

Abstract— Autonomous electric vehicles operating in

confined environments face unique challenges, as the objects

within these environments often have specific characteristics

not adequately covered by general datasets. This condition is

particularly relevant for the autonomous electric vehicle being

developed by BRIN in Indonesia, which requires accurately

recognizing and classifying objects to avoid collisions and

navigate safely. To address these needs, our research proposes

the development of an object detection and classification

system utilizing the Velodyne VLP-16 LiDAR. Given the

tendency of this LiDAR to produce sparse point clouds, we

have adjusted the PointPillars method to better adapt to such

data, showcasing the adaptability of our system. Our findings

indicate that a backbone network model configuration based

on a residual network (BaseBEVRESBackbone) outperforms

the traditional PointPillars backbone configuration

(BaseBEVBackbone). This superior performance is achieved

even with a more straightforward layer configuration and

smaller voxel size, demonstrating the effectiveness of our

approach in enhancing LiDAR-based object detection and

classification in constrained environments.

Index Terms—Sparse Data, Adjusted PointPillars, Objects

Classification, Constrained Environments, Autonomous

Vehicle

I. INTRODUCTION

INCE 2020, we have been dedicated to developing

autonomous electric vehicles designed to operate in

limited environments such as office complexes, campuses,

botanical gardens, and potentially for passenger transport at

airports. This idea later also becomes an exciting theme in

other works (see [1], [2]). Initially, our efforts focused on

utilizing LiDAR technology as the primary sensor system to

detect objects in front of the vehicle, ensuring it could brake

Manuscript received July 21, 2024; revised January 17, 2025.
This work was supported in part by the Indonesia Endowment Fund for

Education (Lembaga Pengelola Dana Pendidikan) through the Riset dan

Inovasi untuk Indonesia Maju (RIIM) program, organized by the National
Research and Innovation Agency (BRIN).

A. I. Nafian is a Bachelor's graduate from the Software Engineering

Department, Universitas Pendidikan Indonesia, Indonesia (e-mail:
alifilmannafian6b@gmail.com).

D. Anggraini is a lecturer of the Software Engineering Department,

Universitas Pendidikan Indonesia, Indonesia (e-mail:
dian.anggraini@upi.edu).

M. I. Ardimansyah is a lecturer of the Software Engineering

Department, Universitas Pendidikan Indonesia, Indonesia (e-mail:
iqbalardimansyah@upi.edu).

A. S. Satyawan is a senior researcher of the National Research and

Innovation Agency, Indonesia (e-mail: arie021@brin.go.id).

to avoid collisions. This early system effectively prevented

accidents by recognizing obstacles, but it quickly became

evident that merely detecting objects was insufficient for

safe and efficient navigation.

The current demands for autonomous vehicle systems

extend beyond simple detection. It is now crucial for LiDAR

technology to detect, recognize, and classify objects,

enabling the vehicle to maneuver around obstacles when

possible. Additionally, understanding the environment,

including stationary and moving objects, is essential for

planning safe routes. For example, an autonomous vehicle

operating on a campus must differentiate between

pedestrians, bicycles, and other vehicles and anticipate their

movements to navigate safely. Similarly, in an airport

setting, the vehicle must recognize and avoid luggage carts,

other vehicles, and passengers. This research is at the

forefront of innovation, focusing on developing an advanced

LiDAR-based object detection and classification system.

By classifying objects detected by LiDAR, the system can

provide the vehicle with detailed environmental awareness,

allowing for sophisticated maneuvering strategies. For

instance, if the vehicle detects a moving pedestrian, it can

predict its path and adjust its route accordingly to avoid a

collision. In scenarios involving multiple dynamic objects,

the system must be capable of real-time decision-making to

direct the vehicle on the safest path to its destination.

Our proposed system leverages cutting-edge

advancements in LiDAR technology and data processing

algorithms. One approach involves the refinement of the

PointPillars method, which converts point cloud data into

2D pseudo-images that can be processed by convolutional

neural networks (CNNs). This approach allows for efficient

and accurate object detection and classification, even in

sparse point cloud environments like those generated by the

Velodyne VLP-16 LiDAR. By optimizing the number of

network layers and adjusting voxel sizes, we aim to enhance

the resolution and Accuracy of object detection, ensuring

reliable performance in various confined settings.

