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Abstract—In the cloud computing environment, subsystems
within the parallel mutual exclusion system compete for limited
resources to maintain performance levels, particularly when
faced with uncertain perturbations. This paper proposes a
robust configuration method based on a multi-party multi-
objective evolutionary algorithm to optimize server size and
customer arrival rate, ensuring system performance remains at
an acceptable level under perturbations. Initially, the minimum
performance requirements of each subsystem are characterized
in terms of waiting time, profit, and cost, and the corresponding
feasible region is defined. Then, the concept of robustness
is introduced into resource configuration to minimize the
likelihood of performance degradation. The study treats the
robust configuration of the parallel mutual exclusion system as
a multi-party multi-objective problem and employs the latest
multi-party multi-objective algorithm to compare with existing
methods, determining the optimal configuration scheme. Ex-
perimental results demonstrate that the proposed configuration
scheme not only enhances system robustness but also meets
the differentiated requirements of each subsystem, significantly
improving overall system performance and robustness.

Index Terms—cloud computing, robustness, resource config-
uration, multi-party multi-objective optimization.

I. INTRODUCTION

THE evolution of the Fifth Generation Mobile Com-
munication System (5G) and the exponential surge in

communication volume have positioned cloud computing
technology as a key driving force for the advancement of
information technology [1] [2]. Functioning as an innova-
tive computing model, it has wielded significant influence
across diverse realms such as science, industry, and social
life. One fundamental advantage of cloud computing is its
ability to provide highly flexible computing resources [3],
thereby spurring the demand for large-scale data processing.
Recognizing the potential of these computing resources, sub-
stantial attention has been directed towards the exploration
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of parallel systems, to augment task execution efficiency
through parallel computing [4].

However, with the expansion of computing task scale and
the increase in complexity, the perturbation issues faced
by parallel systems in cloud computing environments are
becoming increasingly significant [5]. When it comes to
resource allocation, reasonable assumptions can be made
about perturbations in the current cloud environment. On
the one hand, in a situation of poor network conditions,
servers may fail to receive client requests promptly, leading
to timeouts. Alternatively, handling too many requests to
exceed their capacities, the servers may also struggle to
respond to customer requests promptly. On the other hand,
in a situation of fewer processes to be handled [6], CPU
cores cannot normally operate at full capacity and may
experience faults after running for a sufficiently long time.
If unexpected high loads occur, it will wake up dormant
cores to provide more efficient services. We next analyze
the results that may caused by the above two situations in
detail. The former will lead to a decrease in the number of
service requests completed per unit time, thereby reducing
the revenue of cloud service providers and increasing the
waiting time of customers. The latter will bring unnecessary
waste of resources to increase the operating costs of the
cloud platform [7]. These are contrary to the long-term
operation of the cloud service system. Hence, from a long-
term perspective, to fully protect the interests of cloud service
providers and customers, the perturbation factor should be
thoroughly taken into account. Considering this, the concept
of robustness widely used in the field of control is introduced.
Naturally, in the presence of perturbation, the problem of
ensuring that the response characteristics of a cloud service
system meet the required performance specifications can be
regarded as a study of system robustness [8].

Based on the above analysis, the challenge we face is
how to propose appropriate solutions for the robustness
issues present in parallel systems [9]. In the field of cloud
computing, optimizing resource utilization, reducing energy
consumption, and minimizing response time are all bench-
marks for effective task scheduling [10]. While covering the
above elements, we hope to intuitively reflect the demands of
those involved in cloud computing. Therefore the following
three performance characteristics to assess the robustness of
the system are constructed: the waiting time of customers,
the revenue, and the cost of cloud service providers.

For a single system, the robustness problem involving
multiple performance characteristics can usually be solved
by a multi-objective evolutionary algorithm [11]. However,
in parallel systems, multiple parallel tasks share limited
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resources. Since each subsystem needs to consider its re-
sponse speed to meet the performance specifications, this
leads to resource competition between subsystems [12].
Given this situation, we consider a parallel mutual exclusion
system with conflicts of interest between subsystems. At
the same time, the demands of cloud service providers and
customers in the subsystem are not the same. For the complex
scenario, the traditional configuration scheme based on a
multi-objective evolutionary algorithm may not be suitable to
provide a comprehensive and flexible solution. Considering
this, we propose a robust configuration scheme based on a
multi-party multi-objective algorithm according to the special
demands of each subsystem. By rationally configuring the
public resources that can be deployed in the parallel mutual
exclusion system, our scheme ensures that each subsystem
meets the robustness requirements to the greatest extent.

This paper studies the robust configuration scheme of
parallel mutual exclusion systems. First, each subsystem is
modeled as an M/M/m queuing system. Then, considering
unpredictable disturbances, their impacts on the number of
servers and the arrival rate of customers, in turn, effect the
interests of cloud service providers and customers. Then,
we construct the robust optimization problem of the system
under disturbance conditions. On this basis,the optimal con-
figuration scheme of the parallel mutual exclusion system is
analyzed, which can improve the robustness of the system
and optimize the waiting time, revenue and cost as much as
possible. The main contributions of this paper are summa-
rized as follows.
• Consider a parallel mutual exclusion multi-server sys-

tem to depict a scenario where subsystems in cloud
services compete for limited system resources.

• Design the boundedness constraints for the variations
of servers size and arrival rate of customers impacted
by unpredictable perturbations in cloud computing sys-
tem, which reflects the worst cases that cloud service
providers and customers can accept.

• Propose a robust analysis method based on multi-
objective algorithm to improve the robustness of the
system as much as possible.

• Conduct a series of experiments to prove the effective-
ness of our proposed method in solving such problems.

The structure of this paper is as follows: Section II pro-
vides a review of related work. Section III builds the system
framework as well as the revenue model and cost model.
Section IV clarifies the optimization problem and robustness
metric. Section V proposes an optimal configuration scheme
for the robustness problem in parallel mutual exclusion
systems. Section VI concludes this work.

II. RELATED WORK

In this section, we first review recent work related to queu-
ing system modeling problems. Subsequently, we explore
relevant research on resource allocation issues in the field
of cloud computing. Finally, we provide a detailed review of
various literature about task scheduling in the realm of cloud
computing.

