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Abstract—With the continuous advancement of satellite tech-
nology, remote sensing images has been increasingly applied in
fields such as urban planning, environmental monitoring, and
disaster response. However, remote sensing images often feature
small target sizes and complex backgrounds, posing significant
computational challenges for object detection tasks. To address
this issue, this paper proposes a lightweight remote sensing
images object detection algorithm based on YOLOv9. The pro-
posed algorithm incorporates the SimRMB module, which effec-
tively reduces computational complexity while improving the ef-
ficiency and accuracy of feature extraction. Through a dynamic
attention mechanism, SimRMB is capable of focusing on impor-
tant regions while minimizing background interference, and by
integrating residual learning and skip connections, it ensures
the stability of deep networks. To further enhance detection
performance, the FasterRepNCSPELAN4 module is introduced,
which employs PConv operations to reduce computational load
and memory usage. It also utilizes dilated convolutions and DFC
attention mechanisms to strengthen feature extraction, thereby
increasing the efficiency and accuracy of object detection.
Additionally, this study integrates the GhostModuleV2 module,
which generates core feature maps and employs lightweight
operations to create redundant features, greatly reducing the
computational complexity of convolutions.Experimental results
show that on the SIMD dataset, the improved YOLOv9 model
has a parameter size of 167.88 MB and GFLOPs of 208.6.
Compared to the baseline YOLOv9 model (parameter size:
194.57 MB, GFLOPs: 239.0), the parameter size is reduced
by 13.71%, GFLOPs are reduced by 12.72%, and detection
accuracy is improved by 1.4%. These results demonstrate that
the proposed lightweight YOLOv9 model effectively reduces
computational overhead while maintaining excellent detection
performance, providing an efficient solution for object detection
tasks in resource-constrained environments.

Index Terms—Attention mechanism, Lightweight, Object de-
tection, YOLOv9.

I. INTRODUCTION

W ITH the rapid advancement of satellite technology,
remote sensing images has become indispensable in

areas such as urban planning, environmental monitoring, and
disaster response. UAVs provide great convenience across
industries with their flexibility, multi-angle perspectives, and
efficient data acquisition capabilities. However, small object
detection in remote sensing images still faces significant
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challenges [1, 2], especially in resource-constrained environ-
ments where computational power and battery capacity are
limited, such as on UAVs. The task of detecting small objects
in aerial images is further complicated by high resolution,
high object density, and complex backgrounds, which often
impose high computational demands.

Traditional large-scale network models can offer good
detection accuracy, but their complex architectures and large
parameter sizes lead to slower inference speeds, consuming
a substantial amount of computational resources and energy,
making them unsuitable for scenarios that require real-time
performance and portability. In recent years, with the rapid
development of deep learning theories and techniques, deep
learning-based object detection algorithms have significantly
outperformed traditional methods in general detection tasks.
Deep learning-based object detection algorithms are mainly
divided into two categories: two-stage detectors (such as the
RCNN series) and one-stage detectors (such as the YOLO
series and SSD) [3–5]. One-stage detectors excel in compu-
tational efficiency but typically struggle with small object
detection and localization; on the other hand, two-stage
detectors achieve higher detection accuracy by first locating
and then recognizing objects, but their real-time perfor-
mance is lacking. Therefore, achieving model lightweighting
while improving the performance of small object detection
in remote sensing images under complex backgrounds has
become a key research focus.

