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Abstract—This paper is devoted to the composite hierarchical
anti-disturbance fuzzy control for nonlinear interconnected
systems (NISs) subject to multiple disturbances, including a
norm-bounded disturbance and an unknown disturbance gen-
erated by an exogenous system. H∞ control and the composite
disturbance-observer-based control consisting of a feedforward
compensation term and a state-feedback sampled-data control
are employed to attenuate and compensate these two types of
disturbances in the T-S fuzzy framework, respectively. To start
with, NISs, exogenous disturbance, disturbance observer, and
composite controller are all modeled using T-S fuzzy model
technology. By building a time-dependent function, a sufficient
condition is then established to ensure the exponential stability
of the estimation error system and closed-loop NISs with a
prescribed H∞ performance level. Following this, the joint
design of the desired observer and composite disturbance-
observer-based fuzzy controller is developed. Finally, a numer-
ical simulation is performed to demonstrate the effectiveness of
the presented composite hierarchical control scheme.

Index Terms—Interconnected system, T-S fuzzy system, Dis-
turbance observer, Composite controller

I. INTRODUCTION

NOWADAYS, nonlinear systems have received sustained
attention in the control field resulting from their out-

standing ability to model actual systems [1]. Nonlinear
interconnected systems (NISs) are a typical type of nonlinear
systems composed of multiple interacting subsystems [2]
and have potential applications in various branches of en-
gineering fields, including but not limited to communication
systems, power systems, aerospace systems, and robotic arm
systems [3, 4]. Due to the effects of nonlinear interconnec-
tion among subsystems, the traditional linear system theory
cannot be directly applied to NISs. In this case, the T-S fuzzy
model is one of the most efficient techniques because it can
provide a localized linear representation of nonlinear systems
through fuzzy sets and IF-THEN fuzzy rules [5–8].

To date, numerous papers and applications have witnessed
the fusion of T-S fuzzy model technology and diverse NISs
[9–11]. For example, a decentralized adaptive T-S fuzzy
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controller was designed for a type of state-constrained NISs
based on a nonlinear state-dependent barrier function in [10].
And the T-S fuzzy model technology was used to stochastic
NISs with nontriangular structural dynamic uncertainties in
[11].

In real life, disturbances are widely present in various con-
trol systems, which have a significant impact on the stability
and performance of the control system [12]. As exogenous
disturbances are often unmeasurable, many control tech-
niques have been developed to reduce the adverse effects of
exogenous disturbance [13–16]. Disturbance observer (DO)
has become one of the most popular methods for dealing
with exogenous disturbance because of their simplicity and
effectiveness in estimating the equivalent disturbance and
compensating it back into the system [17–19]. In [20], a
terminal sliding mode control approach based on DO was
employed to stabilize and control a fractional-order arch
micromotor system. In [21], a robust active controller and
DO were used to improve the comfort of the car driver. In
[22, 23], when studying T-S fuzzy nonlinear systems, for
the convenience of research, they also chose to perform T-S
fuzzification on the DO.

In recent years, sampled-data systems have garnered sig-
nificant attention because they can more accurately de-
scribe the basic characteristics of actual engineering than
continuous- or discrete-time systems [24]. Since sampled-
data control only requires the system’s state information
at sampling instances, it can greatly reduce the amount
of information transmitted, greatly improving the control
efficiency of the system [25, 26]. Sampled-data control
has been widely used in various systems of research. In
[27], a sampled-data fuzzy controller incorporating both
current and delayed state information was used in a T-S
fuzzy system with a time lag to study the sampled-data
stabilization problem. In [28], a dissipative analysis and
quantized sampled-data control were designed to study T-
S fuzzy network control systems under random network
attacks, and the effectiveness of the proposed method was
verified by experiments. Recently, sampled-data control has
also been shown to be an effective method for designing DO.
In [29], a sampled-data adaptive output feedback controller
was used to deal with nonlinear systems with unmeasurable
states, uncertain dynamics, and unknown time-varying ex-
ogenous disturbances. The unknown time-varying exogenous
disturbances were estimated by designing DO. A discrete-
time DO was developed in [30] to ensure robust stability in
uncertain sampled-data control systems.

In summary, this paper studies the design of composite
hierarchical anti-disturbance fuzzy controller for NISs with
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multiple disturbances based on DO. The overall structure
of this paper is as follows: Section II uses T-S fuzzy
model technology to describe NISs, exogenous disturbance,
DO, and composite controller, respectively. Constructing
the estimation error system and closed-loop NISs. Section
III proposes a composite controller design. The design is
implemented in the form of linear matrix inequalities to
ensure that the estimation error system and closed-loop NISs
are exponentially stable (ES) under zero disturbances and
have an H∞ performance level under zero initial conditions.
Section IV gives a simulation example to verify the effec-
tiveness of the proposed method. Section V summarizes the
paper.

II. PRELIMINARIES

Unless explicitly indicated, the notations used throughout
are the same as those provided in Refs. [31, 32].

Consider a NIS with J subsystems modeled using T-S
fuzzy modeling technology. The l IF-THEN rules of the j
subsystem are described as follows:

Zlj : IF zj1(t)is Γlj1 and . . . and zjp(t) is Γljp,

ẋj(t) =Aljxj(t) +Blj(uj(t) + dj(t)) + Cljζj(t)

+
J∑

n=1,n6=j

Dl
njxn(t), (1)

where xj(t) ∈ Rij is the state vector of the jth subsystem,
uj(t) ∈ Rij is the control input of the jth subsystem,
dj(t) ∈ Rij is the unknown disturbance generated by the
exogenous system of the jth subsystem, ζj(t) ∈ Rmj is
the norm-bounded external disturbance vector of the jth
subsystem, and Dl

nj ∈ Rij×ij is the interconnection term
between the jth subsystem and the nth subsystem of the
interconnected system. Alj ∈ Rij×ij , Blj ∈ Rij×ij , and
Clj ∈ Rij are all known parameters of the system.

Using single-point fuzzification, product reasoning, and
average weighted defuzzification methods to system (1), the
model of the jth fuzzy subsystem is obtained as follows:

ẋj(t) =

rj∑
l=1

glj(υj(t)){Aljxj(t) +Blj(uj(t) + dj(t))

+ Cljζj(t) +
J∑

n=1,n6=j

Dl
njxn(t)}, (2)

where

glj(υj(t)) =
θlj(υj(t))∑rj
%=1 θ

%
j (υj(t))

,

θlj(υj(t)) =

p∏
q=1

Γ ljq(υjq(t)),

in which Γ ljq(υjq(t)) : Wυjq ⊂ R → R[0,1] is the mem-
bership function of υjq(t) on the set Wυjq and we can get
the following properties of glj(υj(t)) : glj(υj(t)) ∈ [0, 1] and∑rj
l=1 g

l
j(υj(t)) = 1. Assume the disturbance is produced by

an exogenous system:{
ξ̇j(t) = Fjξj(t),

dj(t) = Ejξj(t).
(3)
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Fig. 1. Composite control structure diagram of NISs.

