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Abstract—In this article, we explore the notion of an ”almost
lower density soft operator” on an abstract measurable soft
space, in addition to its essential properties. Next, we consider
the soft topologies generated by these soft operators. We find
some criteria ensuring the existence of such soft topologies. We
define what it means by the smallest soft topology generated
by the intersection of all almost lower density soft operators
on a certain abstract measurable soft space. Furthermore, we
propose the concept of equivalence of two soft operators on
a measurable soft space, and then we analyze the properties
of the corresponding soft topologies. We finalize this research
by examining several soft topological properties associated with
generating soft topologies.

Index Terms—soft topology, density soft topology, lower
density soft operator, almost lower density soft operator.

I. INTRODUCTION

MANY real-world issues are inherently uncertain, and
managing uncertainty well is essential to producing

well-informed decisions. The soft set approach is a potent
mathematical structure that has gained popularity recently for
handling uncertainty and describing the intricate interactions
between parameters in a variety of subjects. This approach
is especially applicable in areas of difficulty where data
could be more precise, clear, and complete, as it provides
an adaptable and understandable method of representing
and analyzing ambiguous data. Molodtsov [1] expanded on
conventional set theory in 1999 through the introduction of
the soft set concept. In contrast to crisp sets, which classify
components as wholly part of a set or not, soft sets support
different levels of ambiguity or uncertainty by allowing
for incremental memberships. Because of its adaptability,
the soft set framework may be used to address challenges
involving uncertainty. This helps decision-makers deal with
ambiguous data and express the complex interactions be-
tween parameters (see [2], [3]).

Soft topology [4] is a modern version of topology that
integrates the classical topology with soft set theory. Soft
topology has attracted the interest of many researchers by
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generalizing numerous types of topological thoughts (see [5],
[6], [7], [8], [9], [10]). Methods of generating soft topologies
is one of the thoughts. The first non-trivial techniques were
introduced in [11] and further developed in [12], [13]. Kandil
et al. [14] introduced a method based on the generalized
local function that generates soft ideal topologies. In [15],
a novel different method for creating soft ideal topologies
was demonstrated. The basis of this method was the finding
of cluster soft points, functioning as a soft operator of the
soft set. Recently, the approach to constructing density soft
topologies, which are soft topologies generated by lower
density operators (briefly, LDS-operators) on both chargeable
and measurable soft spaces, was described in [16], [17].
In this direction, we introduce the concept of an ”almost
lower density soft operator” (briefly, ”ALDS-operator”) on
measurable soft spaces with the related soft σ-ideal. The
aforementioned soft operators are natural extension of the
classical lower density and almost lower density operators
studied in [18], [19], [20], [21], [22], [23], [24], [25]. Our
main goal is to generate soft topologies by ALDS-operators.
The generating soft topologies share some properties with
density soft topologies. Further features and characterizations
of the newly generated soft topologies are discussed. Ad-
ditionally, the notion of equivalence of two soft operators
on a measurable soft space are defined, and some of its
implications are explored.

II. PRELIMINARIES

Throughout this note, we refer to our universe as the set
U , a set of parameters as ξ̄, and any index set as Λ.

Definition II.1. [1] A soft set over U is defined to be the
pair (S, ξ), where ξ ⊆ ξ̄ and S : ξ → 2U is a function.

We call a soft set U ”null” w.r.t. ξ if S(ς) = ∅ for every
ς ∈ ξ and denote it by ∅̃, and we call it ”absolute” w.r.t. ξ
if S(ς) = U for every ς ∈ ξ.

By S(Ũ), we mean the collection of all soft subsets over
U related ξ.

Definition II.2. [26], [27] Let (S, ξ) ∈ S(Ũ). Then, (S, ξ)
is said to be:

• finite if for each ς ∈ ξ, S(ς) is finite.
• infinite if for some ς ∈ ξ, S(ς) is infinite.
• countable if for each ς ∈ ξ, S(ς) is countable.
• uncountable if for some ς ∈ ξ, S(ς) is uncountable.
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Any soft set (S, ξ) ∈ S(Ũ) can be expanded to (S, ξ̄) by
associating S(ς) = ∅ for every ς ∈ ξ̄ − ξ.

Let (S, ξ) ∈ S(Ũ). The complement of (S, ξ) is a soft set
(Sc, ξ) = (S, ξ)c, whereas Sc : ξ → 2U is a function such
that Sc(ς) = U − S(ς) for all ς ∈ ξ, see [28].

Definition II.3. [29] Let (S, ξ) ∈ S(Ũ). Then, (S, ξ) is
called a soft point, symbolized with uς , if there exists u ∈ U
and ς ∈ ξ such that S(ς) = {u} and U(γ) = ∅ for all
γ ∈ ξ̄ − {ς}. By a statement uς ∈ (S, ξ) we mean u ∈ S(ς).

The collection of all soft points in U w.r.t. ξ is referred to
P(Ũ).

Definition II.4. Given (S1, ξ) = (S1, ξ), (S2, ξ)⊆̃S(Ũ).
Then (S1, ξ) is a subset of (S2, ξ), symbolizes (S1, ξ)⊆̃
(S2, ξ), if S1(ς) ⊆ S2(ς) for every ς ∈ ξ; (Si, ξ) is equal
to (S2, ξ), symbolizes (S1, ξ) = (S2, ξ), if (S1, ξ)⊆̃(S2, ξ)

and (S2, ξ)⊆̃(S1, ξ) for every ς ∈ ξ; The intersection of
(S1, ξ), (S2, ξ) is the soft set (S, ξ) = (S1, ξ)∩̃(S2, ξ) such
that S(ς) = S1(ς) ∩ S2(ς) for every ς ∈ ξ; The union
of (S1, ξ), (S2, ξ) is the soft set (S, ξ) = (S1, ξ)∪̃(S2, ξ)

such that S(ς) = S1(ς) ∪ S2(ς) for every ς ∈ ξ; The
set difference between (S1, ξ) and (S2, ξ) is the soft set
(S, ξ) = (S1, ξ) − (S2, ξ) such that S(ς) = S1(ς) − S2(ς)

for every ς ∈ ξ; The symmetric difference between (S1, ξ)

and (S2, ξ) is the soft set (S, ξ) = (S1, ξ)∆̃ (S2, ξ) such
that S(ς) = S1(ς)∆S2(ς) for every ς ∈ ξ, (see [30], [28],
[26], [15]). We shall remark that these definitions still hold
for any nonempty index set.