In the field of cloud computing, the discussion on queuing
models has been a persistent focal point. Evaluating and
refining queuing models is crucial to ensuring the seamless

operation of cloud services and enhancing the quality of
service delivered to customers. A. Gorbunova et al. [13] con-
sidered a fork-join queuing system with Pareto-distributed
service times on the servers. The average response time and
its standard deviation were analyzed using a novel approach
that combines simulation modeling with machine learning
methods. Wang et al. [14] proposed service performance
analysis models based on Geo/G/1 queuing systems and
server vacation queuing systems. In these models, various
parameters related to key performance indicators of cloud
computing servers and optimization issues of cloud comput-
ing concurrency were discussed. Chen et al. [15] analyzed
the profit maximization problem with deadline constraints in
a loop-cascaded queuing system. They proposed a heuristic
algorithm to search for high-quality solutions, aiming to
achieve the optimal configuration of a cloud computing plat-
form. Lv et al. [16] analyzed the effect of server breakdowns
and negative customers on the queuing system.

After completing the modeling work of the cloud ser-
vice system, many articles focus on obtaining an efficient
resource allocation scheme to improve system performance.
S. Souravlas et al. [17] proposed a fair resource allocation
scheme with flow control and maximum utilization of the
systems resources. Jia et al. [18] designed and implemented
an efficient memory allocation scheme and analyzed the
impact of workload memory intensity on system perfor-
mance. K. Karthiban et al. [19] proposed a green computing
fair resource allocation model utilizing deep reinforcement
learning, providing an efficient resource allocation solution
for customers in the network. Yuan et al. [20] designed a
profit-maximizing collaborative computation offloading and
resource allocation algorithm to maximize the system’s profit
while ensuring strict adherence to task response time con-
straints.

In addition to the rational allocation of deployable re-
sources within the system, task scheduling is also an essential
part of cloud computing to achieve optimal resource utiliza-
tion, reduce energy consumption (EC), minimum response
time, and maximum efficiency [21]. R. Stewart et al. [22]
proposed the first Pareto-efficient task scheduling method
based on MIP (Mixed Integer Programming) formulations to
minimize both makespan and energy consumption. Abdel-
moneem et al. [23] presented a heuristic-based scheduling
algorithm considering perceptual mobility to minimize the
time and cost of task completion.

III. MODEL DESCRIPTION

A. Multi-server system

In this paper, we study a multi-server system with multiple
subsystems S1, S2, ...Sn arranged in a parallel structure in
cloud computing, which is shown in Figure.1. The notations
used are listed in Table I. The system is described in detail
by the following points. First, we use the M/M/m queuing
model to model the subsystems, and each subsystem can
handle the requests of customers separately. Second, requests
from customers to the cloud service system are assigned to
the subsystems for service. Third, a certain number of servers
in the system will also be assigned to the subsystems to
process those requests. Hence, it is not difficult to find the
resource competition relationship among the subsystems.
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TABLE I: Notations used in this paper.

Symbol Definition Symbol Definition
Si Subsystem i m The number of servers (Server size)
λ The number of arrival customer per (unit time) UT s Server speed
mall The whole server size mi Server size in Si

λall The whole number of arrival customer per UT λi The number of arrival customer in Si

j̄ Average task execution demand µ The number of completed service per UT
ρi The utilization factor of servers in Si Pki The probability that k service requests in Si

Pqi The probability to wait in Si Wi Waiting time of customers in Si

fwi (t) The pdf of waiting time u(t) Unit impulse function
Ti The expectation of waiting time in Si Ri Revenue in Si

Ci Cost in Si a Fees per one billion instructions
DL Maximum tolerable time that customers can wait β Rental price of a server per UT
Nsw Average gate switching factor per clock cycle Cl Load capacitance
V Supply voltage f Lock frequency
φ A positive constant b A positive proportional coefficient
Pd Dynamic power consumption P ∗ Static power consumption
δ Electricity price of energy H∗ A working point in feasibel region
H A point on boundary Disti The distance between H∗ and H
r∗ Shortest robustness radius θ Polar angle in vector form
11 Indicator function 1 12 Indicator function 2
Di The lowest demand on waiting time in Si r∗1 Robustness radius to the lowest demand on waiting time
r∗2 Robustness radius to the lowest demand on revenue r∗3 Robustness radius to the lowest demand on cost

Fig. 1: Multi-server queuing system.

Without loss of generality, we merely analyze the multi-
server system with two subsystems S1, S2, i.e., n = 2.
The whole number of servers in the system is donated as
mall, and all the servers run at the same running speed
s. Among them, we assume that the number of servers
assigned to subsystem Si is mi (i=1,2). Then, we have the
equation m2 = mall −m1. Considering the randomness of
customer’s arrival, we assume it follows a Poisson process,
where λall represents customer arrival rate, namely, the
average number of customers arriving at the system per unit
time. Subsequently, let λi (i=1,2) represent the number of
service requests assigned to subsystem Si. Then, we have the
equation λ2 = λall − λ1. Next, we consider the number of
instructions contained by each service request to measure its
task execution demand, which is denoted by an exponential
random variable j with mean j. Thus, the execution time of
a task on the multi-server system can also be considered as
an exponential random variable t = j/s with mean t = j/s.
Moreover, the service rate can be denoted as µ = 1/t̄ = s/j̄

and the utilization factor in subsystem Si is defined as
ρi = λi/miµ = λi/mi × j/s, which means the percentage
of the average time when the server is in busy state. Let
pki denote the probability that there are ki service requests
(waiting or being processed) in subsystem Si. Then, we have

pki =


p0,i

(miρi)
k

ki!
, ki < mi

p0,i
mi

miρki
mi!

, ki ≥ mi

(1)

where

p0,i =

(
mi−1∑
ki=0

(miρi)
k
i

ki!
+

(miρi)
mi

mi!

1

1− ρi

)−1

(2)

To ensure the ergodicity of the queue system, it is obvious
that the condition 0 < ρi < 1 should be satisfied.