Using the same T-S fuzzy modeling and processing method
as (1) and (2) to (3), we can get the fuzzy perturbation
exogenous system

Zlj : IF zj1(t) is Γlj1 and . . . and zjp(t) is Γljp,
ξ̇j(t) =

rj∑
l=1

glj(υj(t))F
l
jξj(t),

dj(t) =

rj∑
l=1

glj(υj(t))E
l
jξj(t),

(4)

where F lj ∈ Rij×ij and Elj ∈ Rij×ij are known parameters.
To estimate the unknown disturbance dj(t), a T-S fuzzy DO
is designed as follows:

Zlj : IF zj1(t) is Γlj1 and . . . and zjp(t) is Γljp,

Żj(t) =

rj∑
l=1

glj(υj(t)){F lj ξ̂j(t) + LljB
l
jE

l
j ξ̂j(t)

+ Llj(A
l
jxj(t) +Bljuj(t)

+
J∑

n=1,n6=j

Dl
njxn(t))},

ξ̂j(t) =

rj∑
l=1

glj(υj(t)){Zj(t)− Lljxj(t)},

d̂j(t) =

rj∑
l=1

glj(υj(t))E
l
j ξ̂j(t).

(5)

Based on the sampling mechanism, h > hk = tk+1 − tk,
tk > 0 is the sampling interval, k ∈ Z>0. Then the fuzzy
controller can be designed as

Z%j : IF zj1(t) is Γ%j1 and . . . and zjp(t) is Γ%jp,
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uj(t) =

rj∑
%=1

g%j (zj(tk)){K%
j xj(tk)− d̂j(t)}, (6)

where xj(tk) represents the system state of the jth subsystem
at sampling time tk.

Remark 1. In (1), we choose to use the interconnection
term in the form of

∑J
n=1,n6=j D

l
njxn(t). It expresses the

interconnection relationship between different subsystems
through a certain parameter Dl

nj , and applies the state xn(t)
of other subsystems to the target subsystem directly. This
form not only intuitively reflects the interaction between
subsystems but also can adapt to different NIS by adjusting
the structure of the parameter Dl

nj .

Remark 2. In this paper, the NIS (2), exogenous system
(4), DO (5), and controller (6) are all modeled using T-S
fuzzy modeling. The main purpose of this treatment is to
ensure that the exogenous disturbance-related parts share a
unified modeling framework with the NIS to maintain overall
consistency. This unified modeling method can significantly
simplify the analysis process of the system, especially based
on linear matrix inequality (LMI), making the design steps
more systematic and efficient.

Now, the disturbance estimation error is defined as follows:

ej(t) = ξj(t)− ξ̂j(t). (7)

According to (2), (4), and (5), we can get

ėj(t) =ξ̇j(t)− ˙̂
ξj(t)

=

rj∑
l=1

glj(υj(t)){F ljξj(t)− (Żj(t)− Llj ẋj(t))}

=

rj∑
l=1

glj(υj(t)){(F lj + LljB
l
jE

l
j)ej(t)

+ LljC
l
jζj(t)}. (8)

To enhance readability, we provide a concise description
of the following form:

τ lj(t) =

rj∑
l=1

glj(υj(t))τ
l
j .

According to the (2) and (6), the closed-loop NIS is as
follows:

ẋj(t) =

rj∑
l=1

glj(υj(t))

rj∑
%=1

g%j (zj(tk)){Aljxj(t)

+Blj(K
%
j xj(tk)− d̂j(t))

+Bljdj(t) + Cljζj(t) +
J∑

n=1,n6=j

Dl
njxn(t)},

=Alj(t)xj(t) +Blj(t)K
%
j (tk)xj(tk)

+Blj(t)E
l
j(t)ej(t) + Clj(t)ζj(t)

+

J∑
n=1,n6=j

Dl
nj(t)xn(t). (9)

Define the reference output as follows:

Zj(t) = Gl1j(t)xj(t) +Gl2j(t)ej(t). (10)

Lemma 1. [33] When there are matrices X and Y of any
suitable dimensions, the following relationship is satisfied:

2X TY 6 σ−1X TX + σYTY,

where σ is a positive scalar.

Lemma 2. The following statements are true:
1) [34](Continuous Jensen Inequality) For any positive

definite matrix N ∈ Rn×n, scalars a and b, vector
function ε : [a, b]→ Rn, the following inequality holds:

X TNX ≤ (b− a)

∫ b

a

εT (σ)N ε(σ) dσ,

where X =
∫ b
a
ε(σ) dσ.

2) [35] (Discrete Jensen inequality): For any positive ma-
trix N ∈ Rn×n,N T = N > 0, two positive integers a
and b satisfy b > a > 1, then the following inequality
holds:(

b∑
t=a

X (t)

)T
N

(
b∑
t=a

X (t)

)
6 d̂

b∑
t=a

X T (t)NX (t),

where d̂ = b− a+ 1.

Lemma 3. [36] For a given matrix

Z =

[
Z11 Z12

Z21 Z22

]
,

the following three conditions are equivalent:

1)Z < 0;

2)Z11 < 0,Z22 −Z21Z−1
11 Z12 < 0;

3)Z22 < 0,Z11 −Z12Z−1
22 Z21 < 0.

To enable further analysis, it is necessary to propose the
following definition.

Definition 1. [37]The estimation error system (7) and closed-
loop NIS (9) are said to be ES with a prescribed H∞
performance level γ, if

1) Estimation error system (7) and closed-loop NIS (9) are
ES when ζj(t) = 0.

2) Under the zero initial condition, the following inequality
is satisfied:

J∑
j=1

∫ ∞
0

zTj (s)zj(s) ds 6 γ2
J∑
j=1

∫ ∞
0

ζTj (s)ζj(s) ds.

III. MAIN RESULTS

Now construct a Lyapunov function:

V (t) =

J∑
j=1

Vj(t), (11)

where

Vj(t) =
3∑
r=1

Vrj(t),

V1j(t) = xTj (t)P1jxj(t) + eTj (t)P2jej(t),

V2j(t) = (tk+1 − t)
∫ t

tk

e2δ(s−t)ẋTj (s)P3j ẋj(s) ds,

V3j(t) = (tk+1 − t)∆T
j (t)Hj∆j(t),
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with Pςj > 0 with ς ∈ `3, ∆j(t) = col{xj(t), xj(tk)}, and

Hj =

[
He{Xj

2 } −Xj + Yj
∗ He{−Yj +

Xj

2 }

]
.