Definition II.5. Any subclass Λ ⊆ S(Ũ) that contains ∅̃ and
Ũ and satisfies the requirement that

• (S1, ξ), (S2, ξ) ∈ Λ =⇒ (S1, ξ)∩̃(S2, ξ) ∈ Λ;
• {(Si, ξ) : i ∈ I} ∈ Λ =⇒

⋃̃
i∈I(Si, ξ) ∈ Λ,

is considered to be a soft topology over U , see [4], [31]. The
triplet (U , Λ, ξ) is named a soft topological space. Elements
of Λ are called a soft Λ-open sets, or shortly, soft open sets,
and their complement are called soft Λ-closed sets or just soft
closed sets. We denote the family of all soft closed subsets
of (U , Λ, ξ) by Λc. The lattice of any soft topologies over U
is symbolized by T(Ũ), see [32].

Definition II.6. [4] Let (S, ξ) ∈ S(Ũ) and Λ ∈ T(Ũ). Then:

1) IntΛ(S, ξ) =
⋃̃
{(T, ξ) : (T, ξ)⊆̃(S, ξ), (T, ξ) ∈ Λ}

called the soft interior of (S, ξ).
2) ClΛ(S, ξ) =

⋂̃
{(T, ξ) : (S, ξ)⊆̃(T, ξ), (T, ξ) ∈ Λc} is

called the soft closure of (S, ξ).

When there is no misunderstanding, we can just utilize
Int(S, ξ) and Cl(S, ξ) to represent the soft interior and soft
closure of (S, ξ), respectively.

Lemma II.7. [33] Assume (S, ξ) ∈ S(Ũ) and Λ ∈ T(Ũ).
Then,

Int((S, ξ)c) = (Cl(S, ξ))c and Cl((S, ξ)c) = (Int(S, ξ))c.

Definition II.8. Suppose (S, ξ), (K, ξ) ∈ S(Ũ) and Λ ∈
T(Ũ). The soft set (S, ξ) is said to be

1) soft nowhere Λ-dense [34] if Int(Cl(S, ξ)) = ∅̃ .
2) soft Λ-dense in (K, ξ) [35] if (K, ξ)⊆̃Cl(S, ξ).
3) first category soft set [36] if it union of countable

soft nowhere Λ-dense sets. Otherwise, it is the second
category.

We may remove Λ from the names of these soft sets if
the soft topology is known from the context. The family of
soft nowhere Λ-dense sets (resp. first category soft sets) w.r.t.
(U , Λ, ξ) is named by N(Λ) (resp. M(Λ)).

Definition II.9. [37] Let (T, ξ) ∈ S(Ũ) and Λ ∈ T(Ũ).
Then, (T, ξ) is called a soft neighborhood of uς ∈ P(Ũ) if
there is (H, ξ) ∈ Λ(uς) such that uς ∈ (W, ξ)⊆̃(T, ξ), where
Λ(uς) is the class of soft Λ-open sets containing uς .

Lemma II.10. [4] For any soft topological space (U , Λ, ξ),
the set Λς = {S(ς) : (S, ξ) ∈ Λ} defines a classical topology
on U for every ς ∈ ξ.

Definition II.11. [31] For any (T, ξ) ∈ Λ, there exists a
subset (Mi, ξ) ∈ B such that (T, ξ) =

⋃̃
i∈I(Mi, ξ). This

subset is referred to as a soft base of Λ. If B is countable,
we say Λ has a countable soft base.

Definition II.12. [32] Consider G⊆̃S(Ũ). A soft topology
produced by G refers to the minimal soft topology over U
that contains it.

Definition II.13. A soft topological space (U , Λ, ξ) is said
to be

1) soft first countable [10] if every soft point has a
countable soft base.

2) soft second countable space [10] if it has a countable
soft base.

Definition II.14. A soft topological space (U , Λ, ξ) is soft
Lindelöf [10] (resp. soft compact [7]) if each soft open cover
of (U , Λ, ξ) has a countable (resp. finite) subcover.

Definition II.15. [38] A soft topological space (U , Λ, ξ) is
soft Baire if every no-null soft open set is the second category
soft set.

Definition II.16. A soft topological space (U , Λ, ξ) is said
to be

1) soft regular [9] if for every (F, ξ) ∈ Λc and every
uς /∈ (F, ξ), there are (S, ξ), (T, ξ) ∈ Λ such that
(F, ξ)⊆̃(S, ξ), uς ∈ (T, ξ), and (S, ξ)∩̃(T, ξ) = ∅̃.

2) soft T1 [8] if every {uς} ∈ Λc for every uς ∈ P(Ũ).

Definition II.17. [14] A class ∅̃ ̸= I⊆̃S(Ũ) is said to be a
soft ideal over U if I has the following properties:

1) If (S, ξ) ∈ I and (K, ξ)⊆̃(S, ξ), then (K, ξ) ∈ I, and
2) If (S, ξ), (K, ξ) ∈ I, then (S, ξ)∪̃(K, ξ) ∈ I.
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If (2) is true for a countably large number of soft sets, then
I is a soft σ-ideal. I(Ũ) represents the set of soft σ-ideals
over U .

Lemma II.18. [14] For a soft σ-ideal I over U , the set
Iς = {S(ς) : (S, ξ) ∈ I} defines a σ-ideal on U for each
ς ∈ ξ.

Definition II.19. Consider a family Σ⊆̃S(Ũ). If Σ includes
∅̃ and is closed under finite (resp. countable) unions and
the complement, then Σ is referred to as a soft algebra [39]
(resp. soft σ-algebra [40]) over U .

Lemma II.20. [41] For a soft σ-algebra Σ over U , the set
Σς = {S(ς) : (S, ξ) ∈ Σ} defines a σ-algebra on U for
every ς ∈ ξ.

Definition II.21. [36] Assume (S, ξ) ∈ S(Ũ), Λ ∈ T(Ũ), and
I ∈ I(Ũ). Then, (S, ξ) is named a soft Λ-open set ”modulo”
I if there exist (T, ξ) ∈ Λ and (R, ξ) ∈ I such that (S, ξ) =
(T, ξ)∆̃(R, ξ). The family of every soft Λ-open set ”modulo”
I is symbolized by B0(Λ, I). Whenever I is a soft σ-ideal
containing the first category soft sets, B0(Λ, I) is called a
soft σ-algebra of Baire property soft sets.

Definition II.22. [36] Suppose Λ ∈ T(Ũ). The soft σ-
algebra induced by Λ is a Borel soft σ-algebra B(Λ). Objects
of B(Λ) are called Borel soft sets.

Definition II.23. [42] A point x ∈ R is called a Ψ-density
point of a Lebesgue measurable set U ⊆ R if

lim
h→0+

λ(U c ∩ [x− h, x+ h])

2hΨ(2h)
= 0,

where Ψ is a continuous nondecreasing function from R+

into R+ such that lim
x→0+

Ψ(x) = 0 and λ is the Lebesgue
measure on R.