Tan proposed optimizing model depth, width, and res-
olution simultaneously through a compound scaling strat-
egy, which further reduced computational complexity. The
introduction of the Fused-MBConv structure significantly
accelerated training speed on the basis of a lightweight
model, making it particularly suitable for tasks requiring
fast training and efficient inference, though accuracy did
not improve substantially [6]. Tan also further improved the
EfficientNet series by re-optimizing the compound scaling
strategy, enhancing performance across various computa-
tional resource conditions. New activation functions and
improved feature fusion methods were introduced, enabling
EfficientNetV3 to maintain classification and detection ac-
curacy while reducing computational load and parameter
size, making it ideal for devices with limited computational
resources [7]. Ding proposed a new re-parameterization
structure that uses a multi-branch architecture during training
to enhance network accuracy, while converting it to a single-
branch convolution during inference, significantly improv-
ing inference efficiency. Through this approach, RepVGG
achieved a balance between efficient inference and superior
performance while maintaining a VGG-like architecture [8].
Ma introduced channel grouping convolution and channel
shuffle operations, which significantly improved inference
speed by reducing computational load and memory access
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[9]. Yu combined the advantages of Transformer structures
and optimized the attention mechanism through lightweight
design while using convolutional feature extraction to reduce
parameter size. LightViT retains the strong global recep-
tive field and self-attention mechanism of Transformers,
while structural adjustments significantly reduce the model’s
computational complexity and memory usage, making it
suitable for scenarios requiring efficient inference [10]. Liu
proposed a lightweight image segmentation model for mobile
devices, combining MobileNet’s efficient convolutions and
the SAM (Segment Anything Model) framework for efficient
segmentation tasks. MobileSAM, through the introduction of
depthwise separable convolutions and lightweight feature ex-
traction modules, significantly reduced computational com-
plexity while maintaining efficient inference and high-quality
segmentation performance in resource-constrained environ-
ments [11]. Although these algorithms achieve lightweight
object detection in remote sensing images applications, they
still face significant challenges.

To address these issues, this paper proposes a lightweight
remote sensing images object detection algorithm based
on YOLOv9 [12], aiming to improve detection efficiency
and accuracy under complex backgrounds and resource-
constrained environments by optimizing network architecture
and feature extraction modules. Specifically, a SimRMB
module is proposed to replace the RepNCSPELAN4 module
in the YOLOv9 backbone network [13, 14]. The lightweight
design of the SimRMB module not only significantly reduces
computational complexity but also, through the introduction
of a dynamic attention mechanism, effectively focuses on
key areas in images, reduces background interference, and
improves detection accuracy. By integrating residual learning
and skip connections, the network stability is enhanced,
along with improved feature extraction efficiency. In the head
network, the RepNCSPELAN4 module is replaced by the
FasterRepNCSPELAN4 module [15], which combines the
advantages of PConv and RepNCSPELAN4, achieving more
efficient feature extraction and inference speed, reducing
computational load and memory usage without sacrificing
feature quality. The GhostModuleV2 module is also in-
troduced [16], which generates redundant features through
inexpensive operations to simulate a complete convolutional
output, significantly reducing computational complexity and
memory consumption. Through the combined optimization
of these modules, the proposed method significantly reduces
the computational complexity and memory usage of the
model while enhancing detection accuracy and inference
capabilities.

II. RELATED WORK

Remote sensing images object detection is one of the
crucial research directions in the current field of computer
vision, especially in applications such as urban planning,
agricultural monitoring, and disaster response. However,
remote sensing images often feature dense small objects,
significant scale variations, and complex backgrounds, which
pose substantial challenges for traditional detection algo-
rithms. To enhance detection performance and computational
efficiency, researchers have gradually introduced lightweight
models and attention mechanisms into UAV and aerial imag-
ing detection tasks [17–19].

In recent years, the YOLO series models (such as
YOLOv4, YOLOv7, and YOLOv8) have made remarkable
progress in single-stage detection frameworks, achieving
high detection speed and accuracy [20, 21]. Nevertheless,
they still have certain limitations in handling small object
detection. To further reduce computational complexity and
adapt to resource-constrained environments like UAV aerial
imagery, various lightweight models have been proposed.
For instance, GhostNet generates redundant features through
inexpensive operations, thereby reducing convolutional over-
head while improving inference speed [22]. Additionally, the
MobileNet series, through depthwise separable convolutions,
significantly reduces computational cost and performs excep-
tionally well on mobile and embedded devices.