Since 0 6 hk 6 h, it follows that hk = ϑh, 0 6 ϑ 6 1. Thus

V1j(t) + V3j(t) =
t− tk
hk

∆T
j (t)

[
P1j 0
0 0

]
∆j(t)

+
tk+1 − t
hk

ϑ∆T
j (t)Ψj∆j(t)

+
tk+1 − t
hk

(1− ϑ)∆T
j (t)

[
P1j 0
0 0

]
∆j(t)

+ eTj (t)P2jej(t),

where

Ψj =

[
P1j + hHe{Xj

2 } h(−Xj + Yj)

∗ hHe{−Yj +
Xj

2 }

]
> 0. (12)

For t ∈ [tk, tk+1), from the above analysis and inequality
(12), we can know that V1j(t) + V3j(t) is positive definite.
According to Pςj > 0, we can determine that V2j(t) is
positive definite. Therefore, we can conclude that Vj(t) =∑3
r=1 Vrj(t) is positive definite.

Hence,
Vj(t) > V1j(t) + V3j(t).

Let

V1j(t) + V3j(t) = ∆T
j (t)Ψ̄j∆j(t) + eTj (t)P2jej(t).

Then, there exists

V1j(t) + V3j(t) ≥ λmin(Ψ̄j) |∆j(t)|2 + λmin{P2j} |ej(t)|2 ,

and there scalars positive scalar

ε0j = λmin{P2j},
εj = λmin(Ψ̄j) = min {λmin(P1j), λmin(Ψj)} .

Therefore,

Vj(t) > V1j(t) + V3j(t)

≥ εj |∆j(t)|2 + ε0j |ej(t)|2

= εj

(
|εj(t)|2 + |εj(tk)|2

)
+ ε0j |ej(t)|2 ,

such that

Vj(t) > εj |εj(t)|2 . (13)

A. Stability and H∞ Performance Analysis

In this section, we use the Lyapunov function to conduct
H∞ stability analysis on the estimation error system (7)
and closed-loop NIS (9) and derive the conditions under
which the estimation error system (7) and closed-loop NIS
(9) achieve ES under the H∞ performance index γ.

Theorem 1. For given scalars δ > 0, γ > 0, if there exist
scalar σ > 0, and matrices Pςj > 0 with ς ∈ `3, Xj , Yj ,
M1j , M2j , Tj , R1j , R2j , K

%
j , Llj such that the following

inequalities and (12) hold, then the estimation error system

(7) and closed-loop NISs (9) are ES with H∞ performance
index γ:

Ψ l%0j =


Θl11j Θl12j Θl13j Θl%14j Θl16j

∗ Θ22j Θl23j Θl%24j Θl26j

∗ ∗ Θl33j 0 Θl36j

∗ ∗ ∗ Θ44j 0
∗ ∗ ∗ ∗ Θ66j

 < 0, (14)

Ψ l%1j =


Θ̄l11j Θ̄l12j Θl13j Θ̄l%14j Θl16j

∗ Θ̄22j Θl23j Θ̄l%24j Θl26j

∗ ∗ Θl33j 0 Θl36j

∗ ∗ ∗ Θ̄44j 0
∗ ∗ ∗ ∗ Θ66j

 < 0, (15)

Ψ l%2j =

Θl11j Θl12j Θl13j Θl%14j Θ15j Θl16j

∗ Θ22j Θl23j Θl%24j Θ25j Θl26j

∗ ∗ Θl33j 0 0 Θl36j

∗ ∗ ∗ Θ44j Θ45j 0
∗ ∗ ∗ ∗ Θ55j 0
∗ ∗ ∗ ∗ ∗ Θl66j

 < 0,

(16)

where

Θl11j =He{−Xj

2
−M1j +RT1jA

l
j}+ 2δP1j

+ 2σ−1(J − 1)
J∑

n=1,n6=j

(Dl
jn)TDl

jn

+ σRT1jR1j + (Gl1j)
TGl1j

Θl12j =P1j −M2j −RT1j + (RT2jA
l
j)
T ,

Θl13j =RT1jB
l
jE

l
j + (Gl1j)

TGl2j ,

Θl%14j =Xj − Yj +MT
1j − Tj +RT1jB

l
jK

%
j ,

Θ15j =hMT
1j , Θ

l
16j = RT1jC

l
j ,

Θ22j = −He{RT2j}+ σRT2jR2j ,

Θl23j =RT2jB
l
jE

l
j , Θ

l%
24j = MT

2j +RT2jB
l
jK

%
j ,

Θ25j =hMT
2j , Θ

l
26j = RT2jC

l
j ,

Θl33j =He{P2jF
l
j + P2jL

l
jB

l
jE

l
j}+ 2δP2j

+ (Gl2j)
TGl2j ,

Θl36j =P2jL
l
jC

l
j , Θ44j = He{Yj −

Xj

2
+ Tj},

Θ45j =hTTj , Θ55j = −he−2δhP3j , Θ66j = −γ2I,

Θ̄l11j =He{(hδ − 1

2
)Xj −M1j +RT1jA

l
j}

+ 2σ−1(J − 1)
J∑

n=1,n6=j

(Dl
jn)TDl

jn

+ σRT1jR1j + (Gl1j)
TGl1j + 2δP1j ,

Θ̄l12j =P1j −M2j −RT1j + (RT2jA
l
j)
T + hHe{Xj

2
},

Θ̄l%14j = (1− 2hδ)(Xj − Yj) +MT
1j − Tj +RT1jB

l
jK

%
j ,

Θ̄22j = −He{RT2j}+ σRT2jR2j + hP3j ,

Θ̄l%24j =MT
2j +RT2jB

l
jK

%
j + h(−Xj + Yj),

Θ̄44j =He{(1− 2hδ)(Yj −
Xj

2
) + Tj}.
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Proof: Calculating V̇rj(t), (r = 1, 2, 3), we can get

V̇1j(t) =2xTj (t)P1j ẋj(t) + 2eTj (t)P2jL
l
j(t)C

l
j(t)ζj(t)

+ 2eTj (t)(P2j(F
l
j(t) + Llj(t)B

l
j(t)E

l
j(t)))ej(t),

(17)

V̇2j(t) =−
∫ t

tk

e2(δ+2η)(s−t)ẋTj (s)P3j ẋj(s) ds

+ (tk+1 − t)ẋTj (t)P3j ẋj(t)− 2(δ + 2η)V2j(t),
(18)

V̇4j(t) =−
[
xTj (t)He{Xj

2
}xj(t) + xTj (t)(−Xj + Yj)xj(tk)

+ xTj (tk)(−XT
j + Y Tj )xj(t) + xTj (tk)He{−Yj

+
Xj

2
}xj(tk)

]
+ 2(tk+1 − t)

[
xTj (tk)(−XT

j

+ Y Tj )ẋj(t) + xTj (t)He{Xj

2
}ẋj(t)

]
. (19)

Let

Jj(t) =
1

t− tk

∫ t

tk

ẋj(s) ds. (20)

By using the continuous Jensen inequality of Lemma 2, the
(18) can be transformed into

V̇2j(t) ≤ −e−2δh(t− tk)J Tj (t)P3jJj(t)
+ (tk+1 − t)ẋTj (t)P3j ẋj(t)− 2δV2j(t). (21)