Definition II.24. [42] Let (R,L,N ) be the Lebesgue mea-
surable space with σ-ideal of sets of measure zero. The
family ΛΨ = {U ∈ L : U ⊆ φΨ(U)} forms a topology
on R called Ψ-density topology generated by the almost
lower density operator φΨ, where φΨ(U) = {x ∈ R :

x is a Ψ-density point of U}.

The quadruple (U ,Σ, I, ξ) represents a measurable soft
space in the following sense. It consists of Σ, a soft σ-algebra
over U , and I, a soft σ-ideal, such that I⊆̃Σ and Ũ /∈ I.

Definition II.25. [16] Let (U ,Σ, I, ξ) be a measurable
soft space. It is said that (U ,Σ, I, ξ) satisfies the hull
property if for each (S, ξ) ∈ S(Ũ), there exists (T, ξ) ∈ Σ

with (S, ξ)⊆̃(T, ξ) such that for each (C, ξ) ∈ Σ with
(C, ξ)⊆̃(T, ξ)− (S, ξ), we have (C, ξ) ∈ I.

Definition II.26. [16] Let (U ,Σ, I, ξ) be a measurable soft
space and let (S, ξ) ∈ S(Ũ). A soft set (T, ξ) ∈ Σ is said
to be a measurable kernel of (S, ξ) if (T, ξ)⊆̃(S, ξ) and for
each (C, ξ)⊆̃(S, ξ)− (T, ξ), we have (C, ξ) ∈ I.

Proposition II.27. [16] Let (U ,Σ, I, ξ) be a measurable soft
space and let φ1, φ2 be LDS-operators on (U ,Σ, I, ξ). Then
φ1 = φ2 iff Λφ1

= Λφ2
.

Theorem II.28. [16] Assume (U ,Σ, I, ξ) is a measurable
soft space and Λ ∈ T(X̃). Then Λ is a soft topology over U
iff Σ = B0(Λ, I) and I = N(Λ)∩̃Λc.

III. ALDS-OPERATORS

This section introduces the concept of an ALDS-operator
on a measurable soft space, followed by some of its conse-
quences.

Definition III.1. Let (U ,Σ, I, ξ) be a measurable soft space.
The mapping φ : Σ → S(Ũ) is said to be an almost
lower density soft operator on (U ,Σ, I, ξ); shortly, an ALDS-
operator, if it satisfies the following properties, for each
(S, ξ), (T, ξ) ∈ Σ:

(P1) φ(Ũ) = Ũ and φ(∅̃) = ∅̃;
(P2) φ((S, ξ)∩̃(T, ξ)) = φ(S, ξ)∩̃φ(T, ξ);
(P3) (S, ξ)∆̃(T, ξ) ∈ I =⇒ φ(S, ξ) = φ(T, ξ); and
(P4) φ(S, ξ)− (S, ξ) ∈ I.

If we replace the axiom (P4) by (S, ξ)∆̃φ(S, ξ) ∈ I,
soft operator φ is called a lower density soft operator on
(U ,Σ, I, ξ); in short, an LDS-operator, see [16].

Lemma III.2. Let φ : Σ → S(Ũ) be an ALDS-operator on
a measurable soft space (U ,Σ, I, ξ). Then, for each ς ∈ ξ,
φς : Σς → 2U defines an almost lower density operator on a
measurable space (U ,Σς , Iς) (see the definition here [43]).

Proof: Since φ be an ALDS-operator, then φ(Ũ) = Ũ .
Therefore, φ(Ũ) = {(ς, φς(U)) : ς ∈ ξ} = {(ς,U) : ς ∈ ξ}.
Hence, φς(U) = U for each ς . Similarly, φς(∅) = ∅ for
each ς . Let S(ς), T (ς) ∈ Σς . Then (S, ξ), (T, ξ) ∈ Σ. By
(P2), we have φ((S, ξ)∩̃(T, ξ)) = φ(S, ξ)∩̃φ(T, ξ). But
φ((S, ξ)∩̃(T, ξ)) = {(ς, φς [S(ς) ∩ T (ς)]) : ς ∈ ξ} and
φ(S, ξ)∩̃φ(T, ξ) = {(ς, φς(S(ς))∩φς(T (ς))) : ς ∈ ξ}. This
implies that φς [S(ς) ∩ T (ς)] = φς(S(ς)) ∩ φς(T (ς)). Let
S(ς), T (ς) ∈ Σς such that S(ς)∆T (ς) ∈ Iς for all ς ∈ ξ.
Then (S, ξ)∆̃(T, ξ) ∈ I, which implies φ(S, ξ) = φ(T, ξ).
Thus, φς(S(ς)) = φς(T (ς)). Similarly, we can prove that
(P4) is satisfied for each ς ∈ ξ. This proves φς is an almost
lower density operator on (U ,Σς , Iς).

Lemma III.3. Let φ : Σ → S(Ũ) be an ALDS-operator on a
measurable soft space (U ,Σ, I, ξ) and let (S, ξ), (T, ξ) ∈ Σ.
Then the following properties hold:

1) If (S, ξ)⊆̃(T, ξ), then φ(S, ξ)⊆̃φ(T, ξ).
2) φ(S, ξ)∪̃φ(T, ξ)⊆̃φ[(S, ξ)∪̃(T, ξ)].
3) I = {(S, ξ) ∈ Σ : φ(S, ξ) = ∅̃}.

Proof:

1) Let (S, ξ), (T, ξ) ∈ Σ such that (S, ξ)⊆̃(T, ξ). Then
(S, ξ) = (S, ξ)∩̃(T, ξ) and therefore, φ(S, ξ) =

φ(S, ξ)∩̃φ(T, ξ) ⊆̃φ(T, ξ). Hence, φ(S, ξ)⊆̃φ(T, ξ).

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 712-720

 
______________________________________________________________________________________ 



2) Let (S, ξ), (T, ξ) ∈ Σ. Since (S, ξ)⊆̃(S, ξ)∪̃(T, ξ)
and (T, ξ)⊆̃(S, ξ)∪̃(T, ξ), by (1), φ(S, ξ)

⊆̃φ[(S, ξ)∪̃(T, ξ)] and φ(T, ξ)⊆̃φ[(S, ξ)∪̃(T, ξ)].
Thus, φ(S, ξ)∪̃φ(T, ξ)⊆̃φ[(S, ξ) ∪̃(T, ξ)].

3) Let (S, ξ) ∈ I. Since (S, ξ)∆̃∅̃ ∈ I, by (P3), then
φ(S, ξ) = φ(∅̃) = ∅̃. Thus, φ(S, ξ) = ∅̃.