In the domain of object detection, EfficientNet leverages a
compound scaling strategy to optimize model depth, width,
and resolution, achieving a balance between computational
efficiency and accuracy [23]. Meanwhile, models like SlimY-
OLOv7 further reduce the number of convolutional layers
and parameters, improving real-time detection performance,
making it particularly suitable for small object detection
in UAV aerial imagery [24]. Models such as NanoDet and
MobileSAM have also proposed specific optimization strate-
gies targeting small object detection and resource-constrained
scenarios, effectively improving detection efficiency.

Moreover, recent studies have highlighted the importance
of attention mechanisms in aerial image detection. Models
like MobileViT, which combine Transformer structures with
convolutional neural networks, enhance global feature cap-
turing capabilities while effectively reducing computational
complexity, making them suitable for real-time detection
tasks.

Building on these research outcomes, this study proposes
a lightweight aerial image object detection algorithm based
on YOLOv9, which incorporates the latest lightweight de-
sign and attention mechanisms. This approach significantly
reduces computational resource consumption while maintain-
ing high detection accuracy, providing an efficient solution
for small object detection in complex scenes.

III. METHOD INTRODUCTION

A. Modules of the Improved YOLOv9 Algorithm
To address these challenges, we not only applied

lightweight strategies but also achieved significant accuracy
improvement through the proposed SimRMB module and the
introduction of the FasterRepNCSPELAN4 and GhostMod-
uleV2 modules.

In the backbone network, the RepNCSPELAN4 module
was replaced with the SimRMB module. The SimRMB
module reduces unnecessary convolutional layers and param-
eters, effectively lowering computational costs and improving
inference speed, while optimizing scale invariance of target
detection. It focuses on important regions during feature
extraction, ignoring irrelevant background noise. By adopt-
ing a multi-branch convolutional design, different branches
process features at different scales in parallel, enhancing
the model’s capability to capture small objects and im-
proving detection accuracy in complex scenes. In the neck
network, the FasterRepNCSPELAN4 and GhostModuleV2
modules were introduced. The FasterRepNCSPELAN4 mod-
ule, by combining PConv and re-parameterization structures,
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Fig. 1: Overall improved architecture diagram

achieved efficient feature extraction and optimized inference.
It uses partial convolutions to reduce unnecessary convolu-
tional computations and memory access, significantly low-
ering computational costs and parameters while maintaining
model accuracy. The GhostModuleV2 module generates core
feature maps through a few standard convolution operations,
followed by a series of inexpensive operations (such as depth-
wise convolutions) to produce redundant features, thereby
simulating the output of standard convolutions. This design
significantly reduces both computational load and memory
usage.

B. SimRMB

Due to the complexity of the environment in the SIMD
remote sensing images dataset, along with diverse categories
and varied information scales, high computational resources
are required. The SimRMB module simplifies the residual
structure, reducing unnecessary convolutional operations and
feature map size changes, thereby accelerating the infer-
ence process. This makes it particularly suitable for high-
resolution aerial image processing. Furthermore, SimRMB
adopts a combination of depthwise and pointwise convo-
lutions, effectively reducing the floating-point operations
(FLOPs) while maintaining strong feature extraction capa-
bilities, significantly decreasing the computational burden.

The SimRMB module is an efficient and lightweight
module designed to enhance feature extraction and object
detection capabilities in dense prediction tasks. It combines
the characteristics of skip connections, residual learning,
and both local and global feature modeling, specifically
optimizing computational complexity to facilitate inference
on resource-constrained devices. SimRMB applies dynamic
attention mechanisms to weight features, significantly reduc-

ing computational cost while maintaining performance. The
core idea of the SimRMB module lies in the combination of
feature reuse and lightweight convolutions. First, the input
features undergo a normalization operation, followed by a
series of lightweight convolutions to extract local features.
Let the input feature be X ∈ RB×C×H×W , where B
is the batch size, C is the number of channels, and H
and W represent the height and width of the feature map,
respectively. The normalization process applied to the input
is shown in Equation (1).