Calculating 2δVrj(t), (r = 1, 2, 3), we can get

2δV1j(t) = 2δxTj (t)P1jxj(t) + 2δeTj (t)P2jej(t), (22)

2δV2j(t) = 2δ(tk+1 − t)

×
∫ t

tk

e2(δ+2η)(s−t)ẋTj (s)P3j ẋj(s) ds, (23)

2δV3j(t) = 2δ(tk+1 − t)
[
xTj (t)He{Xj

2
}xj(t)

+ xTj (tk)(−XT
j + Y Tj )xj(t)

+ xTj (t)(−Xj + Yj)xj(tk)

+ xTj (tk)He{−Yj +
Xj

2
}xj(tk)

]
. (24)

In addition, for matrices M1j ,M2j , Tj , R1j , R2j of a certain
dimension, the following equations hold:

0 = 2

J∑
j=1

[xTj (t)MT
1j + ẋTj (t)MT

2j + xTj (tk)TTj ][−xj(t)

+ xj(tk) + (t− tk)Jj(t)], (25)

0 = 2
J∑
j=1

[xTj (t)RT1j + ẋTj (t)RT2j ][−ẋj(t) +Alj(t)xj(t)

+Blj(t)K
%
j (tk)xj(tk) +Blj(t)E

l
j(t)ej(t)

+ Clj(t)ζj(t) +
J∑

n=1,n6=j

Dl
nj(t)xn(t)]. (26)

The expression (26) can be evaluated as follows:

0 =2
J∑
j=1

[
−xTj (t)RT1j ẋj(t) + xTj (t)RT1jA

l
j(t)xj(t)

+ xTj (t)RT1jB
l
j(t)K

%
j (tk)xj(tk)

+ xTj (t)RT1jB
l
j(t)E

l
j(t)ej(t) + xTj (t)RT1jC

l
j(t)ζj(t)

+ xTj (t)RT1j

J∑
n=1,n6=j

Dl
nj(t)xn(t)− ẋTj (t)RT2j ẋj(t)

+ ẋTj (t)RT2jA
l
j(t)xj(t) + ẋTj (t)RT2jB

l
j(t)E

l
j(t)ej(t)

+ ẋTj (t)RT2jB
l
j(t)K

%
j (tk)xj(tk) + ẋTj (t)RT2jC

l
j(t)ζj(t)

+ ẋTj (t)RT2j

J∑
n=1,n6=j

Dl
nj(t)xn(t)

]
. (27)

According to Lemma 1 and Lemma 2, the expression

2
J∑
j=1

xTj (t)RT1j

J∑
n=1,n6=j

Dl
nj(t)xn(t)

can be transformed as follows:

2
J∑
j=1

xTj (t)RT1j

J∑
n=1,n6=j

Dl
nj(t)xn(t)

=2
J∑
j=1

(R1jxj(t))
T (

J∑
n=1,n6=j

Dl
nj(t)xn(t))

6
J∑
j=1

(σ(R1jxj(t))
T (R1jxj(t))

+ σ−1(
J∑

n=1,n6=j

Dl
nj(t)xn(t))T (

J∑
n=1,n6=j

Dl
nj(t)xn(t)))

6
J∑
j=1

(σ(R1jxj(t))
T (R1jxj(t))

+ σ−1(J − 1)
J∑

n=1,n6=j

xTn (t)(Dl
nj(t))

TDl
nj(t)xn(t))

=
J∑
j=1

(σ(R1jxj(t))
T (R1jxj(t))

+ σ−1(J − 1)

J∑
n=1,n6=j

xTj (t)(Dl
jn(t))TDl

jn(t)xj(t)).

By applying the same processing method and steps, we can
obtain

2
J∑
j=1

ẋTj (t)RT2j

J∑
n=1,n6=j

Dl
nj(t)xn(t)

6
J∑
j=1

(σẋTj (t)RT2jR2j ẋj(t)

+ σ−1(J − 1)
J∑

n=1,n6=j

xTj (t)(Dl
jn(t))TDl

jn(t)xj(t)).

After the above processing, (27) can be converted to

0 6
J∑
j=1

[
2(−xTj (t)RT1j ẋj(t) + xTj (t)RT1jA

l
j(t)xj(t)

+ xTj (t)RT1jB
l
j(t)K

%
j (tk)xj(tk)

+ xTj (t)RT1jB
l
j(t)E

l
j(t)ej(t) + xTj (t)RT1jC

l
j(t)ζj(t)

− ẋTj (t)RT2j ẋj(t) + ẋTj (t)RT2jA
l
j(t)xj(t)

+ ẋTj (t)RT2jB
l
j(t)K

%
j (tk)xj(tk)

+ ẋTj (t)RT2jB
l
j(t)E

l
j(t)ej(t) + ẋTj (t)RT2jC

l
j(t)ζj(t))

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 849-859

 
______________________________________________________________________________________ 



+ σ(R1jxj(t))
TR1jxj(t) + σ(R2j ẋj(t))

TR2j ẋj(t)

+ 2σ−1(J − 1)
J∑

n=1,n6=j

xTj (t)(Dl
jn(t))TDl

jn(t)xj(t)
]
.

(28)

According to (10), (17), (19) - (25), and (28), we can get

V̇ (t) + 2δV (t) + ZT (t)Z(t)− γ2ζT (t)ζ(t)

=
J∑
j=1

(V̇j(t) + 2δVj(t) + ZTj (t)Zj(t)− γ2ζTj (t)ζj(t))

6
J∑
j=1

(
tk+1 − t
hk

φT1j(t)Ψ1j[hk](t, tk)φ1j(t))

+
t− tk
hk

φT2j(t)Ψ2j[hk](t, tk)φ2j(t)

=
J∑
j=1

((1− ϑ)φT1j(t)Ψ0j(t, tk)φ1j(t)

+
tk+1 − t

h
φT1j(t)Ψ1j[h](t, tk)φ1j(t)

+
t− tk
h

φT2j(t)Ψ2j[h](t, tk)φ2j(t)), (29)

where

φ1j(t) = {xj(t), ẋj(t), ej(t), xj(tk), ζj(t)},
φ2j(t) = {xj(t), ẋj(t), ej(t), xj(tk),Jj(t), ζj(t)},

Ψ0j(t, tk) =

[
Ξ01j(t) Ξ02j(t, tk)
∗ Ξ03j

]
,

Ψ1j[h](t, tk) =

[
Ξ11j(t) Ξ12j(t, tk)
∗ Ξ13j

]
,

Ψ2j[h](t, tk) =

[
Ξ01j(t) Ξ21j(t, tk)
∗ Ξ22j

]
,

Ξ01j(t) =

 Θ11j(t) Θ12j(t) Θ13j(t)
∗ Θ22j Θ23j(t)
∗ ∗ Θ33j(t)

 ,
Ξ02j(t, tk) =

 Θ14j(t, tk) Θ16j(t)
Θ24j(t, tk) Θ26j(t)