Related works have demonstrated the potential of LiDAR

technology in enhancing the capabilities of autonomous

vehicles. For instance, the Apollo Autonomous Driving

platform by Baidu integrates LiDAR data for robust object

detection and path planning in complex urban environments

[3]. Waymo's autonomous vehicles also utilize LiDAR for

precise mapping and navigation, enabling safe operation in

diverse settings, from city streets to parking lots. These

projects highlight the critical role of LiDAR and

Adjustment of PointPillars for Effective

LiDAR-Based Object Detection and

Classification in Constrained Environments

Alif Ilman Nafian, Member, IAENG, Dian Anggraini, Mochamad Iqbal Ardimansyah, Arief Suryadi

Satyawan, Member, IAENG

S

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

sophisticated data processing in making autonomous

vehicles more adaptable and reliable [4]. In addition, Saha

and Dhara's work on 3D LiDAR-based obstacle detection

and tracking for autonomous navigation in dynamic

environments focuses on enhancing robotic perception and

navigation through advanced algorithms [5].

Their approach utilized LiDAR sensor data to detect and

track obstacles in real time, which is crucial for autonomous

vehicles operating in complex and changing settings. By

integrating machine learning techniques with geometric

analysis, their system could accurately identify and predict

the movement of various obstacles, ensuring reliable

navigation paths. Similarly, effort in [6] comprehensively

evaluated contemporary 3D indoor scanning technologies

and their point cloud generation capabilities. The study

systematically compared various state-of-the-art methods,

focusing on their Accuracy, efficiency, and suitability for

indoor environments. The authors analyzed a range of 3D

scanners and algorithms, highlighting their strengths and

weaknesses in generating high-quality point clouds. By

conducting rigorous experiments and assessments, this work

offers valuable insights into the performance of these

technologies, aiding practitioners in selecting the most

appropriate tools for specific indoor scanning applications.

Our approach also benefits from advancements in the

Simultaneous Localization and Mapping (SLAM)

algorithms, as demonstrated in [7], describing an

autonomous vehicle created by the Stanford Racing Team

that won the 2005 DARPA Grand Challenge. A key

component of Stanley's success was using LiDAR

technology, which played a crucial role in the vehicle's

perception system. The LiDAR sensors provided accurate,

real-time 3D mapping of the environment, enabling the

vehicle to detect and avoid obstacles, identify drivable

paths, and make precise navigation decisions. This

capability was instrumental in Stanley's ability to

autonomously navigate complex terrains and overcome

challenges such as rough roads, sharp turns, and varied

obstacles, demonstrating the profound impact of LiDAR on

autonomous vehicle performance. Integrating LiDAR with

other sensor systems, such as GPS and cameras, and

advanced algorithms for sensor fusion and path planning

underscored the importance of a multi-faceted approach to

autonomous navigation. This pioneering work significantly

advanced the field of autonomous driving, highlighting the

potential of LiDAR technology in real-world applications,

further supporting our development goals.

By integrating cutting-edge technological advancements

and leveraging research insights, our LiDAR-based system

aims to revolutionize autonomous vehicle navigation in

confined environments. The system is designed to generate

high-definition maps enriched with object classifications

and precise locations, predict the trajectories of dynamic

objects, and plan optimal routes with enhanced efficiency.

These improvements will enable autonomous vehicles to

avoid obstacles, navigate complex scenarios, and reach their

destinations safely and seamlessly. Ultimately, this

innovation represents a significant leap forward in

advancing autonomous electric vehicles tailored for

operations in restricted areas.

II. THE PROPOSED METHOD

PointPillars, introduced originally by [8] in 2019, is a

state-of-the-art neural network architecture designed for 3D

object detection using point cloud data. This technology is

particularly effective in applications like autonomous

driving and robotics. The key innovation in PointPillars is

its method of converting 3D point clouds into 2D pseudo-

images, which can then be processed using standard CNNs.

This conversion significantly reduces computational

complexity and improves processing speed, making real-

time object detection feasible.

The core technology inside PointPillars involves several

critical steps. Initially, the point cloud data is divided into

vertical columns, or "pillars," each representing a segment

of the 3D space. Each pillar contains a set of points within a

defined grid cell. Features from these points are extracted

and encoded into a feature map. This feature map is then

transformed into a pseudo-image by collapsing the height

dimension, allowing it to be processed by 2D CNNs. The

resulting pseudo-image is used for further processing,

including object classification and bounding box regression.

The mathematical model of PointPillars focuses on

optimizing the loss function, which typically includes

components for object classification and bounding box

regression. The loss function 𝐿 is defined as:

 (1)

where 𝐿cls is the classification loss, 𝐿reg is the regression

loss, and α is a weighting factor balancing the two

components. The classification loss is usually computed

using cross-entropy loss, while the regression loss,

responsible for predicting the bounding box coordinates,

often uses a combination of Smooth L1 loss or L2 loss.