Lemma III.4. Let φ be soft operator on a measurable soft
space (U ,Σ, I, ξ) such that φ satisfies P1 − P3. Let S⊆̃Σ

be a collection such that

1) for each (S, ξ) ∈ Σ, there exists (T, ξ) ∈ S such that
(S, ξ)∆̃(T, ξ) ∈ I; and

2) for each (S, ξ) ∈ S, (S, ξ)− φ(S, ξ) ∈ I.

Then (S, ξ)∆̃φ(S, ξ) ∈ I for each (S, ξ) ∈ Σ.

Proof: Let (S, ξ) ∈ Σ. By the hypotheses, one can
conclude that (S, ξ) − φ(S, ξ) ∈ I. Let (T, ξ) ∈ S such
that (S, ξ)c∆̃(T, ξ) ∈ I. Therefore, (S, ξ)∩̃(T, ξ) ∈ I; and
thus, φ(S, ξ)∩̃φ(T, ξ) = φ[(S, ξ)∩̃(T, ξ)] = ∅̃. This implies
that φ(S, ξ)⊆̃[φ(T, ξ)]c. Hence, (S, ξ) − φ(S, ξ)∆̃φ(S, ξ)

∩̃(T, ξ)⊆̃(T, ξ)− φ(T, ξ) ∈ I; and so, (S, ξ)− φ(S, ξ) ∈ I.
Consequently, (S, ξ)∆̃φ(S, ξ) ∈ I.

Proposition III.5. Let (U ,Σ, I, ξ) be a measurable soft
space and let {φi : i ∈ I} be a family of ALDS-operators
φi : Σ → S(Ũ), then

φ =
⋂̃

i∈Iφi

is an ALDS-operator (U ,Σ, I, ξ).

Proof: Let (S, ξ), (T, ξ) ∈ Σ. We shall show the pillars
P1 − P4.

(P1) Since φ(Ũ) = Ũ and φi(∅̃) = ∅̃ for all i, then φ(Ũ) =⋂̃
i∈Iφi(Ũ) = Ũ and φ(∅̃) =

⋂̃
i∈Iφi(∅̃) = ∅̃.

(P2) For the given soft sets (S, ξ), (T, ξ) ∈ Σ, by assump-
tion, we have φi((S, ξ)∩̃(T, ξ)) = φi(S, ξ)∩̃φi(T, ξ)

for all i. Therefore,

φ((S, ξ)∩̃(T, ξ)) =
⋂̃

i∈Iφi[(S, ξ)∩̃(T, ξ)]

=
⋂̃

i∈I [φi(S, ξ)∩̃φi(T, ξ))]

=
⋂̃

i∈Iφi(S, ξ)∩̃
⋂̃

i∈Iφi(T, ξ))

= φ(S, ξ)∩̃φ(T, ξ).

(P3) Since, for any (S, ξ)∆̃(T, ξ) ∈ I, we have φi(S, ξ) =

φi(T, ξ) implies
⋂̃

i∈Iφi(S, ξ) =
⋂̃

i∈Iφi(T, ξ) and so
φ(S, ξ) = φ(T, ξ).

(P4) By assumption, for all i, φi(S, ξ) − (S, ξ) ∈ I.
Therefore

⋂̃
i∈Iφi(S, ξ)−(S, ξ) = φ(S, ξ)−(S, ξ) ∈ I.

Hence, φ is an ALDS-operator (U ,Σ, I, ξ).

IV. SOFT TOPOLOGIES GENERATED BY

ALDS-OPERATORS

Definition IV.1. Let φ be an ALDS-operator on a measur-
able soft space (U ,Σ, I, ξ). If the family

Λφ = {(S, ξ) ∈ Σ : (S, ξ)⊆̃φ(S, ξ)}

is a soft topology over U , then Λφ is called the soft topology
generated by φ.

Lemma IV.2. For any ALDS-operator φ on a measurable
soft space (U ,Σ, I, ξ). The family Λφ can be identified with
{φ(S, ξ)− (T, ξ) : (S, ξ) ∈ Σ, (T, ξ) ∈ I}.

Remark IV.3. We shall remark that Λφ need not be a soft
topology, in general, see Example 4.3 in [16]. However, it
forms a soft base for a soft topology (c.f. [15, Theorem 4.5]).

Below are some examples of soft topologies generated by
ALDS-operators:

Example IV.4. Let S(Ũ) be the soft σ-algebra of all soft
sets over any nonempty set U and let I0 = {∅̃} be the soft
σ-ideal. The identity soft operator φ on the measurable soft
space (U ,S(Ũ), Iuς

, ξ) is an ALDS-operator. The family Λφ

forms the soft discrete topology over U .

Example IV.5. Let (R,B(Λ), Iω, ξ) be a measurable soft
space, where B(Λ) is the soft σ-algebra over the set of
real numbers R generated by the natural soft topology Λ

(Example 4.3 in [16]) and Iω is the soft σ-ideal of all
countable soft subsets. Consider the soft operator φ on
(R,B(Λ), Iω, ξ) defined by

φ(S, ξ) =


∅̃, if (S, ξ)c /∈ Iω

R̃, if (S, ξ)c ∈ Iω.

Then, φ satisfies P1−P4 and so it is an ALDS-operator. The
family

Λφ = {(S, ξ) ∈ B(Λ) : (S, ξ)⊆̃φ(S, ξ)}
= {(S, ξ) ∈ B(Λ) : (S, ξ)c ∈ Iω}∪̃{∅̃}

is a soft topology over R.

Proposition IV.6. Let Λφ be a soft topology generated by
an ALDS-operator φ on a measurable soft space (U ,Σ, I, ξ).
For any (S, ξ) ∈ Σ, we have

1) IntΛφ(S, ξ)⊆̃(S, ξ)∩̃φ(S, ξ).
2) ClΛφ

(S, ξ)⊇̃(S, ξ)∪̃[φ((S, ξ)c)]c.

Proof: Suppose (S, ξ) ∈ Σ.

1) By definition, IntΛφ
(S, ξ) =

⋃̃
(Gλ, ξ) such

that (Gλ, ξ)⊆̃φ(Gλ, ξ) and (Gλ, ξ)⊆̃(S, ξ)

for each λ. Since φ is monotone, then we
have (Gλ, ξ)⊆̃φ(Gλ, ξ)⊆̃φ(S, ξ); and therefore,
(Gλ, ξ)⊆̃ (S, ξ)∩̃φ(S, ξ) for each λ. Thus,
IntΛφ

(S, ξ)⊆̃(S, ξ)∩̃φ(S, ξ).
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2) By Remark II.7, we have

ClΛφ
(S, ξ) = [IntΛφ

[(S, ξ)c]]c

⊇̃[(S, ξ)c∩̃φ((S, ξ)c)]c

= (S, ξ)∪̃[φ((S, ξ)c)]c.