0 Θ36j(t)

 ,
Ξ03j =

[
Θ44j 0
∗ Θ66j

]
,

Ξ11j(t) =

 Θ̄11j(t) Θ̄12j(t) Θ13j(t)
∗ Θ̄22j Θ23j(t)
∗ ∗ Θ33j(t)

 ,
Ξ12j(t, tk) =

 Θ̄14j(t, tk) Θ16j(t)
Θ̄24j(t, tk) Θ26j(t)

0 Θ36j(t)

 ,
Ξ13j =

[
Θ̄44j 0
∗ Θ66j

]
,

Ξ21j(t, tk) =

 Θ14j(t, tk) Θ15j Θ16j(t)
Θ24j(t, tk) Θ25j Θ26j(t)

0 0 Θ36j(t)

 ,
Ξ22j =

 Θ44j Θ45j 0
∗ Θ55j 0
∗ ∗ Θ66j

 ,
Θ11j(t) =He{−Xj

2
−M1j +RT1jA

l
j(t)}+ 2δP1j

+ 2σ−1(J − 1)
J∑

n=1,n6=j

(Dl
jn(t))TDl

jn(t)

+ σRT1jR1j + (Gl1j)
T (t)Gl1j(t),

Θ12j(t) =P1j −M2j −RT1j + (RT2jA
l
j(t))

T ,

Θ13j(t) =RT1jB
l
j(t)E

l
j(t) + (Gl1j)

T (t)Gl2j(t),

Θ14j(t, tk) =Xj − Yj +MT
1j − Tj +RT1jB

l
j(t)K

%
j (tk),

Θ15j =hMT
1j , Θ16j(t) = RT1jC

l
j(t),

Θ22j = −He{RT2j}+ σRT2jR2j ,

Θ23j(t) =RT2jB
l
j(t)E

l
j(t),

Θ24j(t, tk) =MT
2j +RT2jB

l
j(t)K

%
j (tk),

Θ25j =hMT
2j , Θ26j(t) = RT2jC

l
j(t),

Θ33j(t) =He{P2j(F
l
j(t) + Llj(t)B

l
j(t)E

l
j(t))}

+ 2δP2j + (Gl2j)
T (t)Gl2j(t),

Θ36j(t) =P2jL
l
j(t)C

l
j(t),

Θ44j =He{Yj −
Xj

2
+ Tj},

Θ45j =hTTj , Θ55j = −he−2δhP3j ,

Θ66j = − γ2I,

Θ̄11j(t) =He{(hδ − 1

2
)Xj −M1j +RT1jA

l
j(t)}

+ 2σ−1(J − 1)

J∑
n=1,n6=j

(Dl
jn(t))TDl

jn(t)

+ σRT1jR1j + (Gl1j)
T (t)Gl1j(t) + 2δP1j ,

Θ̄12j(t) =P1j −M2j −RT1j + (RT2jA
l
j(t))

T

+ hHe{Xj

2
},

Θ̄14j(t, tk) = (1− 2hδ)(Xj − Yj) +MT
1j − Tj

+RT1jB
l
j(t)K

%
j (tk),

Θ̄22j = −He{RT2j}+ σRT2jR2j + hP3j ,

Θ̄24j(t, tk) =MT
2j +RT2jB

l
j(t)K

%
j (tk) + h(−Xj + Yj),

Θ̄44j =He{(1− 2hδ)(Yj −
Xj

2
) + Tj}.

It is easy to see that LMIs (12), (14) - (16) can ensure that

V̇j(t) + 2δVj(t) + ZTj (t)Zj(t)− γ2ζTj (t)ζj(t) 6 0. (30)

Now, we consider the case when ζj(t) = 0. Under this
condition, we derive from inequality (30) that

V̇j(t) + 2δVj(t) 6 0. (31)

From (11) and (31), it follows that for any t ∈ [tk, tk+1)

Vj(t) 6 e−2δ(t−tk)Vj(tk)

6 e−2δ(t−tk−1)Vj(tk−1)

...

6 e−2δtVj(0).

Hence, it can be concluded from the above inequality and
(13) that

|εj(t)| 6

√
Vj(0)

εj
e−δt,
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which means that the estimation error system (7) and closed-
loop NISs (9) are ES with a decay rate δ under the situation
where ζj(t) = 0.

Next, we will discuss the H∞ performance of the estima-
tion error system (7) and closed-loop NISs (9). Based on the
inequality (30) and two proven parts, Vj(t) > 0 and δ > 0,
we can get the following conclusion:

V̇j(t) + ZTj (t)Zj(t)− γ2ζTj (t)ζj(t) 6 0. (32)

For a given Q̂� 1, integrating (32) from 0 to tQ̂ yields that

Vj(tQ̂)− Vj(tQ̂−1) + Vj(t
−
Q̂−1

)− ...− Vj(0)

+

∫ tQ̂

0

(
ZTj (s)Zj(s)− γ2ζTj (s)ζj(s)

)
ds 6 0.

Since Vj(tQ̂) > 0, Vj(0) = 0 and Vj(t−K−1)−Vj(tK−1) = 0,
K = 2, 3, ..., Q̂, so we can get∫ tQ̂

0

ZTj (s)Zj(s) ds 6 γ2

∫ tQ̂

0

ζTj (s)ζj(s) ds.

When tQ̂ →∞, it follows that∫ ∞
0

ZTj (s)Zj(s) ds 6 γ2

∫ ∞
0

ζTj (s)ζj(s) ds.

Therefore, we have
J∑
j=1

∫ ∞
0

ZTj (s)Zj(s) ds 6 γ2
J∑
j=1

∫ ∞
0

ζTj (s)ζj(s) ds,

which means that the estimation error system (7) and closed-
loop NISs (9) have an H∞ performance level γ.

B. Controller Synthesis

Theorem 2. For given scalars δ > 0, γ > 0, $ > 0, the
estimation error system (7) and closed-loop NIS (9) are ES
with an H∞ performance index γ if there exist scalar σ > 0,
and matrices Pςj > 0 with ς ∈ `3, Xj , Yj , M1j , M2j , Tj ,
R1j , R2j , S

%
j , V lj such that the following inequalities holds:

Ψj =

[
P̄1j + hHe{ X̄j

2 } h(−X̄j + Ȳj)

∗ hHe{−Ȳj +
X̄j

2 }

]
> 0,

(33)

Ψ l%0j =

 Ξ̄l%01j Ξ̄l02j Ξ̄l03j

∗ Ξ̄04j Ξ̄05j

∗ ∗ Ξ̄06j

 < 0, (34)

Ψ l%1j =

 Ξ̄l%11j Ξ̄l02j Ξ̄l03j

∗ Ξ̄04j Ξ̄05j

∗ ∗ Ξ̄06j

 < 0, (35)

Ψ l%2j =


Ξ̄l%01j Ξ̄21j Ξ̄l02j Ξ̄l03j

∗ Ξ̄22j Ξ̄23j Ξ̄24j

∗ ∗ Ξ̄04j Ξ̄05j

∗ ∗ ∗ Ξ̄06j

 < 0, (36)

where

Ξ̄l%01j =


Φl11j Φl12j Φl13j Φl%14j

∗ Φ22j Φl23j Φl%24j

∗ ∗ Φl33j 0
∗ ∗ ∗ Φ44j

 ,

Ξ̄l02j =


Φl16j Φ17j

Φl26j 0
Φl36j 0

0 0

 ,

Ξ̄l03j =


Dl
j1R̄1j 0 0 0

Dl
j2R̄1j 0 0 0

...
...