On this basis, when all servers in a multi-server system
are busy, newly arrived service requests have to wait in the
queue. We express the probability of such a case as follows.

pqi =
∞∑

ki=mi

pki =
pmi

1− ρi
= p0,i

(miρi)
mi

mi!
· 1

1− ρi
(3)

B. Waiting time distribution

Generally, customers hope to get the executions of their
service requests as soon as possible, otherwise, they are likely
to leave if they wait longer than they can tolerate. Hence,
cloud service platforms have to keep the waiting time of
customers from exceeding the tolerable deadline constraint.
Considering this, the modeling work of the waiting time of
customers is necessary to be carried out for the numerical
analysis. With this premise, we denote Wi as the waiting
time of the service request which is handled in subsystem
Si. Notice that, the probability distribution function (pdf) of
the waiting time in the M/M/m queuing system has already
been fully considered in previous literature, which is shown
as follows [24][25].
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fWi (t) = (1− pqi)u (t) +miµpmie
−(1−ρi)miµt (4)

where pmi = p0,i(miρi)
mi/mi! and u (t) is unit impulse

function, which is defined as

uz (t) =

{
z, 0 ≤ t ≤ 1

z
0, t > 1

z

(5)

Let z →∞, then we have

u (t) = lim
z→∞

uz (t) (6)

The function uz (t) has the following properties∫ ∞
0

uz (t) dt = 1 (7)

and ∫ ∞
0

uz (t) dt = z

∫ 1/z

0

tdt =
1

2z
(8)

Further, according to (4) and (7), we can calculate the
expectation of waiting time as follow.

Ti =
+∞∫
0

t · fWi
(t) dt

=
+∞∫
0

t ·
(
(1− pq)u (t) +miµpme

−(1−ρi)miµt
)
dt

=
+∞∫
0

t ·miµpme
−(1−ρ)miµtdt

= pm
miµ(1−ρi)2

(9)

C. Revenue modeling

Generally, cloud services are not provided for free, so
customers whose requests are handled have to pay for the
services. To evaluate the relationship between the quality of
services and the corresponding charges to the customers, a
Service Level Agreement (SLA) is adopted. In this paper,
we use flat rate pricing for service requests because it is
relatively intuitive and easy to obtain. Based on this, the
service charge function Z can be expressed as

Z(rj,Wi) =

{
aj, 0 ≤Wi ≤ DL

0, Wi > DL
(10)

where a is a constant that represents the fee per unit of
service, and DL is the maximum tolerable time that the
customer can wait (i.e., the deadline). In this paper, when
the waiting time does not exceed the deadline, the fee that
the customer needs to pay is considered as a constant value.
Otherwise, the customer will enjoy the services for free.
Based on (4) and (10), we can calculate the expectations
of Z(j,W )

Z(j) = H (Z (j,Wi))

=

∫ ∞
0

fWi
(t)ajdt

= aj

∫ ∞
0

[
(1− Pq)u(t) +miµpme

−(1−ρi)miµt
]
dt

= aj

∫ Dl

0

[
(1− Pq)u(t) +miµpme

−(1−ρi)miµt
]
dt

= aj

[
(1− Pq)−

pm
1− ρi

(
e−(1−ρi)miµDL − 1

)]
= aj

(
1− pm

1− ρi
e−(1−ρi)miµDL

)
(11)

Notice that, the task execution requirement j is also a
random variable, which follows the exponential distribution.
On this basis, the expected charge of a service request in the
multi-server system can be calculated as follows.

Z̄ = H (Z(j))

=

∫ ∞
0

1

j̄
e−z/j̄Z(z)dz

=
a

j̄

(
1− pm1

1− ρi
e−(1−ρi)miµDL

)∫ ∞
0

e−z/j̄zdz

= aj̄

(
1− pm

1− ρi
e−(1−ρi)miµDL

)
(12)

Further, we can also obtain

FWi
(DL) = 1− pm

1− ρi
e−(1−ρi)miµDL (13)

Since the number of service requests assigned to subsys-
tem Si is λi (hundred service requests per hour), the total
revenue of Si is λaj if all the service requests could be
served before the deadline. However, if parts of the service
requests are served for free, the actual revenue that the cloud
service providers earn from Si can be described as

Ri = λiFWi
(DL) aj (14)

D. Cost modeling

The costs to the cloud service provider consist of two main
components, namely the cost of infrastructure leasing and
energy consumption. The infrastructure provider maintains
a large number of servers for loan, and the cloud service
provider rents the servers on request and pays the corre-
sponding leasing fees. Assume that the rental price of one
server per unit of time is β, then the server rental price of
the multi-server system with mall servers is mallβ in total.

The cost of energy consumption depends on the price of
electricity and the amount of energy consumed. In this paper,
the following dynamic power model is used to express energy
consumption, which has been discussed in many literature
[26].

Pd = NswCLV
2f (15)

where Nsw is the average gate switching factor per clock
cycle, CL is the load capacitance, V is the supply voltage,
and f is the clock frequency.
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In the ideal case, the relationship between the supply
voltage V and the clock frequency f can be described as
V ∝ fφ(0 < φ ≤ 1). The execution server speed s is usually
linearly related to the clock frequency, namely, s ∝ f .
Therefore, the dynamic power model can be converted to
Pd ∝ bNswCLs

2φ+1. For the sake of simplicity, we can
assume Pd = bNswCLs

2φ+1 = ξsα, where ξ = bNswCL
and α = 2φ + 1. In this paper, we set NswCL = 4 ,
b = 0.5, φ=0.55. Hence, α=2.1 and ξ=9.4192. In addition
to dynamic power consumption, each server also consumes
a certain amount of static power consumption P ∗.

Due to the server utilization ρi affecting the dynamic
power consumption of the server, the average amount of
energy consumption per unit of time is P = ρiξs

α + P ∗.
Assuming an electricity price of δ per watt, the total cost
per unit time for the cloud service provider to maintain
subsystem Si can be described as

Ci = mi(β + δ(ρiξs
α + P ∗)) (16)

IV. PROBLEM DESCRIPTION

According to the descriptions in the previous section, the
interests concerned by customers and cloud service providers
are different. In terms of optimization objectives, maximizing
the demands of customers or cloud service providers is con-
sidered an optimization objective by most studies. However,
they ignore the existence of perturbation factors in real cloud
environments. Affected by those perturbation factors, the
decline of system performance makes the optimal results can
be hardly maintained. In this paper, we consider the impact of
perturbation factors that may lead to a decrease in revenue
and an increase in cost for cloud service providers, or an
increase in the waiting time of customers. Then, a distance
metric scheme is designed, which can numerically measure
the ability of the system to resist performance reduction
caused by perturbation factors.