Theorem IV.7. Let Λφ be a soft topology generated by an
ALDS-operator φ on a measurable soft space (U ,Σ, I, ξ). If
(S, ξ) ∈ I, then (S, ξ) ∈ Λc

φ∩̃N(Λφ).

Proof: Suppose that (S, ξ) ∈ I. Obviously, (S, ξ)c ∈ Σ.
Since (S, ξ)c∆̃Ũ ∈ I, then φ((S, ξ)c) = φ(Ũ). Therefore,
(S, ξ)c⊆̃Ũ = φ(Ũ) = φ((S, ξ)c), and so, (S, ξ)c ∈ Λφ.
Hence, (S, ξ) ∈ Λc

φ. We now prove that (S, ξ) ∈ N(Λφ). If
(G, ξ) ∈ Λφ such that (G, ξ)⊆̃(S, ξ), then (G, ξ)⊆̃φ(G, ξ)⊆̃
φ(S, ξ)⊆̃[Ũ − φ((G, ξ)c)] = ∅̃. This implies that (G, ξ)

must be null. Therefore, (S, ξ) ∈ N(Λφ). Thus, (S, ξ) ∈
Λc
φ∩̃N(Λφ).

Corollary IV.8. Let Λφ be a soft topology generated by an
ALDS-operator φ on a measurable soft space (U ,Σ, I, ξ).
Then I⊆̃M(Λφ).

The converse of Theorem IV.7 need not always be true,
as shown in the following example:

Example IV.9. Consider the measurable soft space
(R,L(L), IN , ξ), where L(L), IN are respectively the soft
σ-algebra and soft σ-ideal over R generated by σ-algebra
L of Lebesgue measurable sets and σ-ideal N of sets of
measure zero in R (Theorem 4.2 in [41]). Let the soft
operator φ

Ψ̃
on (R,L(N ), IN , ξ) be defined by φ

Ψ̃
(S, ξ) =

{(ς, φ
Ψ
(S(ς))) : ς ∈ ξ and S(ς) ∈ L}. Since φ

Ψ
is an

almost density operator on R, then φ
Ψ̃

is an ALDS-operator.
The soft topology Λφ

Ψ̃
generated by φ

Ψ̃
will be called the

Ψ̃-density soft topology over R. Therefore, Λφ
Ψ̃

has many
soft ΛΨ̃-closed and soft ΛΨ̃-nowhere dense sets that are not
in IN , see [42].

However, the converse is true for LDS-operators on both
chargeable and measurable soft spaces, see [17], [16].

Remark IV.10. In Example IV.9, we shall observe that
M(Λφ

Ψ̃
) = S(R̃). This proves that a soft topology Λφ

generated by an ALDS-operator φ need not be soft Baire
in contrast to soft topologies generated by LDS-operators,
see [17], [16].

Theorem IV.11. Let Λφ be a soft topology generated by an
ALDS-operator φ on a measurable soft space (U ,Σ, I, ξ).
If (S, ξ) ∈ I, then (S, ξ) ∈ Λc

φ∩̃D(Λφ), where D(Λφ) is
the family of all soft discrete sets in (U , Λφ). Moreover, the
reverse will be true if I includes all finite soft sets over U .

Proof: Suppose (S, ξ) ∈ I. By Theorem IV.7, (S, ξ) ∈
Λc
φ. It remains to prove that (S, ξ) ∈ D(Λφ). Let uς be a

soft point in (S, ξ). Since (S, ξ)−{uς}⊆̃(S, ξ), then (S, ξ)−

{uς} ∈ I. Again, by Theorem IV.7, (S, ξ)−{uς} ∈ Λc
φ; and

hence, {uς} is a soft Λφ-open set in (S, ξ). Evidently, {uς}
is a soft Λφ-closed set in (S, ξ). Therefore, (S, ξ) ∈ D(Λφ).

Conversely, suppose (S, ξ) ∈ Λc
φ∩̃D(Λφ). Clearly, we

have that (S, ξ)c ∈ Λφ⊆̃Σ. Since Σ is a soft σ-algebra, then
(S, ξ) ∈ Σ. But (S, ξ) ∈ D(Λφ); so, for each uς ∈ (S, ξ),
there exists (Guς

, ξ) ∈ Λφ with uς ∈ (Guς
, ξ) such that

(Guς
, ξ)∩̃(S, ξ) = {uς}. Therefore,

uς ∈ (Guς
, ξ)⊆̃φ(Guς

, ξ) = φ[(Guς
, ξ)− {uς}]⊆̃φ[(S, ξ)c].

This means that (S, ξ)⊆̃φ[(S, ξ)c]; and then, (S, ξ) =

φ[(S, ξ)c]− (S, ξ)c ∈ I.

Theorem IV.12. Let Λφ be a soft topology generated by an
ALDS-operator φ on a measurable soft space (U ,Σ, I, ξ). If
I = M(Λφ), then B0(Λφ, I)⊆̃Σ.

Proof: Let (S, ξ) ∈ B0(Λ, I). Then (S, ξ) =

(G, ξ)∆̃(N, ξ), where (G, ξ) ∈ Λφ and (N, ξ) ∈ N(Λφ).
Since Λφ⊆̃Σ, so (S, ξ) ∈ Σ. Hence, B0(Λ, I)⊆̃Σ.

Here, we shall remark that for the case of LDS-operators,
we have B0(Λφ, I) = Σ (see [17], [16]). However, for
ALDS-operators, the inclusion is proper, as shown in this
example.

Example IV.13. Consider the measurable soft space
(R,L(L), IN , ξ) constructed in Example IV.9. Let the soft
operator φ on (R,L(L), IN , ξ) be defined by

φ(S, ξ) =


∅̃, if (S, ξ)c /∈ IN

R̃, if (S, ξ)c ∈ IN .

The family

Λφ = {(S, ξ) ∈ L(L) : (S, ξ)⊆̃φ(S, ξ)}
= {(S, ξ) ∈ L(L) : (S, ξ)c ∈ IN }∪̃{∅̃}

is a soft topology over R generated by the ALDS-operator
φ such that IN = M(Tφ) and B0(Λφ, IN ) ⊆̃L(L).

Next, we find a condition under which Λφ forms a soft
topology:

Theorem IV.14. Let φ be an ALDS-operator on a measur-
able soft space (U ,Σ, I, ξ). If (U ,Σ, I, ξ) satisfies the hull
property, then Λφ is a soft topology over U .