Using backpropagation and optimization methods like

Adaptive Moment Estimation (Adam) or Stochastic

Gradient Descent (SGD), the objective is to minimize this

loss function [8]-[11].

The architecture of the PointPillars network significantly

influences the performance of the model. One critical aspect

is the number of layers in the 2D CNN backbone. Increasing

the number of layers typically allows the network to capture

more complex features, leading to better object detection

and classification. However, it also increases the

computational load and the risk of overfitting. Therefore,

finding the optimal number of layers is crucial. Voxel size is

another crucial parameter in the PointPillars architecture.

Voxel size determines the resolution of the grid used to

partition the point cloud data [11]. Balancing voxel size is

essential to optimize both performance and efficiency.

Our proposed method aims to further enhance object

detection and classification by modifying the PointPillars

method to utilize LiDAR data better. By refining the

construction of the number of layers and adjusting the voxel

size for both BaseBEVBackbone and

BaseBEVResBackbone types, we seek to optimize the

handling of sparse point cloud data produced by the

Velodyne VLP-16 LiDAR. This adjustment involves

developing more sophisticated neural network architectures

to better differentiate between objects and accurately predict

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

their movements.

BaseBEVBackbone is actually based on traditional neural

networks, such as standard CNNs. These networks use a

cascade of layers to handle input data, with each layer using

pooling, activation, and convolution operations to change

the input. Unlike ResNets, traditional networks do not

include skip connections, which means each layer relies

entirely on the previous layer's output. While these networks

can be effective for many tasks, they can need help training

very deep architectures due to issues like vanishing

gradients.

In contrast, BaseBEVResBackbone adopts Residual

Networks, or ResNets, introduced in 2015 [12]. These

neural network types comprise shortcuts or skipping

connections that go around one or more layers. These

connections help mitigate the vanishing gradient problem,

which often hampers the training of intense networks.

Gradients can flow directly through a ResNet, making it

easier to train far deeper designs and achieve better results

on difficult problems. In the context of

BaseBEVResBackbone, these residual connections improve

feature learning and allow for more sophisticated

representations of point cloud data.

ResNets have the advantage of improved gradient flow,

enabling deeper networks and better performance on

complex tasks. Although they are more adept at learning

hierarchical features, the more connections they make, the

higher their memory and computational complexity.

Traditional networks, on the other hand, have a simpler

architecture with lower computational overhead, making

them easier to implement and optimize for smaller or less

complex tasks. However, they can need help with training

profound networks due to vanishing gradient problems and

may not capture as rich features as ResNets.

Using these network architectures in object detection and

classification for point cloud data has distinct advantages.

ResNets (BaseBEVResBackbone) allow for better handling

of complex, high-dimensional point cloud data due to their

residual connections. This network leads to improved

detection and classification Accuracy, as the network can

learn more detailed and hierarchical features from the data.

This condition benefits applications like autonomous

driving, where understanding the environment in detail is

crucial. Traditional networks (BaseBEVBackbone), while

simpler to train and optimize, are efficient for less complex

tasks or when computational resources are limited. They can

still perform well in object detection and classification in

point cloud data, especially when the task does not require

extremely deep networks.

A comprehensive explanation of the proposed method

regarding the modifications to PointPillars can be

mathematically described as follows.

The process of Point Cloud representation to Pillars

encompasses several key steps. Firstly, the raw point cloud

data from Velodyne VLP-16 can be represented as a set of

points in

 (2)

where each point pi = (x, y, z, and r). Here, x, y, and z are

spatial coordinates, r represents reflectance value, and N is

the total number of points.

Subsequently, the voxelization process is carried out. The

3D space is divided into a voxel grid of optimized size. The

formula for voxel division is formulated as in

 (3)

where vx, vy, and vz are the voxel dimensions, and ⌊⋅⌋ denotes

the floor function.

Finally, the transformation into Pillar representation is

performed. Each pillar aggregates information from points

in the vertical voxel using an encoding function. The

representation is formulated as in

 (4)

where

 (5)

The function fencoder maps the set of points into feature

vectors, and X and Y are the dimensions of the BEV (Bird's

Eye View) grid.

With regard to the enhanced neural network architecture,

the output of the BaseBEVBackbone is formulated as in

 (6)

where each layer fi has the structure as in

 (7)

Here, Wi is the weight matrix of the i-th layer, bi is the bias,

and σ is a non-linear activation function representing

convolution operations.

