
defect sizes 0.5mm (S: small), 0.5mm (L: Large) artificially 
created using electrical discharge machining to replicate 
faults in rolling bearings (model: SKF6204). As illustrated 
in Fig. 12, the inner and outer race are designed with defect 
diameters of 1mm and 3mm, respectively. A triaxial 
piezoelectric acceleration sensor (PCB352C03) was 
implemented on the experimental apparatus. The drive 
system was scheduled to operate at incremental rotational 
velocities of 1247, 1338, 1428, and 1509 revolutions per 
minute, while torsional loading conditions were 
systematically applied at 0, 1.0, 1.5, and 2.0 N-meters 
respectively. The DAQ card (NI 9234) is utilized to acquire 
vibration data. Simultaneously, the acquisition frequency is 
adjusted to 2.56 kHz. The sample time is defined as 15 
seconds. 
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Fig. 13. The estimated feature distribution between the source and target 
domain (a)DL-ADAN, (b)The proposed DADAN. 
 

The temporal waveforms of raw vibration signals 
corresponding to distinct defect states are presented in Figs. 
15(a)-(c). The experimental dataset comprises four distinct 
operational states, each containing vibration signatures from 
bearings under three health status categories with divergent 
degradation levels. Consequently, the diagnostic 
effectiveness of the proposed methodology was rigorously 
examined through the systematic implementation of twelve 
differentiated test scenarios. There are 6 categories of 
bearing fault, which are labeled as N, LBF, SIRF, LIRF, 
SORF, LORF, respectively. 

The transfer tasks along with their respective operating 
conditions are detailed in TABLE IV. In this context, 

1 2D D signifies a transfer learning scenario where data is 

adapted from the source domain 1D  to the target domain 

2D .  It is worth mentioning that 10 dB of noise is introduced 
into the target domain dataset to increase the domain bias. 

 
TABLE IV. The transfer tasks under the different working conditions 

Scenario Source  Target 

2 1D D  1149 rpm/0 Nm 1338 rpm/1.5 Nm 

43 D D  1149 rpm/1Nm 1338 rpm/2 Nm 

5 6D D  1247 rpm/0 Nm 1428 rpm/1.5Nm 

7 8D D  1247 rpm/1 Nm 1428 rpm/2 Nm 

9 10D D  1338 rpm/0 Nm 1598 rpm/1.5Nm 

11 12D D  1338 rpm/1 Nm 1598 rpm/2Nm 

2 1D D  1338rpm/1.5 Nm 1149 rpm/0 Nm 

4 3D D  1338 rpm/2 Nm 1149 rpm/1Nm 

6 5D D  1428 rpm/1.5Nm 1247 rpm/0 Nm 

8 7D D  1428 rpm/2 Nm 1247 rpm/1 Nm 

10 9D D  1598 rpm/1.5Nm 1338 rpm/0 Nm 

12 11D D  1598 rpm/2Nm 1338 rpm/1 Nm 

 

 

 
Fig. 14. The test rig for bearing fault diagnosis. (a) The physical map of 
the designed bearing fault test rig, (b) The model map of the tested 
bearing, (c) The schematic diagram of test rig. 

 

 

 
Fig.15.The original signal collected from the bearing fault test rig. (a) N, 
(b)LBF, (c)SIRF, (d)LIRF, (e)SORF, (f)LORF 
 

As demonstrated in TABLE V, we present the 
classification outcomes on the tested bearing fault set of 
target domain by six different methods. The classification 
accuracy across target domain is computed by averaging the 
results from three iterations, where the average values are 
employed for comparison. Clearly, several conclusions can 
be drawn. Firstly, domain adaptation is the crucial procedure 
for addressing the fault diagnosis scenario under changing 
operational environments. For instance, the overall mean 
precision of CNN without transfer learning is merely 
52.58%. However, after adding MMD transfer loss, the 
accuracy of CNN-MMD immediately increases to 79.37%. 
Secondly, it can be observed that there are significant 
performance gaps between CNN-MMD and adversarial 
learning approaches like DANN, DL-ADNN, and DADAN. 
Generative adversarial networks exhibit superior holistic 
performance compared to CNN-MMD methodology in 
cross-domain fault recognition tasks. Thirdly, it can be found 
DADAN achieves the highest classification accuracy among 
all evaluated approaches, in which the overall classification 
accuracy of DADAN is the highest. Furthermore, it is 
observable that the average classification accuracy of 
DADAN attains 98.34%, which is higher than MCD-UDA 
and DL-ADADN by 10.39% and 3.91% respectively, 
indicating the superior performance of DADAN, as 
described in Fig.16. 