Proof: Suppose (U ,Σ, I, ξ) satisfies the hull
property. We have to prove that Λφ is a soft topology.
Evidently, we have ∅̃, Ũ ∈ Λφ. If (S, ξ), (T, ξ) ∈ Λφ,
then (S, ξ)⊆̃φ(S, ξ), (T, ξ)⊆̃φ(T, ξ). Therefore,
(S, ξ)∩̃(T, ξ)⊆̃φ(S, ξ)∩̃φ(T, ξ) = φ[(S, ξ) ∩̃(T, ξ)]
from (P2); hence, (S, ξ)∩̃(T, ξ) ∈ Λφ. We now check that⋃̃

b∈β(Wb, ξ) ∈ Λφ for each {(Wb, ξ) : b ∈ β}⊆̃Λφ.
Since (U ,Σ, I, ξ) satisfies the hull property, so
there exists a measurable kernel (C, ξ) ∈ Σ of⋃̃

b∈β(Wb, ξ) such that (C, ξ)⊆̃
⋃̃

b∈β(Wb, ξ) and for
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any (D, ξ)⊆̃
⋃̃

b∈β(Wb, ξ) − (C, ξ) implies (D, ξ) ∈ I.
Since [(Wb, ξ)∩̃(C, ξ)]∆̃(Wb, ξ) ∈ I for each b ∈ β, then
φ[(Wb, ξ)∩̃(C, ξ)] = φ(Wb, ξ). Now, we obtain that

(C, ξ) ⊆̃
⋃̃

b∈β(Wb, ξ)⊆̃
⋃̃

b∈βφ(Wb, ξ) (1)

=
⋃̃

b∈βφ[(Wb, ξ)∩̃(C, ξ)]⊆̃φ(C, ξ).

Since φ(C, ξ) − (C, ξ) ∈ I, then
⋃̃

b∈β(Wb, ξ) −
(C, ξ) ∈ I; and thus,

⋃̃
b∈β(Wb, ξ) = [

⋃̃
b∈β(Wb, ξ) −

(C, ξ)]∪̃(C, ξ) ∈ Σ, as Σ is closed under finite unions.
Furthermore, by Equation (1) and Lemma III.3 (1), we have⋃̃

b∈β(Wb, ξ)⊆̃φ(
⋃̃

b∈β(Wb, ξ)). Thus,
⋃̃

b∈β(Wb, ξ) ∈ Λφ.

The converse of the above result is not true in general.
The family Λφ constructed in Example IV.5 by the ALDS-
operator φ on the measurable soft space (R,B(Λ), Iω, ξ)
forms a soft topology, while (R,B(Λ), Iω, ξ) do not satisfy
the hull property. It should be noted that the converse is true
when φ is an LDS-operator, see Theorem 4.20 in [16].

Theorem IV.15. Let φ be an ALDS-operator on a mea-
surable soft space (U ,Σ, I, ξ) that generates Λφ. Then
I = M(Λφ) iff there exists a soft σ-algebra S⊆̃Σ and an
LDS-operator θ on (U ,S, I, ξ) such that Λφ = Λθ.

Proof: Suppose I = M(Λφ). Choose S = B0(Λφ, I).
Since B0(Λφ, I) is the smallest soft σ-algebra containing
Λφ and M(Λφ), so S⊆̃Σ. Set θ = φ|S . We shall check
that θ is an LDS-operator θ on a measurable soft space
(U ,S, I, ξ). The first three conditions are directly satis-
fied because φ is an ALDS-operator. We now show that
θ(S, ξ)∆̃(S, ξ) ∈ I. Suppose (S, ξ) ∈ S. Then (S, ξ) =

(T, ξ)∆̃(K, ξ), where (T, ξ) ∈ Λφ and (K, ξ) ∈ I. It follows
that θ(S, ξ) = φ(S, ξ) = φ(T, ξ)⊇̃(T, ξ). Therefore, (S, ξ)−
θ(S, ξ)⊆̃(S, ξ) − (T, ξ) ∈ I; and thus (S, ξ) − θ(S, ξ) ∈ I.
By Lemma III.4, we get that θ(S, ξ)∆̃(S, ξ) ∈ I. Hence,
θ is an LDS-operator. The Proposition II.27 guarantees that
Λφ = Λθ.

Conversely, suppose θ is an LDS-operator θ on (U ,S, I, ξ)
such that Λφ = Λθ. By Theorem II.28, M(Λθ) = I. Since
Λφ = Λθ, then I = M(Λφ).

Theorem IV.16. Let (U ,Σ, I, ξ) be a measurable soft space
satisfying hull property and let Λ ∈ T(Ũ) such that I, Λ⊆̃Σ.
Then there exists a soft σ-algebra Σ∗ that makes

Λφ∗ = {(S, ξ) ∈ Σ∗ : (S, ξ)⊆̃φ∗(S, ξ)}

the smallest soft topology over U for some ALDS-operator
on (U ,Σ∗, I, ξ).

Proof: Let K be the collection of soft σ-algebras
containing both I and Λ. Set Σ∗ =

⋂̃
Σ∈KΣ. By Lemma

3.1 in [41], Σ∗ is a soft σ-algebra. By assumption and
Theorem IV.14, Λφ is a soft topology over U for all
ALDS-operators φ. By Proposition III.5, φ∗ =

⋂̃
φ is an

ALDS-operator. We now show that Λφ∗ is a soft topol-
ogy. By P1, P2 of φ∗, ∅̃, Ũ ∈ Λφ∗ and (S, ξ)∩̃(T, ξ) ∈
Λφ∗ for any (S, ξ), (T, ξ). Let {(Si, ξ) : i ∈ I}⊆̃Λφ∗ .
Then (Si, ξ)⊆̃φ∗(Si, ξ) for all i. By monotonicity of φ∗,
we can see that (Si, ξ)⊆̃φ∗[

⋃̃
i∈I(Si, ξ)] and therefore⋃̃

i∈I(Si, ξ)⊆̃φ∗[
⋃̃

i∈I(Si, ξ)]. Thus,
⋃̃

i∈I(Si, ξ) ∈ Λφ∗ ,
showing that Λφ∗ is a soft topology over U . The smallestness
of Λφ∗ can be followed from the definition of φ∗.

Remark IV.17. From remarks IV.2 and IV.3, we conclude
that Λφ∗ identical to the cluster soft topology on a soft σ-
algebra generated by some soft topology.

Definition IV.18. Let φ1, φ2 be soft operators on a measur-
able soft space (U ,Σ, I, ξ). We say φ1, φ2 are equivalent,
denoted by φ1 ≈ φ2, if φ1(S, ξ)∆̃φ2(S, ξ) ∈ I for each
(S, ξ) ∈ Σ.

Remark IV.19. We shall remark from Proposition II.27 that
φ1 and φ2 are equivalent. However, this property does not
hold when φ1 and φ2 are ALDS-operators, see the below
arguments.