A. Robustness analysis

According to (9) and (14), because of the sophisticated
structure of pm, the waiting time of customers and the
revenue of cloud service providers are difficult to analyze
numerically. For the sake of simplicity, the following ap-

proximations are adopted, i.e.,
mi−1∑
k=0

(miρi)
k

k! ≈ emiρi and

mi! ≈
√

2πmi

(
mi
e

)mi [27]. On this basis, pm can be
rewritten as follows.

pm ≈
1− ρi√

2πmi (1− ρi) (eρi/eρi)
mi + 1

(17)

Then, substituting (17) into (13), we have.

FWi
(DL) ≈ 1− e−miµ(1−ρi)DL

√
2πmi (1− ρi) (eρi/eρi)

mi + 1
(18)

Further, according to (17) and (18), we can obtain the
approximations of the waiting time of customers as well as
the revenue of cloud service providers as follows.

Ti =
(λie)

mi

(smi)
mi−1

(smi − λi)2
e
λi
s

√
2πmi + (smi − λi) (eλi)

mi

(19)

and,

Ri = λiar̄

[
1− e−miµi(1−ρi)DL√

2πmi(1− ρi) (eρi/eρi)
mi + 1

]
(20)

In this paper, we consider the perturbation factors as the
unpredictable variations in the server size and the arrival
rate of customers. Notice that, the utilization factor ρi in
(16)(20) can be expressed by ρi = λir̄

mis
. To describe the

impact of the server size and the arrival rate of customers
on the revenue and the cost of cloud service providers more
clearly, by substituting the expression of ρi into (20), and
then setting r̄ to 1 hundred billion instructions, we have.

Ri = λia

[
1− e(−smi+λi)DL(eλi)

mi

√
2πmi(smi − λi)eλi/s(smi)mi+1 + (eλi)mi

]
(21)

and,

Ci =
(
miβ + δλiξs

α−1 +miδP
∗) (22)

Considering (19) (21) and (22), we can express these
formulas by Ti = f (mi, λi), Ri = r (mi, λi) and Ci =
c (mi, λi) respectively. Obviously, (19) (21) and (22) show
the strong nonlinear characteristics, which will result in the
difficulty in numerical analysis. In this case, we choose to
draw the graphics of Ti = f (mi, λi), Ri = r (mi, λi)
and Ci = c (mi, λi) to show the functional relationship
intuitively.

By setting s = 2 hundred billion instructions per hour,
a = 10 dollars per one hundred billion instructions (Note:
The monetary unit dollars in this paper may not be identical
but should be linearly proportional to the real US dollars.),
β = 1.5 dollars per one hundred billion instructions, δ = 0.1
dollars per watt, P ∗ = 2 watts (Note: These parameters
are chosen only for illustration and should be scaled to any
values.), and then traversing the size and arrival rate of the
servers in [4, 20] and [4, 14], we draw the three-dimensional
surfaces of (19) (21) and (22), which are shown in Figure.2(a)
Figure.2(b) and Figure.2(c) respectively. From Figure.2(a),
it can be observed that as the server size decreases and
the arrival rate increases, customers have to spend longer
waiting times to receive service, and vice versa. While for
Figure.2(b), there are cases where the server size is large
but the arrival rate is low, meaning the powerful service
capabilities are far beyond the customer’s demands. This
results in a few parts of the service resources being used
and brings a little revenue to cloud service providers while
most of them are wasted. Then, when the server size remains
constant, the increase in the arrival rate of customers reduces
the waste of resources, generating higher revenue for cloud
service providers. However, if the server’s size decreases
while the arrival rate of the customers is excessively high,
the provider’s revenue may decrease. This is because the
service capacity becomes insufficient to fulfill an adequate
number of requests before the deadline. Consequently, some
customers may enjoy services without charge due to the long
wait. From Figure.2(c), it can be observed that as the server’s
size and arrival rate increase, the costs incurred by cloud
service providers will continue to rise, and vice versa.

Considering the waiting time of customer to be a determin-
istic value, i.e., f (mi, λi) = b1 (b1 is a constant), we can
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Fig. 2: (a)The mesh of waiting time Ti versus mi and λi. (b)The mesh of revenue Ri versus mi and λi. (c)The mesh of
cost Ci versus mi and λi.

Fig. 3: (a)Deadline Di versus mi and λi. (b)Revenue Ri versus mi and λi. (c)Cost Ci versus mi and λi.

find the implicit function relationship between the servers
size and arrival rate in (19), which can be plotted as the red
curve in Figure.2(a). By specifying b1 ∈ [0.01, 0.10, 1.00],
and mapping the implicit function relationship into (mi, λi)
plane, three curves can be drawn in Figure.3(a). On this basis,
when we set the deadline as Di = 0.1, only if the server
size and the arrival rate are selected in the region below the
curve bottom in Figure.3(a) can the customer requests be
served before the deadline. In other words, such region can
be named as the feasible region with the waiting time of
customers being taken into consideration.

Similarly, considering the revenue of cloud service
provider to be a deterministic value, i.e., r (mi, λi) = b2 (b2
is a constant), we can find the implicit function relationship
between the servers size and arrival rate in (21), which can
be plotted as the red curve in Figure.2(b). By specifying
b2 ∈ [50, 60, 70], and mapping the implicit function rela-
tionship into (mi, λi) plane, three curves can be drawn in
Figure.3(b). On this basis, when we set the acceptable lowest
revenue as Ri = 60, only if the server size and the arrival rate
are selected in the region above the curve top in Figure.3(b)
can the cloud service providers gain more revenue. In other
words, such a region can be named as the feasible region
with the revenue of cloud service providers being taken into
consideration.