Nonetheless, it should be noting that a bit serious 
misclassification phenomenon occurred in some small 
minority transfer path such as 2 1D D and 3 4D D for the 
DANN, MCD-UDA and DL-ADAN, which may attribute 
the wrong alignment across domains. The inner fault signal 
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with a 1mm crack is relatively weak. It becomes even weaker 
after the addition of Gaussian white noise.   Consequently, 
the signal patterns of inner race defects and normal 
conditions in both the source and target domains tend to 
exhibit highly comparable characteristics, which lead to the 
wrong alignment across domains in the embedded feature 
space. The MCD-UDA and DL-ADAN consist of two 
adversarial frameworks, each equipped with dual neural 
network classifiers of same structure, which may generate 
similar decision boundaries. Thus, the task-specific 
boundaries obtained by MCD-UDA and the DL-ADAN may 
be not the ideal ones for recognizing the fault type. The 
proposed DADAN shown improvement for this problem 
since the different dual structure classifiers are employed, 
which can obtain better task-specific boundaries for 
classifying the fault type in target domain.   
 

 

 
Fig. 16. The average classification accuracy of all methods. 

 

TABLE V. Experimental results on our own test rig of six methods 

Tasks CNN MMD-CNN DANN MCD-UDA DL-ADAN 
Proposed 
DADAN 

2 1D D  38.72 82.11 69.22 82.83 96.89 99.89 

43 D D  28.78 80.33 89.70 82.51 96.50 99.94 

5 6D D  55.39 94.72 96.72 92.55 99.33 99.67 

7 8D D  28.78 91.72 96.66 93.61 98.39 100.00 

9 10D D  53.61 80.56 98.5 96.50 96.33 100.00 

11 12D D  57.94 94.50 94.22 95.72 99.83 100.00 

2 1D D  53.83 52.44 50.00 85.27 83.25 89.06 

4 3D D  69.39 88.56 85.33 77.11 88.56 99.22 

6 5D D  61.69 93.72 88.11 72.89 99.94 95.17 

8 7D D  77.39 58.17 80.89 89.33 100 99.22 

10 9D D  37.79 44.94 93.94 90.56 83.06 98.01 

12 11D D  67.61 90.72 99.72 99.83 99.89 99.89 

Average 52.58 79.37 86.35 87.95 94.43 98.34 

 

 

 
Fig.17. Confusion matrices (%) on our own test rig. (a)CNN, (b)CNN-MMD, (c)DANN, (d)MCD-UDA, (e)DL-ADAN, (f) DADAN 
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In addition, the confusion matrix of task 3 4D D is 
selected for specific analysis, as illustrated in Fig. 17. Due to 
the considerable distribution disparity across domains. the 
traditional CNN, lacking transfer learning capability, 
significantly misclassifies these target domain samples, as 
illustrated in Fig. 17(a). For example, the normal data are 
wrongly classified into the inner fault and outer fault data. 
When feature-based transfer loss MMD is added to CNN, the 
classification accuracy is greatly improved, as illustrated in 
Fig. 17(b). The DANN and MCD-UDA show better 
performance than the CNN-MMD while it is inferior than 
DL-DANN, as indicated in Fig. 17(c)-(f). Relative to the 
recently published DL-DANN, the proposed method 
demonstrates an advantage to some extent. As illustrated in 
Fig. 17(f), the proposed DL-DANN achieves exceptional 
classification performance, attaining 100% recognition 
accuracy across all categories for the unsupervised transfer 
learning scenarios involving target domain data, which may 
be attributed to the strategy of dual classifier with different 
structures of the proposed method, verifying the motivation 
of this work. Finally, the results of the accuracy convergence 
curve of the task 3 4D D are plotted in Fig 18. The 
convergence performance of the classical CNN is less 
effective regarding the classification accuracy since it has no 
transfer learning ability, indicating that traditional CNN is 
uncapable of dealing with the transfer tasks with large 
domain bias. 

Compared with CNN, the convergence performance of 
CNN-MMD shows great improvement in terms of 
classification accuracy since MMD loss is added to realize 
the feature transfer learning across domains. However, it 
shows great oscillation during the convergence process. 
Similar phenomenon can be observed for DANN and MCD-
UDA. Meanwhile, we can find that DL-ADNN achieves 
relatively better convergence performance. It can converge 
rapidly although stability leaves much to be desired. On the 
whole, with embedded feature center alignment across 
domain and the dual different classifiers strategy, DADAN 
enjoys much faster and stably convergence performance 
compared with MCD-UDA and DL-DANN. The results 

illustrate the role of dual classifiers with different structures 
and deep cluster alignment in maintaining stability and 
enhancing the diagnostic effectiveness of DADAN. 