Example IV.20. Suppose (R,L(L), IN , ξ) is the measurable
soft space constructed in Example IV.9 and φ is the soft
operator on (R,L(L), IN , ξ), which is defined by

φ0(S, ξ) =


φ

Ψ̃
(S, ξ)∩̃(K, ξ), if (S, ξ)c /∈ IN

R̃, if (S, ξ)c ∈ IN ,

where φ
Ψ̃

is the ALDS-operator given in Example IV.9 and
(K, ξ) = {(ς,K(ς)) : ς ∈ ξ and K(ς) is a Bernstein set}.
The ALDS-operators φ0 and φ (defined by Example IV.13)
are not equivalent. However, Λφ0

= Λφ.

On the other hand, one can have the following conclusion
for ALDS-operators:

Proposition IV.21. Let φ1, φ2 be ALDS-operators on a
measurable soft space (U ,Σ, I, ξ). If Λφ1

= Λφ2
, then

φ1(S, ξ)∆̃φ2(S, ξ) ∈ I for each (S, ξ) ∈ Λφ1
.

Proof: Let Λφ1
= Λφ2

. Suppose (S, ξ) ∈ Λφ1
. Then

φ1(S, ξ) = (S, ξ)∪̃[φ1(S, ξ) − (S, ξ)] and φ2(S, ξ) =

(S, ξ)∪̃[φ2(S, ξ)−(S, ξ)]. Since I is a soft σ-ideal, therefore,
φ1(S, ξ)∆̃φ2(S, ξ) ∈ I.

Proposition IV.22. Let φ1, φ2 be ALDS-operators on a
measurable soft space (U ,Σ, I, ξ). If φ1 ≈ φ2, then for
each (S, ξ) ∈ Λφ1 , there exists (T, ξ) ∈ I such that
(S, ξ)− (T, ξ) ∈ Λφ2

.

Proof: Let (S, ξ) ∈ Λφ1 . Then (S, ξ)⊆̃φ1(S, ξ).
Set (T, ξ) = φ1(S, ξ)∆̃φ2(S, ξ). By Proposition IV.21,
(T, ξ) ∈ I. Therefore, (S, ξ)⊆̃φ2(S, ξ)∆̃(T, ξ) and
so (S, ξ)⊆̃φ2(S, ξ)∪̃(T, ξ). This means that (S, ξ) −
(T, ξ)⊆̃φ2(S, ξ). But φ2(S, ξ) = φ2[(S, ξ) − (T, ξ)]. Thus,
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(S, ξ)− (T, ξ)⊆̃φ2[(S, ξ)− (T, ξ)]. Hence, (S, ξ)− (T, ξ) ∈
Λφ1

.

Theorem IV.23. Let φ1, φ2 be ALDS-operators on a mea-
surable soft space (U ,Σ, I, ξ) and let Λφ1

, Λφ2
be soft

topologies generated by φ1, φ2, respectively. If φ1 ≈ φ2,
then

1) M(Λφ1
) = M(Λφ2

), and
2) B0(Λφ1 ,M(Λφ1)) = B0(Λφ2 ,M(Λφ2)).

Proof:

1) To prove this part, it suffices to show that N(Λφ1) =

N(Λφ2
). Let (S, ξ) ∈ N(Λφ1

) and let (W, ξ) ∈ Λφ2
.

Then, by Proposition IV.22, there exists (K, ξ) ∈ I

such that (W, ξ) − (K, ξ) ∈ Λφ1 . Since (S, ξ) ∈
N(Λφ1

), then there exists ∅̃ ̸= (G, ξ) ∈ Λφ1
such

that (G, ξ)⊆̃(W, ξ) − (K, ξ) and (S, ξ)∩̃(G, ξ) = ∅̃.
Again, by Proposition IV.22, there exists (L, ξ) ∈ I

such that (G, ξ)− (L, ξ) ∈ Λφ2
. Clearly ∅̃ ̸= (G, ξ)−

(L, ξ)⊆̃(W, ξ) and (S, ξ)∩̃[(G, ξ)−(L, ξ)] = ∅̃. There-
fore, (S, ξ) ∈ N(Λφ2

); and hence, N(Λφ1
)⊆̃N(Λφ2

).
The reverse of the inclusion can be proved similarly.
Consequently, M(Λφ1) = M(Λφ2).

2) Let (S, ξ) ∈ B0(Λφ1
,M(Λφ1

)). By Theorem 5
(5) in [36], (S, ξ) = [(G, ξ) − (K, ξ)]∪̃(L, ξ) for
some (G, ξ) ∈ Λφ1 and (K, ξ), (L, ξ) ∈ M(Λφ1).
By Proposition IV.22, one can find (W, ξ) ∈ I

such that (G, ξ) − (W, ξ) ∈ Λφ2
. Therefore,

(S, ξ) = [[((G, ξ) − (W, ξ))∪̃((G, ξ)∩̃(W, ξ))] −
(K, ξ)]∪̃(L, ξ) = [[(G, ξ) − (W, ξ) −
(K, ξ)]∪̃[(G, ξ)∩̃(W, ξ)∩̃(K, ξ)c]]∪̃(L, ξ) = [[(G, ξ)−
(W, ξ)] − (K, ξ)]∪̃[(G, ξ)∩̃(W, ξ)∩̃(K, ξ)c∪̃(L, ξ)].
Set (G′, ξ) = (G, ξ) − (W, ξ) and
(L′, ξ) = (G, ξ)∩̃(W, ξ)∩̃(K, ξ)c∪̃(L, ξ). Since
I⊆̃M(Λφ2

) and M(Λφ2
) is a soft σ-ideal, so

(L′, ξ) ∈ M(Λφ2
). This means that (S, ξ) =

[(G′, ξ) − (K, ξ)]∪̃(L′, ξ), where (G′, ξ) ∈ Λφ2

and (K, ξ), (L′, ξ) ∈ M(Λφ2
). Thus, (S, ξ) ∈

B0(Λφ2 ,M(Λφ2)). Consequently,
B0(Λφ1

,M(Λφ1
))⊆̃B0(Λφ2

,M(Λφ2
)). By the

same technique, we can prove the reverse. Hence,
B0(Λφ1 ,M(Λφ1)) = B0(Λφ2 ,M(Λφ2)).

One can conclude from Example IV.20 that the range of
an ALDS-operator may be very large. However, it can be
determined with Σ.

Theorem IV.24. Let φ be an ALDS-operator on a measur-
able soft space (U ,Σ, I, ξ). If there is an ALDS-operator
Θ : H → Σ on (U ,H, I, ξ), where H is an ssπ-system such
that I⊆̃H⊆̃Σ, then ΛΘ = Λφ.