Xnorm = Norm(X) (1)

SimRMB introduces a dynamic attention mechanism to
enhance feature representation capability. For each element
in the feature map, SimRMB calculates its relative im-
portance to the surrounding neurons. An energy function,
E(x) is defined to measure the differences between each
position in the feature map and its surrounding positions,
with the formulation given in Equation (2). This weighting
method, based on the energy function, allows the model
to dynamically assign an attention value to each pixel in
the feature map, ensuring that the model accurately focuses
on important regions while ignoring irrelevant background
information.Here, Xi represents the current neuron in the
feature map, µ is the mean of all neurons, σ2 is the variance
of the feature map, λ is a hyperparameter used to adjust the
flexibility of the energy function, and n is the total number
of neurons in the feature map.

E(xi) =
1

n

∑
j ̸=i

(
(xj − µ)2

σ2 + λ

)
+ 0.5 (2)

The attention-weighted feature map is further processed
through depthwise convolution to extract local features, with
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the depthwise convolution operation defined in Equation (3).
Here, W represents the convolution kernel, and Xatt is the
attention-weighted feature map. Depthwise convolution ef-
fectively captures local detail information while maintaining
lightweight computational complexity.

Xconv = Conv(Xatt) = W ∗Xatt (3)

SimRMB also employs skip connections and residual learn-
ing strategies, where the residual connection is formed by
adding the input X to the output feature Xconv, as shown in
Equation (4). Here, DropPath is a regularization strategy used
to randomly drop certain paths during training, thereby en-
hancing the model’s generalization capability. This residual
connection design facilitates effective information RMBflow
and helps prevent the vanishing gradient problem, ensuring
that the SimRMB module maintains stable performance even
in deep networks.

Xout = X + DropPath(Xconv) (4)

mean(X) (X - mean)²

Attn Mat

3×3 DW-Conv

1×1 Conv

1×1 Conv

sigmoid Normalize

Fig. 2: SimRMB network architecture

C. FasterRepNCSPELAN4

The RepNCSPELAN4 module uses depthwise separable
convolutions, feature map fusion, and multi-scale feature
extraction to accurately capture different targets in complex
scenes. However, when dealing with large-scale data, neural
networks still face bottlenecks in computational performance
and inference speed. To address this issue, the FasterRepNC-
SPELAN4 module integrates the partial convolution mech-
anism (PConv) from FasterNet with the RepNCSPELAN4
module, significantly enhancing the inference speed and
feature extraction capabilities of the YOLOv9 model. This
module effectively reduces convolutional computations and
memory access requirements through partial convolution,
thereby greatly improving efficiency when processing large-
scale aerial imagery data.The introduction of PConv not

only reduces the computational complexity of standard con-
volution and decreases floating-point operations (FLOPs),
but also generates additional features by integrating the
lightweight Ghost module, significantly reducing the com-
putational burden. Additionally, FasterRepNCSPELAN4 re-
duces intermediate layer normalization and redundant cal-
culations, enabling YOLOv9 to achieve efficient inference
and low-power operation even on resource-constrained de-
vices, which greatly enhances model deployment efficiency.
Lastly, the multi-branch feature fusion structure of Faster-
RepNCSPELAN4 incorporates multi-path information flow
at different network levels, not only preserving and fusing
more input features but also effectively avoiding common
problems in deep networks, such as gradient vanishing or
explosion. This architecture enables YOLOv9 to maintain
high-precision object detection while further improving in-
ference speed and reducing computational complexity. The
FasterRepNCSPELAN4 module is shown in Figure 3.

The input feature X ∈ RH×W×C is first compressed
through a 1×1 convolution, which aims primarily to reduce
the number of channels in subsequent computations, thereby
decreasing the overall computational load. The output is
denoted as X ′ ∈ RH×W×C′

, where C ′ represents the
compressed number of channels. The corresponding formula
is shown in Equation (5).