Furthermore, we consider the definite value of the cloud
service provider’s costs in Figure.2(c), where c (mi, λi) =
b3, and b3 is a constant. We can still observe the relationship
between server size and arrival rate as depicted by the red line
in Figure.3(c) based on (22). By specifying b3 ∈ [35, 40, 45],
and mapping the implicit function relationship into (mi, λi)
plane, three curves can be drawn in Figure.3(c). On this basis,
when we set the acceptable maximum costs as Ci = 40, only
if the server size and the arrival rate are selected in the region
below the curve bottom in Figure.3(c) can the cloud service
providers spend less cost. Similarly, considering the costs
of the cloud service provider, this region can be named the
feasible region.

Based on the above discussion, the impacts of the per-
turbation factors on the revenue and the cost of cloud
service providers as well as the waiting time of customers
can be described. Now, we draw a certain point in the
feasible region of Figure.4(a), which is shown as the red
point in Figure.4(a). In this case, we call the red point the
working point, which means the cloud platform is operating
with the server’s size and arrival rate being set as the
horizontal and vertical coordinates of this point respectively.
When perturbation happens, the server’s size or the arrival
rate may deviate from the working point. If the deviation
degree is small, the new working point will still be located
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Fig. 4: (a)The working point H∗i versus to Di. (b)The working point H∗i versus to Ri. (c)The working point H∗i versus
to Ci.

in the feasible region. However, if the deviation degree
tends to increase, the waiting time of customers may be
greater than the deadline, which is unacceptable for the
customers.

Additionally, specific working points are marked in
Figure.4(b) and Figure.4(c) in the same way. In both cases,
when disturbances occur, the server’s size and arrival rate will
deviate from the working point. If the deviation is small, the
new working point will still be within the feasible region.
However, if the deviation increases, it may lead to the
cloud service provider’s revenue falling below its acceptable
minimum or costs exceeding its acceptable maximum, both
of which are unacceptable for the cloud service providers.

To overcome the above problems for customers and cloud
service providers, by introducing the idea of robustness, we
try to promote the performance of the cloud platform as
much as possible when it is operating in the worst case.
On this basis, any other cases better than the current one will
lead to better performance. Specifically, consider Figure.4(a),
Figure.4(b) and Figure.4(c) respectively, we can denote the
working point as H∗i , and any point on the curves as Hi,
then the distance between H∗i and Hi can be defined as
follow.

Disti = ‖H∗i −Hi‖2 (23)

Further, for any working point within the
feasible region in Figure.4(a), Figure.4(b), and Figure.4(c),
we can find the shortest distance between it and any point
on the curves. In this case, due to deviations in server
size and arrival rate, we consider that when disturbances
occur, the probability of the cloud platform operating in an
unacceptable region is highest. Therefore, we need to find
the optimal working point within the feasible region to
maximize the shortest distance among the distances between
that point and the points on the curves.

B. Robustness metric

Now, we devote ourselves to calculating the shortest dis-
tances from the working point to the boundaries concerning
the waiting time, revenue, and cost, respectively. The princi-
ple for searching the optimal working point is maximizing

the previously mentioned shortest distance, which is similar
to the idea of robustness described in the control field. Hence,
it is reasonable to rename such a distance as the robustness
radius [28], which can be represented as follows.

r∗i = min {Dist} = min ‖H∗ −H‖2 (24)

Given a specific working point H∗ in feasible region,
it is easy to observe that due to the complexity of the
formulas for the waiting time, revenue, and cost of cloud
service providers, as well as the waiting time of customers,
it is challenging to derive a mathematical expression for the
shortest distance from that point to the boundary. Therefore,
we assume that a circle whose center is H∗ and radius is r∗

will be tangent to such a boundary. In this case, we propose
an adaptive adjustment scheme for the radius r∗, such that
the circle centered on H∗ can be tangent to the boundary.
The pseudo-code for the scheme is shown in Algorithm.1
[29]. The following 11 and 12 represent indicator functions.

11 =

{
0, if l (x, y) = g (x, y)
1, else

(25)

12 =

{
0, if l (x, y) = f (x, y)
1, else

(26)

V. OPTIMAL ROBUST CONFIGURATION

Based on the above discussion, to keep the reduction
of disturbance factors on system performance within a
controllable range, we propose a robustness configuration
scheme in this section. In subsection V-A, we preliminarily
consider any one of the subsystems within the parallel
mutual exclusion system and propose a reasonable robust
configuration scheme for the subsystem. In subsection V-B,
comprehensively considering the robustness requirement of
the whole parallel mutual system, we propose an appropriate
robust configuration scheme that can achieve a balanced
improvement of the performance in all subsystems.

A. The subsystem

In the previous section, we propose an algorithm to obtain
the robust radius among the distances between a specific
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Algorithm 1: Robust radius r∗ from working point to
the boundary

Input: Initial position H∗ = (mz, λz), objective
function l(x, y), boundary c, θ, υ1, υ2, 11, 12,
flag

Output: Robust radius r∗ from working point to the
boundary

1 begin
2 υ1, υ2 ← 10−5;
3 r∗1 ← 10−4;
4 Initialization: x← mz , y ← λz;
5 F ← l(x, y)− c;
6 if F > 0 then
7 The working point is not within

feasible region, r∗ ← −∞;
8 else
9 flag ← 1;

10 while flag = 1 do
11 for θi ← 0 to 2π do
12 xi ← mz + r∗1 · cos θi;
13 yi ← λz + r∗1 · sin θi;
14 Fi ← l(xi, yi)− c;
15 end

16 if
n∑
i=1

|l (xi,yi)− c| 6=
∣∣∣∣ n∑
i=1

[l (xi,yi)− c]
∣∣∣∣

then
17 r∗1 ← r∗1 − 11 · v1 − 12 · v2;
18 if r∗1 = 0 then
19 flag ← 0;
20 end
21 else if

∏n
i=1 {l (xi,yi)− c} 6= 0 then

22 Find Fj = 0, j ∈ {1, 2, · · · , i};
23 x← xj , y ← yj ;
24 flag ← 0;
25 else
26 Find the minimum Fk,

k ∈ {1, 2, · · · , i};
27 x← xk, y ← yk;
28 r∗1 ← 10−4;
29 end
30 end
31 end
32 H ← (x, y);
33 r∗ ← ‖H∗ −H‖2;
34 return r∗

35 end

working point and the points on a given boundary. Through
this approach, it is possible to achieve the maximum ”shortest
distance” as defined in (24). Furthermore, as the parallel
system comprises multiple subsystems, for each of them, the
goal is to enhance its performance as much as possible when
the cloud platform is disturbed. Therefore, in this section, we
apply this method to consider the scenario for any subsystem
within the parallel system.