Proof: Put H = {(S, ξ) ∈ Σ : φ(S, ξ) ∈ Σ}. By (P1-
P2), H is an ssπ-system over U including ∅̃, Ũ having the
property that I⊆̃H⊆̃Σ. Set Θ = φ|H . Apparently, Θ is an

ALDS-operator on (U ,H, I, ξ). To show that ΛΘ = Λφ,
it is enough to check that Λφ⊆̃ΛΘ since the reverse is
always possible. If (S, ξ) ∈ Λφ, then (S, ξ) ∈ Σ and
(S, ξ)⊆̃φ(S, ξ). Since φ(S, ξ)∆̃(S, ξ) ∈ I, then φ(S, ξ) =

(S, ξ)∪̃[φ(S, ξ) − (S, ξ)]; and therefore, (S, ξ) ∈ H. This
means that (S, ξ)⊆̃φ(S, ξ) = Θ(S, ξ); and hence, (S, ξ) ∈
ΛΘ. Thus, Λφ⊆̃ΛΘ.

Theorem IV.25. Let φ be an ALDS-operator on a measur-
able soft space (U ,Σ, I, ξ) and let Λφ be a soft topology
generated by φ. If I contains all finite soft sets, then

1) (U , Λφ, ξ) is not soft compact, if I contains an infinite
soft set.

2) (U , Λφ, ξ) is not soft Lindelöf, if I contains an un-
countable soft set.

3) (U , Λφ, ξ) is a soft T1-space.
4) (U , Λφ, ξ) is not soft separable.
5) (U , Λφ, ξ) is not soft first countable.
6) (U , Λφ, ξ) is not soft second countable.

Proof:

1) Assume (S, ξ) ∈ I is infinite. For each uς ∈ P(Ũ),
(S, ξ) − {uς} ∈ I and so (S, ξ) − {uς} ∈ Λc

φ.
Therefore, (S, ξ)c∪̃{uς} ∈ Λφ. This means that
{(S, ξ)c∪̃{uς}}uς∈(S,ξ) is a soft Λφ-open cover of Ũ
with no finite subcover. Hence, (U , Λφ, ξ) cannot be
soft compact.

2) Similar to (1).
3) The proof is clear since {uς} ∈ I for each uς ∈ P(Ũ)

and each element of I is soft Λφ-closed. Therefore,
(U , Λφ, ξ) is soft T1.

4) Since, by Proposition IV.7, I = N(Λφ), which includes
all countable soft sets. Consequently, each countable
soft set is soft closed. Then, no countable soft set is
soft Λφ-dense in (U , Λφ, ξ). Thus, (U , Λφ, ξ) cannot
be soft separable.

5) Pick uς ∈ P(Ũ) and let {(Wn, ξ) : n = 1, 2, · · · } be
a family of soft Λφ-open sets containing uς . For any
n, let un

ς ∈ (Wn, ξ) with un
ς ̸= uς . Set (W, ξ) =

(W1, ξ) − {un
ς : n = 1, 2, · · · }. Then (W, ξ) is a

soft Λφ-open set containing uς . But, (W, ξ) does not
contain an (Wn, ξ) for each n. Therefore, (U , Λφ, ξ)

cannot be soft first countable.
6) It follows from (5) since soft second countable space

implies soft first countable.

Theorem IV.26. Let Λ ∈ T(Ũ) with Ũ /∈ M(Λ) and let Λφ

be a soft topology generated by an ALDS-operator φ on the
measurable soft space (U ,B0(Λ,M(Λ)),M(Λ), ξ) such that
Λ⊆̃Λφ. If there exists (W, ξ) ∈ M(Λ) which soft Λ-dense,
then (U , Λφ) is not soft regular.

Proof: Since φ is defined on the measurable soft space
(U ,B0(Λ,M(Λ)),M(Λ), ξ), which satisfied the hull property
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(see Lemma 4.19 in [16]), by Theorem IV.14, the family

Λφ = {(S, ξ) ∈ S(Ũ) : (S, ξ)⊆̃φ(S, ξ)}

is a soft topology over U .
Claim: If (W, ξ) ∈ Λφ is soft Λ-dense, then
(W, ξ)c ∈ M(Λ).
Proof of the claim. Let (W, ξ) ∈ Λφ be soft Λ-dense.
Then (W, ξ) = (T, ξ)∆̃(K, ξ) for some (T, ξ) ∈ Λ

and (K, ξ) ∈ M(Λ). We shall show that (T, ξ) is
soft Λ-dense. Assume otherwise that there exists
∅̃ ̸= (G, ξ) ∈ Λ such that (T, ξ)∩̃(G, ξ) = ∅̃.
Since Λ⊆̃Λφ, then (W, ξ)∩̃(G, ξ) ∈ Λφ. Therefore,
(W, ξ)∩̃(G, ξ)⊆̃φ(W, ξ)∩̃φ(G, ξ) = φ((T, ξ)∩̃(G, ξ)) = ∅̃.

This means that (W, ξ)∩̃(G, ξ) = ∅̃, which contradicts to
the soft Λ-density of (W, ξ). Hence, (T, ξ) ∈ Λ which is
also soft Λ-dense; and thus, (T, ξ)c ∈ M(Λ). Consequently,
(W, ξ)c ∈ M(Λ).

Suppose (W, ξ) ∈ M(Λ) is soft Λ-dense and uς /∈
(W, ξ). If (U , Λφ) is a soft regular space, then there exist
(S, ξ), (T, ξ) ∈ Λφ such that (W, ξ)⊆̃(S, ξ), uς ∈ (T, ξ),
and (S, ξ)∩̃(T, ξ) = ∅̃. By our claim, (S, ξ)c ∈ M(Λ)

and (T, ξ)c /∈ M(Λ); and thus (S, ξ)∩̃(T, ξ) ̸= ∅̃, a
contradiction. Hence, (U , Λφ) cannot be soft regular.

V. CONCLUSION

The term ”density topology” is borrowed from the
Lebesgue density topology on the set of real numbers. The
density topology is larger than the natural (usual) topology.
The literature documented a number of density topology
extensions. Then an abstract version of density topology
was developed by many scholars, see [24], [43], [44], [20],
[21]. Recently, the density topology on different domains
was introduced in [17], [16]. By weakening the axioms of
the lower density operator, an ALDS-operator is born. This
soft operator is studied along with its relation to the classical
almost lower density operator. Our primary aim is to explore
the soft topologies produced by ALDS-operators. Some non-
trivial examples of such soft topologies are given. We have
compared the properties of soft topologies generated by
ALDS-operators to the properties of density soft topologies.
In addition, we have defined what it means to be equivalent
soft operators. The consequences of this concept are also ex-
plored. We also demonstrated which topological properties,
like compactness and Lindelofness, some separation axioms,
and countability axioms, may be observed in soft topologies
formed by ALDS-operators.
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