...
...

Dl
jJ R̄1j 0 0 0


T

(J−1)×4

,

Ξ̄04j =

[
−γ2I 0
∗ −I

]
,

Ξ̄05j =

[
0 0 . . . 0
0 0 . . . 0

]
2×(J−1)

,

Ξ̄06j =

diag{− σ

2(J − 1)
I, . . . ,− σ

2(J − 1)
I}(J−1)×(J−1),

Ξ̄l%11j =


Φ̂l11j Φ̂l12j Φl13j Φ̂l%14j

∗ Φ̂22j Φl23j Φ̂l%24j

∗ ∗ Φl33j 0

∗ ∗ ∗ Φ̂44j

 ,

Ξ̄21j =


Φ15j

Φ25j

0
Φ45j

 , Ξ̄22j = Φ55j , Ξ̄23j =
[

0 0
]
,

Ξ̄24j =
[

0 0 . . . 0
]
1×(J−1)

,

R̄1j =R−1
1j ,Φ

l
11j = 2δP̄1j +He{−X̄j

2
− M̄T

1j

+ R̄T1j(A
l
j)
T }+ σI,Φl12j = P̄1j − M̄2j − R̄1j

+$R̄T1j(A
l
j)
T ,

Φl13j =BljE
l
j + R̄T1j(G

l
1j)

TGl2j ,

Φl%14j = X̄j − Ȳj + M̄T
1j − T̄j +BljS

%
j ,

Φ15j =hM̄T
1j ,Φ

l
16j = Clj ,Φ17j = R̄T1j(G

l
1j)

T ,

Φ22j =$(−He{R̄1j}+ σ$I),Φl23j = $BljE
l
j ,

Φl%24j = M̄T
2j +$BljS

%
j ,Φ25j = hM̄T

2j ,Φ
l
26j = $Clj ,

Φl33j =He{P2jF
l
j + V ljB

l
jE

l
j}+ 2δP2j + (Gl2j)

TGl2j ,

Φl36j =V ljC
l
j ,Φ44j = He{Ȳj −

X̄j

2
+ T̄j},

Φ45j =hT̄Tj ,Φ55j = −he−2δhP̄3j ,

Φ̂l11j = 2δP̄1j +He{(hδ − 1

2
)X̄j − M̄T

1j + R̄T1j(A
l
j)
T }

+ σI,

Φ̂l12j = P̄1j − M̄2j − R̄1j +$R̄T1j(A
l
j)
T + hHe{X̄j

2
},

Φ̂l%14j = X̄j − Ȳj + M̄T
1j − T̄j +BljS

%
j + 2hδ(−X̄j + Ȳj),

Φ̂22j = −$He{R̄1j}+ σ$2I + hP̄3j ,

Φ̂l%24j = M̄T
2j +$BljS

%
j + h(−X̄j + Ȳj),

Φ̂44j =He{Ȳj −
X̄j

2
+ T̄j}+ 2δhHe{−Ȳj +

X̄j

2
}.

Therefore, the DO gain and controller gain are obtained by

Llj = P−1
2j V

l
j ,K

%
j = S%j R̄

−1
1j . (37)

Proof: Denote

R2j = $R1j ,
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and block diagonal matrices

Xo = diag{R1j R1j},
Xa = diag{R1j R1j I R1j I},
Xb = diag{R1j R1j I R1j R1j I}.

According to Lemma 3, (34), (35), and (36) are respec-
tively equivalent to

Ψ̂ l%0j =


Φ̄l11j Φl12j Φl13j Φl%14j Φl16j

∗ Φ22j Φl23j Φl%24j Φl26j

∗ ∗ Φl33j 0 Φl36j

∗ ∗ ∗ Φ44j 0
∗ ∗ ∗ ∗ Φ66j

 < 0, (38)

Ψ̂ l%1j =


Φ̆l11j Φ̂l12j Φl13j Φ̂l%14j Φl16j

∗ Φ̂22j Φl23j Φ̂l%24j Φl26j

∗ ∗ Φ̂l33j 0 Φl36j

∗ ∗ ∗ Φ̂44j 0
∗ ∗ ∗ ∗ Φ66j

 < 0, (39)

Ψ̂ l%2j =

[
~Ξl%21j

~Ξl22j

∗ ~Ξ23j

]
< 0, (40)

where

~Ξl%21j =


Φ̄l11j Φl12j Φl13j Φl%14j

∗ Φ22j Φl23j Φl%24j

∗ ∗ Φl33j 0
∗ ∗ ∗ Φ44j

 ,

~Ξl22j =


Φ15j Φl16j

Φ25j Φl26j

0 Φl36j

Φ45j 0

 ,
~Ξ23j =

[
Φ55j 0
∗ Φ66j

]
,

Φ̄l11j = 2δP̄1j +He{−X̄j

2
− M̄T

1j + R̄T1j(A
l
j)
T }+ σI

+ 2σ−1(J − 1)
J∑

n=1,n6=j

R̄T1j(D
l
jn)T (Dl

jn)R̄1j

+ R̄T1j(G
l
1j)

T (Gl1j)R̄1j ,

Φ̆l11j = 2δP̄1j +He{(hδ − 1

2
)X̄j − M̄T

1j + R̄T1j(A
l
j)
T }

+ 2σ−1(J − 1)
J∑

n=1,n6=j

R̄T1j(D
l
jn)T (Dl

jn)R̄1j

+ R̄T1j(G
l
1j)

T (Gl1j)R̄1j + σI.

Pre-multiply and post-multiply (33) by XT
o and Xo, (38) and

(39) by XT
a and Xa, (40) by XT

b and Xb, respectively, and
together with the change of matrix variables defined by

Xj = RT1jX̄jR1j , P1j = RT1jP̄1jR1j ,M1j = RT1jM̄1jR1j ,

M2j = RT1jM̄2jR1j , Yj = RT1j ȲjR1j , Tj = RT1j T̄jR1j ,

V lj = P2jL
l
j , S

%
j = K%

jR
−1
1j .

We can obtain (12), (14), (15), and (16) in Theorem 1. Thus,
the proof is complete.
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t
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x1(t)
x2(t)

x2(t)

x1(t)

Fig. 2. State trajectories of subsystems x1(t) and x2(t) without disturbance
and controller.