Naturally, what can be noted in Figure.5 is that as the
working point moves closer from the feasible region’s
boundaries, it may lead to the following scenarios. One is
the increase in the waiting time of customers. This raises

Fig. 5: The acceptable working points in the subsystem.

the likelihood that the waiting time exceeds the deadline.
Another is the decrease in the revenue of cloud service
providers, which increases the probability of revenue falling
below the acceptable minimum revenue under disturbance
influence. Or the third case, the cost of the cloud service
providers increases. In these cases, it becomes challenging
to simultaneously meet the demands of both the cloud service
providers and the customers.

Without loss of generality, the acceptable deadline revenue
and cost are set to Di = 1, Ri = 50, and Ci = 45,
respectively. Within the feasible region defined by these
demands, in order to simultaneously improve the revenue,
reduce the cost, and shorten the waiting time, we aim for
the optimal working point to be as far away as possible
from the boundaries formed by these demands.

Therefore, for the problem involving the maximization of
the robustness radius, we established a constrained multi-
objective optimization model as follows.

max
mz,λz

r∗ = (r∗1 , r
∗
2 , r
∗
3)

s.t.


f (mz, λz) < Di

r (mz, λz) > Ri
c (mz, λz) < Ci
mz ∈ [4, 20] , λz ∈ [4, 14]

(27)

In (27), r∗1 , r∗2 , and r∗3 represent the shortest distances
from a specific working point to the boundaries of waiting
time, revenue, and cost, respectively. Di represents the
maximum acceptable waiting time for customers, Ri and Ci
represent the minimum acceptable revenue and the maximum
acceptable cost for the cloud service providers, respectively.
Obviously, the objective of (27) is to maximize r∗1 , r∗2 , and
r∗3 , and the constraints indicate that the working point can
only be selected within the feasible region enclosed by the
boundaries.

To solve the multi-objective programming model pre-
sented in (27), Non-dominated Sorting Genetic Algorithms
II (NSGA-II) is introduced in this paper. The pseudo-code
for such an algorithm is shown in Algorithm.2.

By applying the Algorithm.2, the results are shown in
Figure.5 and Figure.6. From Figure.5, it can be observed
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Algorithm 2: Robust configuration method based on
NSGA-II algorithm

Input: interval of servers size[mmin,mmax], servers
speed [λmin, λmax]

Output: optimal r∗1 , r∗2 , r∗3
1 begin
2 t← 1, i← 1;
3 Initialize the population in the given interval;
4 The fitness value Y is calculated through Algorithm

1;
5 T1 ← perform non-dominated sorting strategy;
6 Sort f by crowding distance for each rank ;
7 while t < Max number of iterations do
8 Pt ← create parent by T1 using tournament

selected;
9 Qt ← create offspring by Pt using selection,

crossover and mutation;
10 Rt ← Pt ∪Qt ;
11 The fitness value Yt is calculated through

Algorithm 1;
12 Ft ← calculate all non-dominated fronts of Rt;
13 Pt+1 ← ∅ ;
14 while |Pt+1| ∪

∣∣F it ∣∣ ≤ N do
15 F it ← select ith non-dominated front in Ft

using crowding distance sorting strategy;
16 Pt ← Pt+1 ∪ F it ;
17 i← i+ 1;
18 end
19 Tt+1 ← Pt+1 ∪ Ft [1 : (N − |Pt+1|)];
20 t← t+ 1;
21 end
22 end

that the gray points represent the considered acceptable set
of working points. In Figure.6, each point on the Pareto
front represents an optimal solution of the multi-objective
optimization model, corresponding to the robust radii to the
boundaries. In general, if it is too saturated to meet one of
the requirements of waiting time, revenue, and cost while
ignoring the other two requirements, it is not conducive for
the subsystem to maintain its performance level under the
influence of disturbances. For example, blindly moving the
working point as far as possible from the boundary of waiting
time, may lead to reduced revenue below the acceptable
minimum revenue under the influence of disturbances, or the
cost may exceed the acceptable maximum cost. A reasonable
approach is to keep the robustness radius as equal as pos-
sible for customer’s waiting time, cloud service providers’
revenue, and cost, allowing them to simultaneously meet
the robustness requirements against disturbances. We use the
following (28) to assess the deviations between the robust-
ness radius of each obtained acceptable working point. This
allows us to make an appropriate selection and identify the
optimal working point within the feasible region.

δ =

n∑
i=1

(r∗i − r∗)
2

n
(28)

Fig. 6: The Pareto frontier of r∗i in subsystem.

where r∗ =

n∑
i=1

r∗i

n , n represents the number of objectives.
Through (28), we determine the optimal working point

as the red point in Figure.5. At this point, the selected server
size and arrival rate are denoted as m = 11.91 and λ = 8.70,
respectively. The shortest robustness radii from this optimal
working point to the boundaries are r∗1 = 6.45, r∗2 = 3.70,
and r∗3 = 3.92.

B. Parallel mutual exclusion system

Through the above discussion on robustness analysis, we
understand that for any subsystem, it is a challenge to balance
the customer’s expectation of the shortest waiting time and
the cloud service provider’s goal of maximizing revenue
and minimizing costs. On this basis, we further analyze the
optimal robust configuration problem for the entire parallel
system, taking into account the impact of specific perturba-
tions on cloud service providers and customers in multiple
subsystems.

Due to the limited shared resources in a parallel system,
each subsystem must compete for the necessary resources.
This competition is a common phenomenon because each
subsystem needs to meet its demands as much as possible.
The competition for resources among subsystems leads to
mutual influence and restriction among them, so it is nec-
essary to adopt appropriate strategies to balance resource
utilization and performance requirements. Moreover, it is
realized that there may be some differences among the lower
thresholds of the requirements of the subsystems for their
demands. Therefore, we subdivide different scenarios for
discussion.