X ′ = Conv1×1(X) (5)

The RepNCSP module combines the advantages of depth-
wise separable convolution and standard convolution, main-
taining flexibility during training while reducing computa-
tional complexity during inference through parameter merg-
ing. This module effectively extracts multi-scale features
while keeping computational overhead low. The Partial Con-
volution (PConv) is used to reduce feature computation
complexity by applying convolution operations only to a
subset of channels while keeping the rest unchanged. This not
only reduces FLOPs but also avoids redundant computations,
thereby accelerating inference speed, as shown in Equation
(6). The final fused features are then compressed again in
terms of channel count through a 1×1 convolution layer, as
described in Equation (7).{

Y ′
1 = PConv(RepNCSP(X ′

1))

Y ′
2 = PConv(RepNCSP(X ′

2))
(6)

Z = Conv1×1(Concat(Y ′
1 , Y

′
2)) (7)

The FasterRepNCSPELAN4 module, by integrating partial
convolution (PConv), the RepNCSP module, and a multi-
path feature fusion structure, significantly enhances YOLOv9
in terms of inference speed, computational efficiency, and
feature extraction capabilities. It is not only well-suited for
complex aerial imagery scenarios but also capable of effi-
cient deployment on resource-constrained devices, achieving
lightweight yet high-performance detection.

D. GhostModuleV2

Due to the characteristics of remote sensing images, in-
cluding multiple classes, small target sizes, and complex
backgrounds, higher computational resources are required.
The model must maintain high accuracy while achieving
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Fig. 3: FasterRepNCSPELAN4 network architecture

efficient inference speed and minimizing computational de-
mands. To address these challenges, this study incorporates
the GhostNetV2 module into the YOLOv9 architecture.

The DFC (Decoupled Fully Connected) attention mech-
anism in the GhostNetV2 module aggregates features in
both horizontal and vertical directions, effectively capturing
global spatial information and improving accuracy. It also
avoids complex tensor transposition and reshaping opera-
tions, thereby increasing the actual inference speed, en-
hancing efficiency, and reducing computational complexity,
achieving module lightweighting. Addresses deficiencies in
capturing spatial information, allowing generated features
to extend beyond single-channel convolution operations,
thereby enhancing the global dependencies of features. By
employing cost-effective operations such as depthwise con-
volution, it further reduces computational load and parameter
count, making it optimized for memory-constrained environ-
ments and ensuring efficient inference. The DFC module and
GhostNetV2 module introduced in this study is illustrated in
Figure 4 and Figure 5.

Decoupling the traditional fully connected (FC) layer into
horizontal and vertical FC layers allows the FC layer to
generate an attention map, as shown in Equation (8). This
captures long-range spatial dependencies in both directions,
not only enhancing the ability to capture global information
but also significantly reducing computational complexity.

a′hw =
∑
h′

FH
h,h′zh′w

ahw =
∑
w′

FW
w,w′a′hw′

(8)

GhostNetV2 utilizes a 1×1 convolution to generate the initial
features, followed by inexpensive depthwise convolutions to
generate additional features, which are then concatenated.
The formula is shown in Equation (9), where ∗ denotes the
convolution operation, and F1×1 represents the pointwise
convolution.

Y = Concat(X ∗ F1×1, (X ∗ F1×1) ∗ Fdp) (9)

In GhostNetV2, the DFC attention mechanism works in
parallel with the first Ghost module, enhancing the represen-
tational capacity of the expanded features. The final output
is the element-wise product of the outputs from the Ghost
module and the DFC attention, as shown in Equation (10),
where σ represents the Sigmoid function and ⊙ indicates
element-wise multiplication.

O = σ(A)⊙ V (X) (10)
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Fig. 4: GhostModuleV2 network architecture

IV. EXPERIMENTAL DESIGN AND IMPLEMENTATION

A. Experimental environment and parameter configuration

The experiments in this study were conducted on a server
equipped with an NVIDIA GeForce RTX 3080Ti GPU,
which provides excellent computational performance suitable
for efficiently executing deep learning tasks. The experiment
was configured with 300 training epochs, and an EarlyStop-
ping strategy was introduced to effectively prevent model
overfitting. If the validation loss did not show a significant
decrease for 50 consecutive epochs, the training process was
terminated early to improve efficiency and enhance model
generalizability. During training, the batch size was set to 4,
and the initial learning rate was set to 0.01 to balance training
speed and model convergence. Except for the aforementioned
configurations, all other hyperparameters were kept at their
default settings. The hardware and software environments
and configuration parameters used in the experiments are
detailed in Table 1.