IV. NUMERICAL SIMULATION

In this section, we provide an example to demonstrate the
effectiveness of the proposed composite controller. Consider
the NIS (2) with the following parameter values:

ẋj(t) =

2∑
l=1

glj(υj(t)){Aljxj(t) +Blj(uj(t) + dj(t))

+ Cljζj(t) +

J∑
n=1,n6=j

Dl
njxn(t)},

where xj(t) = col{xj1(t), xj2(t)}. ẋj1(t) = xj2(t), υj(t) =
(xj1(t))2. g1

j (υj(t)) = 1− υj(t), g2
j (υj(t)) = 1− g1

j (υj(t)),
j, l, % ∈ `2, and

A1
1 =

[
−3 8
2 −5

]
, A2

1 =

[
−4 5
3 −3

]
,

A1
2 =

[
−2.25 6

1.5 −3.75

]
, A2

2 =

[
−3.75 4.5

1.5 −1.5

]
,

B1
1 =B2

1 = B1
2 = B2

2 =

[
1 0.1

0.2 0.5

]
,

C1
1 =C2

1 = C1
2 = C2

2 =

[
1
0

]
,

D1
11 =

[
1.31 −1
−1 2.2

]
, D2

11 =

[
0.22 −2
−1 0.1

]
,

D1
21 =

[
1.1 −1
−1 3.1

]
, D2

21 =

[
0.51 −2
−1 0.2

]
,

F 1
1 =F 2

1 = F 1
2 = F 2

2 =

[
0 0.5
−0.5 0

]
,

ζ1(t) = 9e−0.15tsin(0.3t), ζ2(t) = 15e−0.15tcos(0.5t).

In addition to the above parameters,

Elj = Gl1j = Gl2j = I2×2.

In numerical simulation, we assume $ = 0.15, h = 0.1,
δ = 0.3, γ = 2. By solving (12) and (34), (35) and (36) in
Theorem 2, the following controller gain and DO gain can
be obtained

K1
1 =

[
−3.2065 −4.1855
−2.5877 −7.0272

]
,

K2
1 =

[
−3.0342 −3.9412
−2.3111 −6.8979

]
,
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Fig. 3. State trajectories of the exogenous disturbance subsystem d1(t),
the DO subsystem d̂1(t), and the disturbance estimation error subsystem
e1(t).
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Fig. 4. State trajectories of the exogenous disturbance subsystem d2(t),
the DO subsystem d̂2(t), and the disturbance estimation error subsystem
e2(t).

K1
2 =

[
−3.8582 −2.4496
0.1524 −10.6619

]
,

K2
2 =

[
−3.8582 −2.4496
0.1524 −10.6619

]
,

L1
1 =

[
−1.3588 2.5824
1.1943 −5.0900

]
,

L2
1 =

[
−1.1716 2.6936
1.1094 −5.4012

]
,

L1
2 =

[
−1.3723 2.5838
1.2269 −5.1299

]
,

L2
2 =

[
−1.1581 2.7203
1.1209 −5.4423

]
.

Fig. 2 illustrates the subsystem state of the NIS in the
absence of disturbances and a controller. As shown, the
system state fails to achieve stabilization in the absence
of a controller. Figs. 3 and 4 depict the behavior of the
estimation error ej(t), which gradually converges to zero.
This indicates that the estimated disturbance value becomes
asymptotically close to the actual disturbance. Figs. 3 and
4 reflect the effectiveness of the DO. Fig. 5 illustrates the
state trajectories of the subsystems x1(t) and x2(t), under
the influence of a controller without an integrated disturbance
observer. Compared to the state trajectory shown in Fig. 2,
the unstable state of the subsystem in Fig. 5 is significantly

0 5 10 15 20 25 30 35 40

t

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x1(t)
x2(t)

x1(t) x2(t)

Fig. 5. Without the disturbance observer, the controller controls the state
trajectory of the subsystems x1(t) and x2(t).
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Fig. 6. State trajectories of subsystems x1(t) and x2(t) after adding the
controller.
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Fig. 7. The trajectory of H(t).

mitigated. However, disturbance observer, the states x1(t)
and x2(t) continue to oscillate around zero. By comparing
the states of the exogenous disturbance system in Figs. 3
and 4, it is obvious that Fig. 5 cannot suppress the exogenous
disturbance. This is because the controller lacks a disturbance
observer. Fig. 6 is a subsystem state diagram after adding
disturbance and composite controller. The subsystem state
gradually tends to zero, reflecting the composite controller’s
effectiveness.

Motivated by [38], we define
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H(t) =

√√√√∑2
j=1

∫∞
0
ZTj (s)Zj(s) ds∑2

j=1

∫∞
0
ζTj (s)ζj(s) ds

. (41)

Equation (41) illustrates the anti-disturbance performance of
H∞. According to Fig. 7, we can see that as time goes by,
H(t) finally stabilizes at γ∗=0.0599 and is much smaller than
γmin=0.1442. This outcome demonstrates the efficacy of the
proposed composite controller design based on DO.

V. CONCLUSION

In this paper, the composite hierarchical anti-disturbance
fuzzy control of NISs with multiple disturbance was ad-
dressed based on the DO. A fuzzy DO (5) was designed to
estimate the unknown disturbance generated by an exogenous
system. Subsequently, a composite disturbance-observer-
based control scheme (6) was developed by integrating a
feedforward compensation term based on the fuzzy DO with
a state-feedback sampled-data control law, while H∞ control
was adopted to attenuate another norm-bounded disturbance.
By building a time-dependent function V (t), a criterion was
derived in Theorem 1 to ensure the exponential stability of
the estimation error system and closed-loop NISs with a
prescribed H∞ performance level. The joint design of the
desired DO and composite disturbance-observer-based fuzzy
controller was proposed in Theorem 2. Finally, a numerical
simulation was used to validate the presented composite
hierarchical fuzzy control scheme. As a higher number of
fuzzy rules increases the computational burden and reduces
the real-time performance of the system, we will optimize
the number of fuzzy rules in future work.
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[9] R. F. Araújo, L. A. Torres, and R. M. Palhares, “Distributed control of
networked nonlinear systems via interconnected Takagi-Sugeno fuzzy
systems with nonlinear consequent,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 51, no. 8, pp. 4858–4867, 2021.
[10] L. Yan, Z. Liu, C. P. Chen, Y. Zhang, and Z. Wu, “Decentralized direct

adaptive fuzzy control scheme for state-constrained interconnected
systems,” Fuzzy Sets and Systems, vol. 467, p. 108502, 2023.

[11] Z. Zhu and Q. Zhu, “Adaptive fuzzy decentralized control for s-
tochastic nonlinear interconnected system with nontriangular structural
dynamic uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 31,
no. 8, pp. 2593–2604, 2023.