1) Subsystems with the same demands: In this subsection,
we analyze scenarios where the subsystems within a parallel
mutual exclusion system share identical lower thresholds for
deadlines, revenue, and costs. The goal for each subsystem is
to fulfill customer demands within a specified deadline while
minimizing costs and maximizing revenue. However, fluctu-
ations in server size and arrival rates can disrupt this balance.
For instance, an unexpected change in server capacity or an
increase in arrival rates can extend customer waiting times,
potentially causing them to exceed the deadline.
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Fig. 7: (a) The acceptable working points in system obtained by OptMPNDS. (b) The acceptable working points in
system obtained by OptMPNDS2. (c) The acceptable working points in system obtained by OptMPNDS3.

Fig. 8: The acceptable working points with different ro-
bustness radius error.

Figure.7 illustrates the feasible region delineated by the
acceptable lower thresholds for demand in each subsystem.
The orange area represents the feasible region for subsys-
tem S1, while the gray area represents that of subsystem
S2. The overlapping portion of these two regions represents
the true feasible region that should be considered when
configuring the overall cloud service system.

To aid in the discussion, we assume the total server capac-
ity available for allocation in the parallel mutual exclusion
system is mall = 24, and the total customer arrival rate is
λall = 18. Given that the subsystems share consistent lower
demand thresholds, the acceptable upper limits for deadlines,
minimum revenue, and maximum cost in subsystems S1 and
S2 are set as Di = 1, Ri = 50, and Ci = 45, respectively,
for both i = 1, 2.

Under perturbation conditions, subsystems S1 and S2

prioritize the demands of their respective cloud service
providers and customers. This resource allocation challenge,
involving multiple decision-makers with distinct objectives,
can be framed as a multi-party multi-objective optimization
problem. Specifically, the goal is to identify the optimal

working point within the defined feasible region that
maximizes the satisfaction of each subsystem’s requirements.
To achieve this, we formulate a multi-party multi-objective
optimization model with constraints reflecting the actual
demands of each subsystem, as described below.

maxF = (F1, ..., Fi), i = 2 or 3
Fj = (r∗1 , ..., r

∗
j )

s.t.


f (mzj , λzj) < Di

r (mzj , λzj) > Ri
c (mzj , λzj) < Ci
mzj ∈ [4, 20] , λzj ∈ [4, 14]

(29)

To solve the multi-party multi-objective optimization
model proposed in (29), we introduce a robust configuration
method based on the OptMPNDS3 algorithm (i.e., Algorithm
3) [30]. This algorithm is designed to search for the optimal
working point within the feasible region, taking into
account the requirements of each subsystem. The results
of this search are illustrated in Figure.7(c), where the gray
points represent the set of working points acceptable to both
subsystems S1 and S2.

When dealing with uncertain perturbations, it is generally
inadvisable for the cloud platform to prioritize the require-
ments of one subsystem at the expense of others. In other
words, while setting the optimal working point for a subsys-
tem as far from the boundary as possible, the robustness re-
quirements of the other subsystems should not be overlooked.
To address this, we employ (28) to systematically evaluate
the robustness trade-offs among the gray working points,
with the objective of identifying the optimal working point
for the entire parallel mutual exclusion system. For instance,
by applying the aforementioned method, we can determine
the optimal working point for the cloud platform, which is
represented by the red working point in Figure 7(c).

Figure.7(a) and (b) show the optimal working points
obtained by OptMPNDS [31] and OptMPNDS2 [32], respec-
tively, that is, the red points in the figure. Through 20 sets of
tests on the three methods independently, the formula (28) is
used to evaluate each group and select the working points
obtained by the experiment. The experimental results are
shown in Figure.8. In the absence of outliers, the box plot
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Fig. 9: Robustness radius r∗i of each subsystem obtained by different methods

shows that the stability of the robust configuration method
based on the OptMPNDS3 algorithm is much better than
other comparison methods. For example, using the above
method, we can obtain the optimal working point of the
cloud platform, that is the red working point in Figure.7(c).

Therefore, we also select the working point with the
smallest robustness radius error in our proposed configuration
method, that is, the server size and arrival rate in the
subsystem s1 are m1 = 12.13 and λ1 = 9.11, respectively.
Correspondingly, the server size in the subsystem S2 is
m2 = 11.87, and the arrival rate is λ2 = 8.89. As shown in
Figure 9, each bar graph represents the robustness radius of
subsystems S1 and S2 in terms of deadline, revenue, and
cost obtained by different algorithms. By configuring the
optimal working point of the cloud platform, the robustness
radius of the deadline, revenue and cost of the subsystem
S1 are r∗1 = 6.46, r∗2 = 4.11 and r∗3 = 3.46, respectively.
Correspondingly, the robustness radius of the subsystem S2 is
r∗1 = 6.33, r∗2 = 3.89, r∗3 = 3.79. The figure clearly shows
that the OptMPNDS3 algorithm achieves a smaller absolute
error in the robustness radius under all requirements, indi-
cating that it has higher efficiency in balancing the demands
of each subsystem. That is to say, the configuration method
significantly enhances the robustness of the subsystem in the
face of perturbations and achieves a better balance between
deadline, revenue, and cost.

Through the analysis of Figure.7 and Figure.9, it can be
seen that the robustness configuration scheme has significant
advantages in optimizing the robust configuration of subsys-
tems with the same demands in parallel mutual exclusion
systems. This scheme better balances the demands of each
subsystem, enhancing the overall performance and robustness
of the system under disturbances.

2) Subsystems with the different demands: In parallel
mutual exclusion systems, varying preferences between cus-
tomers and cloud service providers can result in differ-
entiated performance requirements across subsystems. For
instance, some subsystems may prioritize delivering high-
quality services, while others may focus on maximizing
throughput. This leads to distinct performance expectations,
with certain subsystems imposing more stringent demands

Fig. 10: The acceptable working points with few different
demands between subsystems.

on specific performance metrics. Given the prevalence of
these differentiated requirements, it is essential to address
the challenge of robust configuration in such cases.

Building on the problem outlined above, we first examine
the scenario depicted in Figure.10. In this case, when the par-
allel system processes tasks, subsystem S1 imposes stricter
requirements on the service response deadline compared to
subsystem S2, with D1 = 0.01, R1 = 50, and C1 = 45,
while for subsystem S2, the corresponding values are D2 =
1, R2 = 50, and C2 = 45. To address this, we apply
the OptMPNDS3 algorithm, as described earlier, to identify
acceptable working points within the feasible region and
select the optimal configuration scheme using (28).