TABLE I: Experimental environment

Environment Configuration

Operation platform Windows 10

GPU NVIDIA GeForce RTX 3080Ti

Programming language Python 3.8.10

Deep learning framework CUDA 11.8,Pytorch 2.0.0

Video memory 10G

B. Dataset Introduction

All experiments in this study were conducted on the
SIMD dataset to ensure fair performance comparison under
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identical conditions. The images in the dataset were obtained
from public Google Earth satellite imagery, covering various
geographical locations across Europe and the United States.
The dataset contains 5000 images, of which 4000 are used
for the training set and 1000 for the validation set. A
total of 45,096 target objects were annotated, covering 15
different vehicle categories, including cars, trucks, buses,
long vehicles, as well as various types of airplanes and ships.
These rich annotations make the SIMD dataset valuable for
tasks such as vehicle detection and classification.

C. Comparison results of different models

To evaluate the performance of the improved YOLOv9
model, this study conducted comparative experiments on
the SIMD dataset against several mainstream lightweight
object detection models, including MHLDDet, YOLOv7-
Tiny, YOLO-SE, YOLO-DA,and YOLOv9. The experimen-
tal results are shown in Table 3.

Compared to other models, the improved YOLOv9 model
demonstrated superior performance in all metrics. Specifi-
cally, with the same input image size (640×640), the im-
proved YOLOv9 model achieved a mean Average Precision
(mAP) of 87.8%, showing a significant improvement over the
original YOLOv9’s 86.4%, and outperforming other models
such as YOLOv7-Tiny, YOLO-SE, and YOLO-DA. Mean-
while, the number of parameters was reduced to 44.03M,
representing a 13.71% reduction compared to the YOLOv9
baseline, and the computational cost (GFLOPs) was re-
duced by 12.72%, further validating the lightweight nature
of the model. YOLOv7-Tiny, YOLOv11, and MHLDDet
have smaller parameter counts, but their detection accuracies
(mAP) are 82.3%, 81.0%, and 84.7%, respectively, which are
slightly lower than the improved YOLOv9. YOLO-SE and
YOLO-DA, although having larger parameter counts, still did
not surpass the improved YOLOv9 in accuracy.

In summary, the improved YOLOv9 (Our) model achieved
a good balance in terms of mAP, parameter count, and
GFLOPs, providing high detection accuracy while maintain-
ing low computational cost, thereby demonstrating strong
lightweight and efficient characteristics.

TABLE II: Compare different categories pairwise

Method ImageSize Params(M) GFLOPs mAP

YOLO-DA 640*640 94.4 - 80.6

YOLO-SE 640*640 13.9 - 70.7

YOLOv7-Tiny 640*640 6.05 13.3 82.3

YOLOv9 640*640 51.03 239 86.4

YOLOv11 640*640 9.89 6.5 81.0

MHLDeT 640*640 5.28 12.2 84.7

ours 640*640 44.03 208.6 87.8

D. Ablation experiments
After introducing the FasterRepNCSPELAN4 module to

the baseline model, the mean average precision (mAP)
increased to 86.8%, while the number of parameters and
GFLOPs were reduced to 48.05M and 225.6, respectively.
This module significantly reduced model complexity while
improving feature extraction efficiency.The melting experi-
ment is shown in Table 2.

After introducing the FasterRepNCSPELAN4 module to
the baseline model, the mean average precision (mAP)
increased to 86.8%, while the number of parameters and
GFLOPs were reduced to 48.05M and 225.6, respectively.
This module significantly reduced model complexity while
improving feature extraction efficiency.