[12] W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based
control and related methods-An overview,” IEEE Transactions on

Industrial Electronics, vol. 63, no. 2, pp. 1083–1095, 2016.
[13] L. Yan, W. Zhang, Y. Yang, N. Fu, and T. Wang, “General function

projective finite-time lag synchronization between two coupled dy-
namical networks with nodes of different dimensions.” Engineering

Letters, vol. 32, no. 2, pp. 262–268, 2024.
[14] S. Ding, W.-H. Chen, K. Mei, and D. J. Murray-Smith, “Disturbance

observer design for nonlinear systems represented by input–output
models,” IEEE Transactions on Industrial Electronics, vol. 67, no. 2,
pp. 1222–1232, 2020.

[15] G. Chen, Z. Jiang, H. Tan, C. Zhang, J. Wei, W. Chen, and
H. Long, “Sliding-mode design with disturbance observer optimized
by improved HBA algorithm for frequency regulation of multi-area
power system,” IAENG International Journal of Applied Mathematics,
vol. 52, no. 4, pp. 994–1013, 2022.

[16] J. Zhou, J. Dong, S. Xu, and C. K. Ahn, “Input-to-state stabilization
for Markov jump systems with dynamic quantization and multimode
injection attacks,” IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, vol. 54, no. 4, pp. 2517–2529, 2024.
[17] Y. Chen, B. M. Vinagre, and I. Podlubny, “Fractional order distur-

bance observer for robust vibration suppression,” Nonlinear Dynamics,
vol. 38, pp. 355–367, 2004.

[18] E. Sariyildiz, R. Oboe, and K. Ohnishi, “Disturbance observer-based
robust control and its applications: 35th anniversary overview,” IEEE

Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2042–2053,
2020.

[19] Y. Xie, X. Zhang, L. Jiang, J. Meng, G. Li, and S. Wang, “Sliding-
mode disturbance observer-based control for fractional-order system
with unknown disturbances,” Unmanned Systems, vol. 8, no. 3, pp.
193–202, 2020.

[20] H. Alsubaie, A. Yousefpour, A. Alotaibi, N. D. Alotaibi, and H. Jahan-
shahi, “Stabilization of nonlinear vibration of a fractional-order arch
mems resonator using a new disturbance-observer-based finite-time
sliding mode control,” Mathematics, vol. 11, no. 4, p. 978, 2023.

[21] R. Naseri, H. A. Talebi, A. Ohadi, and V. Fakhari, “A robust active
control scheme for automotive engine vibration based on disturbance
observer,” ISA Transactions, vol. 100, pp. 13–27, 2020.

[22] V.-P. Vu and W.-J. Wang, “State/disturbance observer and controller
synthesis for the T-S fuzzy system with an enlarged class of distur-
bances,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 6, pp. 3645–
3659, 2018.

[23] D. Ning, S. Sun, F. Zhang, H. Du, W. Li, and B. Zhang, “Distur-
bance observer based Takagi-Sugeno fuzzy control for an active seat
suspension,” Mechanical Systems and Signal Processing, vol. 93, pp.
515–530, 2017.

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 849-859

 
______________________________________________________________________________________ 



[24] Y. Wang, H. Liu, and H. Tan, “An overview of filtering for sampled-
data systems under communication constraints,” International Journal

of Network Dynamics and Intelligence, vol. 2, no. 3, p. 100011, 2023.
[25] L. Yao, Z. Wang, X. Huang, Y. Li, Q. Ma, and H. Shen, “Stochastic

sampled-data exponential synchronization of Markovian jump neural
networks with time-varying delays,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 34, no. 2, pp. 909–920, 2023.
[26] Y. Ni, Z. Wang, X. Huang, Q. Ma, and H. Shen, “Intermittent sampled-

data control for local stabilization of neural networks subject to
actuator saturation: A work-interval-dependent functional approach,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 35,
no. 1, pp. 1087–1097, 2024.

[27] C. Hua, S. Wu, and X. Guan, “Stabilization of T-S fuzzy system with
time delay under sampled-data control using a new looped-functional,”
IEEE Transactions on Fuzzy Systems, vol. 28, no. 2, pp. 400–407,
2020.

[28] X. Cai, K. Shi, K. She, S. Zhong, and Y. Tang, “Quantized sampled-
data control tactic for T-S fuzzy NCS under stochastic cyber-attacks
and its application to truck-trailer system,” IEEE Transactions on

Vehicular Technology, vol. 71, no. 7, pp. 7023–7032, 2022.
[29] W. He, J. Guo, and Z. Xiang, “Disturbance-observer-based sampled-

data adaptive output feedback control for a class of uncertain nonlinear
systems,” International Journal of Systems Science, vol. 50, no. 9, pp.
1771–1783, 2019.

[30] H. Yun, G. Park, H. Shim, and H. Chang, “State-space analysis of
discrete-time disturbance observer for sampled-data control systems,”
in 2016 American Control Conference (ACC), Boston, MA, USA, July
2016, pp. 4233–4238.

[31] Y. Chen, X. Zhang, Z. Yan, O. Faydasicok, and S. Arik, “Sampled-
data control for Markovian switching neural networks with output
quantization and packet dropouts,” Journal of the Franklin Institute,
vol. 361, no. 18, p. 107252, 2024.

[32] J. Zhou, D. Xu, W. Tai, and C. K. Ahn, “Switched event-triggered H∞

security control for networked systems vulnerable to aperiodic DoS
attacks,” IEEE Transactions on Network Science and Engineering,
vol. 10, no. 4, pp. 2109–2123, 2023.

[33] L. Xie, “Output feedback H∞ control of systems with parameter
uncertainty,” International Journal of Control, vol. 63, no. 4, pp. 741–
750, 1996.

[34] K. Gu, J. Chen, and V. L. Kharitonov, Stability of time-delay systems.
Cambridge, MA, USA: Springer Science & Business Media, 2003.

[35] X. Jiang, Q.-L. Han, and X. Yu, “Stability criteria for linear discrete-
time systems with interval-like time-varying delay,” in Proceedings

of the 2005, American Control Conference, Portland, OR, USA, June
2005, pp. 2817–2822.

[36] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory. Philadelphia, PA, USA:
SIAM, 1994.

[37] C. Qian, S. Mao, and Z. Yan, “Composite anti-disturbance syn-
chronization control for Lur’e systems: An event-triggered distur-
bance observer-based design,” IAENG International Journal of Applied

Mathematics, vol. 54, no. 10, pp. 1960–1968, 2024.
[38] J. Zhou, X. Ma, Z. Yan, and S. Arik, “Non-fragile output-feedback

control for time-delay neural networks with persistent dwell time
switching: A system mode and time scheduler dual-dependent design,”
Neural Networks, vol. 169, pp. 733–743, 2024.

Engineering Letters

Volume 33, Issue 4, April 2025, Pages 849-859

 
______________________________________________________________________________________ 


	Introduction
	PRELIMINARIES
	MAIN RESULTS
	Stability and H Performance Analysis
	Controller Synthesis

	NUMERICAL SIMULATION
	CONCLUSION