When the server size and arrival rates for S1 and S2

are configured based on the optimal working point, the
numerical results are summarized in Table II. For subsystem
S1, the server size is m1 = 12.68 and the customer arrival
rate is λ1 = 8.99. Under this configuration, the robustness
radii for the deadline, revenue, and cost are r∗1 = 3.98,
r∗2 = 3.99, and r∗3 = 3.22, respectively. For subsystem S2,
the corresponding values are m2 = 11.32, λ2 = 9.01, with

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 770-783

 
______________________________________________________________________________________ 



Algorithm 3: Robust configuration method based on
OptMPNDS3 algorithm

Input: N (the population size),
F ← (F1(x), F2(x), ..., FM (x))(the objective
function)

Output: MPS (the multiparty Pareto optimal
solutions)

1 begin
2 Initialization population P0;
3 F is calculated through Algorithm 1;
4 t← 0, Qt ← ∅, A← ∅;
5 L ← NondominatedSorting(P0, F );
6 P0 ← NondominatedSorting(P0,L);
7 Sort P0 by crowding entropy for each rank ;
8 while FE is not reached do
9 Offspring Qt are generated from Pt and A

using parameters uCR and uF ;
10 The non-dominated solutions in Qt and Pt are

storied in Rt, others are put into A;
11 L ← NondominatedSorting(P0, F );
12 B ← NondominatedSorting(P0,L);
13 Sort B by crowding entropy for each rank ;
14 i← 1, Pt+1 ← ∅;
15 while |Pt+1 ∪Bi| ≤ N do
16 Pt+1 ← Pt+1 ∪Bi;
17 i← i+ 1;
18 end
19 while |Pt+1| < N do
20 Move the least crowded solution from Bi

into Pt+1;
21 Update the crowding entropy of Bi;
22 end
23 Update A with individuals not selected;
24 Put CR and F which generate solutions in

Pt+1 into SCR and SF ;
25 Update the parameters uCR and uF with SCR

and SF ;
26 t← t+ 1;
27 end
28 Set MPS as solutions which is Pareto optimal for

all parties in Pt;
29 end

TABLE II: The optimal robust solution obtained with few
different demands between subsystems.

Si
Lowest demand Working point Robust radius
Di Ri Ci mi λi r∗1 r∗2 r∗3

S1 0.01 50.00 45.00 12.68 8.99 3.98 3.99 3.22
S2 1.00 50.00 45.00 11.32 9.01 5.78 4.01 4.02

robustness radii of r∗1 = 5.78, r∗2 = 4.01, and r∗3 = 4.02.
As illustrated in Figure 10, the red point represents the

optimal working point selected within the feasible region.
The performance metrics for both subsystems meet their
respective minimum requirements, and the deadlines for S1

and S2 are optimized. These results demonstrate that our
method effectively addresses the challenge of optimizing
subsystems with differentiated performance demands.

Then, we consider more complex cases, such as Figure.11.

Fig. 11: The acceptable working points with numerous
different demands between subsystems.

In the parallel system, subsystem S1 aims to respond to cus-
tomer service requests after a short deadline, while subsystem
S2 is committed to bringing high revenue to cloud service
providers, resulting in demand differences (i.e., D1 = 0.01,
R1 = 50, C1 = 40, D2 = 1, R2 = 70, C2 = 40). To solve
this problem, we also use our proposed method to obtain
the acceptable working points in the feasible region and
obtain the optimal configuration scheme through (28).

TABLE III: The optimal robust solution obtained with nu-
merous different demands between subsystems.

Si
Lowest demand Working point Robust radius
Di Ri Ci mi λi r∗1 r∗2 r∗3

S1 0.01 50.00 40.00 13.19 8.09 4.88 3.09 1.61
S2 1.00 70.00 40.00 10.81 9.91 4.92 2.91 1.61

Through the configuration results shown in Figure.11,
it can be found that the two subsystems have the same
robustness in the face of perturbations. This is because
when determining the optimal working point, a compromise
solution is adopted, that is, not favoring either side. Under
the optimal configuration, the calculation of the robustness
radius of S1 and S2 is recorded in Table III. It can be
seen that the server size and customer arrival rate of S1

are m1 = 13.19, λ1 = 8.09, and the robustness radius of
deadline, revenue and cost are r∗1 = 4.88, r∗2 = 3.09, r∗3
= 1.61, respectively. For S2, the corresponding values are
m2 = 10.81, λ2 = 9.91, and r∗1 = 4.92, r∗2 = 2.91, r∗3 =
1.61. Compared with the two subsystems, its performance
meets the minimum demand, the deadline of S1 is greatly
shortened, and the revenue of S2 is greatly increased. This
shows that our configuration scheme can not only ensure the
robustness of the entire parallel system but also meet the
differentiated demands of each subsystem.

VI. CONCLUSION

This paper presents a novel robust configuration method
for parallel mutual exclusion systems within cloud computing
environments to effectively address the impact of uncertain
disturbances on system performance. By viewing the system
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as a collection of multi-server queuing models and con-
sidering key performance metrics such as customer waiting
time, cloud service providers’ revenue, and cost, an in-depth
robustness analysis for each subsystem is conducted.

Furthermore, these robustness analysis methods are ex-
tended to the entire parallel system, addressing the compe-
tition and mutual constraints among subsystems to ensure
overall system robustness when facing disturbances. A key
contribution of this paper is the introduction of the robust-
ness radius metric, which numerically characterizes system
robustness. This measure aids in designing a robustness
optimization problem based on a multi-party multi-objective
model, solved using the OptMPNDS3 algorithm, assisting
decision-makers in making informed choices.

Experimental results validate the proposed robust configu-
ration scheme, demonstrating that it not only ensures system
performance but also maximally satisfies the demands of
both cloud service providers and customers. The parameter
settings and optimal solutions obtained in this study have
practical implications for enhancing the robustness and per-
formance of parallel mutual exclusion systems. The findings
provide valuable references for further research on the ro-
bustness of such systems, contributing to the advancement
of cloud computing resource management practices.
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