When only the SimRMB module was added to the baseline
model, mAP increased to 87.5%, while the number of
parameters and GFLOPs decreased to 47.44M and 232.2.
When the SimRMB module was added to the model that
already contained FasterRepNCSPELAN4 and GhostMod-
uleV2, mAP significantly increased to 87.8%, and the pa-
rameters and GFLOPs decreased to 44.03M and 208.6,
respectively, demonstrating that the attention mechanism in
SimRMB effectively captures key features, further improving
detection accuracy and reducing computational cost.

In summary, the synergistic effects of the FasterRepNC-
SPELAN4, GhostModuleV2, and SimRMB modules signif-
icantly improved model detection accuracy while greatly re-
ducing parameters and computational cost, thereby achieving
lightweight and efficient object detection.

E. Random Image Detection
To comprehensively evaluate the performance of the im-

proved YOLOv9 in practical applications, we randomly
selected several images from the validation set for detection
experiments and compared the results with those of the
YOLOv9 baseline model, as shown in Figure 5. The images
on the left show the detection results of the YOLOv9
baseline model, while the images on the right present the
results of the improved YOLOv9. By comparison, it can be
observed that the improved YOLOv9 demonstrates signifi-
cant enhancements in detection accuracy and detail feature
capture, particularly in detecting small objects in complex
scenes, achieving higher accuracy. Some small or partially
occluded targets are difficult to detect accurately, whereas the
improved YOLOv9 effectively enhances feature extraction
and attention allocation, enabling the model to capture target
details and edge information more precisely. Additionally, the
detection results of the improved YOLOv9 are more refined
and stable, especially in scenarios where the background and
target object textures are similar, resulting in significantly
reduced false positives and missed detections compared to
the original version.
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TABLE III: Ablation experiments

FasterRepNCSPELAN4 GhostModuleV2 SimRMB Precision/% Recall/% mAP Params(M) GFLOPs

YOLOv9 - - - 87.8 85.6 86.4 51.03 239

YOLOv9
√

- - 88.5 85.5 86.8 48.05 255.6

YOLOv9 -
√

- 88 86.9 86.9 50.61 229

YOLOv9 - -
√

85.1 88.5 87.5 47.44 232.2

YOLOv9
√ √

- 88.6 85.5 87.2 47.63 215.5

YOLOv9
√ √ √

85.5 87.6 87.8 44.03 208.6

Fig. 6: Results Comparison
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F. Model evaluation metrics

To comprehensively evaluate the performance of different
model algorithms, this study adopts several metrics, includ-
ing model size (in MB) to assess storage requirements,
Number of Parameters to evaluate model complexity, and
Floating Point Operations (FLOPs) to quantify computational
cost. Additionally, the mean Average Precision (mAP) is
used to assess the overall performance of the model in
object detection tasks, ensuring that the model maintains high
detection accuracy while achieving lightweight design.

V. CONCLUSION

In summary, the experimental results demonstrate that
the improved YOLOv9 model achieves high-precision de-
tection of remote sensing images targets while maintaining a
lightweight design. By introducing the SimRMB module into
the backbone network, the model enhances feature attention
allocation and extracts key features through efficient convolu-
tion operations, thereby significantly reducing computational
burden while improving detection accuracy. The FasterRep-
NCSPELAN4 module integrates the PConv from FasterNet
with YOLOv9’s RepNCSPELAN4, enabling efficient feature
extraction and mixing, reducing computational complexity,
and enhancing feature capture capability in complex scenes.
GhostModuleV2 incorporates DFC attention to effectively
capture long-range dependencies, further enhancing global
feature representation. Compared to the baseline model, the
improved YOLOv9 model achieved a 1.4% increase in mean
Average Precision (mAP), a 7M reduction in the number of
parameters, and a 30.4 reduction in GFLOPs, thus achieving
a favorable balance between lightweight design and detec-
tion accuracy. Future work will involve further testing of
the improved model on larger and more complex remote
sensing datasets to validate its robustness and generalization
capabilities across various application scenarios.
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