Furthermore, the t-SNE technique is employed to 
visualize the features, which can demonstrate the domain 
adaptability of all the methods. Similarly, the transfer task 
with the path 3 4D D is selected to plot the t-SNE diagram, 
as illustrated in Fig.19, where various colors denote different 
categories while different dots shapes represent different 
domains. The latent embedded features such as Component 
1 to Component 4 of the source and the target domain 
learned by the classical CNN without transfer learning 
ability are totally mismatched, as illustrated in Fig.19(a). 
Meanwhile, with feature alignment by MMD, CNN-MMD 
can realize partial alignment of embedded feature across 
domains. However, the fault categories in target domain are 
inseparable, as displayed in Fig.19(b). As a result, some 
misclassifications occurred using CNN and CNN-MMD. 
For the DANN, the fault classes show clear separation while 
the embedded feature across domains are not well aligned. 
As a result, DANN method with only one classifier is not 
able to discern the clear boundary in the target domain, as 
displayed in Fig.19(c). Embedded feature across domains 
gained by MCD-UDA and DL-ADNN show the similar 
pattern with the DANN. However, the performance of 
MCD-UDA and DL-ADNN are better than DANN in terms 
of classification accuracy, which may attribute the dual 
classifiers adopted by them, as illustrated in Fig.19(d)-(e). 
Owing to the feature center alignment strategy, the 
embedded feature learned by the proposed DADAN across 
domain are well matched and aligned, which is facilitating 
for gaining the optimal decision boundaries. Meanwhile, 
thanks to the tactic of dual different classifiers, the same fault 
category is clearly gathered while different fault classes are 
well separated in the embedded feature, as illustrated in 
Fig.17(f). The well alignment of the feature across domains 
and the clear separations indicate that the DADAN can well 
identify the boundaries between different classes, which 
further affirm the superiority of DADAN.  

 

 

 
Fig. 18. Convergence performance of the six methods 
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Fig. 19. The t-SNE visualization of embedded features on the source and 
target domain, where the labels of 6 categories of bearing fault are marked 
from 1 to 6, respectively (a) CNN, (b)CNN-MMD (c)DANN, (d)MCD-
UDA, (e)DL-ADAN, (f)The proposed DADAN 
 

From another perspective, the kernel density estimation 
technique is utilized to harmonize the feature distributions 
across two domains. We plot the results of the above six 
methods, as illustrated in Fig.20, Fig.21 and Fig.22.  

 

 

 
Fig. 20. The estimated feature distribution between the source and target 
domain (a)CNN, (b)CNN-MMD 
 

Similarly, the disparity in the distribution divergence of 
transferable features extracted by CNN is notably significant, 
as indicated in Fig.20(a), indicating the poor transfer 
learning ability of CNN, especially for dealing with the 
transfer tasks with large domain shift. The distribution 
discrepancy is reduced for CNN-MMD, since MMD loss can 
enhance the domain adaptation ability, as indicated in 
Fig.20(b). 

Simultaneously, the proposed DANN demonstrates a 

significant mitigation of the feature distribution gap is 
diminished between domains. However, the performance of 
DANN shows degradation if we compared it with the MCD-
UDA and DL-DANN, as illustrated in Fig.21. Moreover, as 
indicated in Fig.22(b), the proposed DADAN improves the 
feature distribution alignment greatly as compared with 
MCD-UDA and DL-ADNN, since the kernel density 
components related to the embedded fault feature are fully 
matched across domains of the proposed DADAN. Hence, it 
can be found that DADAN has the most superior 
performance.  

 

 

 
Fig. 21. The estimated feature distribution between the source and target 
domain (a)DANN, (b)MCD-UDA 
 

 

 
Fig. 22. The estimated feature distribution between the source and target 
domain (a)DL-ADAN, (b)The proposed DADAN method 

Ⅴ. CONCLUSIONS 

This paper introduces an unsupervised DADAN approach 
for diagnosing bearing faults across different operating 
conditions. The advancements of this research can be 
outlined as follows: 1) The DADAN combines adversarial 
learning with feature center alignment to assist in the 
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extraction of embedded invariant features across domains, 
which can augment the domain adaptation ability. 2) The 
dual classifiers with different structures can obtain better 
classification boundaries in target domain. 3) The feature 
center alignment across domain can facilitate extraction of 
domain-invariant features and alignment of classes across 
domains. With the above strategies, the proposed method 
exhibits excellent performance for diagnosis transfer of 
learning tasks with large domain shift relative to alternative 
domain adaptation approaches. 

A series of comprehensive experiments are conducted on 
two representative fault datasets across multiple transfer 
scenarios to validate the effectiveness and benefits of 
DADAN, indicating that it is a robust and powerful method 
for fault diagnosis under diverse working environments in 
industrial applications. 
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