For the BaseBEVResBackbone, skip connections are

introduced, formulated as in

 (8)

From the perspective of object prediction, the class

probability for each region proposal r is calculated as in

 (9)

and the bounding box parameters are presented as in

 (10)

Here, p(c∣r) is the class probability, box(r) represents

bounding box parameters (dx, dy, dz, dl, dw, dh, and dθ), fr

is the region feature, and Wc, Wb, bc, and bb are learnable

parameters.

The total loss function is defined as in

 (11)

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

Here, Lclass is the focal loss for classification, Lbox is the

smooth L1 loss for bounding box regression, and Ldir is the

cross-entropy loss for orientation. The parameters λ1, λ2, and

λ3 are weighting hyperparameters.

The above formulas (equation 2 to 11) describe the data

processing pipeline from raw point cloud data to final object

predictions, with an emphasis on optimizing network

architecture and voxel size to enhance object detection

accuracy from the relatively sparse Velodyne VLP-16

LiDAR data. Each mathematical component is interlinked in

the processing pipeline, where the output of one stage

becomes the input for the next. Optimization is performed at

every stage to improve the overall system performance.

Our approach focuses on integrating advanced feature

extraction techniques and dynamic voxelization methods to

improve the resolution and Accuracy of object detection.

This method allows the autonomous vehicle to identify

obstacles and understand their characteristics, such as size,

shape, and motion patterns. By incorporating these

enhancements, the vehicle can create detailed, annotated

maps of its environment, predict the trajectories of moving

objects, and plan safe, collision-free paths.

Several related works have also explored the development

of PointPillars for various applications. For instance, in

2020, a work extended the PointPillars framework with

"3DSSD: Point-based 3D Single Stage Object Detector."

This effort enhanced object detection performance by

focusing on point-wise feature aggregation and single-stage

detection [13]. This approach improved detection Accuracy

and computational efficiency, making it suitable for real-

time applications in autonomous vehicles.

Moreover, the study in 2021 on "SE-SSD: Self-

Ensembling Single-Stage Object Detector From Point

Cloud" introduced a self-ensembling mechanism to refine

the predictions of the PointPillars model, achieving state-of-

the-art results on several benchmark datasets [14]. Their

work demonstrated the potential of self-ensembling

techniques in improving the robustness and Accuracy of 3D

object detection systems.

Based on previous research, it is clear that several

limitations and challenges still need to be addressed in the

context of 3D object detection for autonomous vehicles,

especially in confined environments such as the one at KST

Samaun Samadikun BRIN in Bandung. The potential

benefits of this research are significant. First, most previous

studies have used datasets such as KITTI or nuScenes,

which only partially represent the characteristics of objects

in BRIN-limited environments. This condition causes

models trained with that dataset to be less effective when

applied in different environments. Reference [15],

developed in 2021, Reference [16], developed in 2022, and

Reference [17], developed in 2023 show that reliance on a

combination of multisensor data such as LiDAR, radar, and

high-resolution cameras requires enormous costs and

computation. This method is impractical for large-scale or

resource-limited applications. Reference [8], discussing the

original PointPillars in 2019, and Reference [18],

introducing 'SECOND: Sparsely Embedded Convolutional

Detection' in 2018, have proposed a more computationally

efficient method. However, it still uses data from the KITTI

dataset, which is less representative of the BRIN

environment and often only detects particular objects, such

as cars, pedestrians and cyclists. Therefore, this research

seeks to develop a 3D object detection model that is more

adaptive to the characteristics of objects in BRIN's limited

environment by utilizing the PointPillars-based Deep Neural

Network method. This method is expected to provide better

efficiency and Accuracy without relying on high-resolution

sensor data, thereby offering a more cost-effective and

practical solution for 3D object detection in confined

environments.

Our proposed method specifically targets optimizing the

PointPillars framework to handle the unique challenges

posed by sparse point cloud data generated by the Velodyne

VLP-16 LiDAR. Unlike prior studies that have mainly

focused on improving detection accuracy and processing

speed, our approach prioritizes the effective management of

data sparsity. By strategically adjusting voxel size and layer

configurations, we aim to minimize the merging of different

objects within a single voxel, thereby reducing classification

errors and enhancing detection reliability. These

modifications enable the framework to better differentiate

objects, which is crucial in environments where data points

are limited or scattered. The result is an improved version of

PointPillars that significantly bolsters the LiDAR’s ability to

accurately detect and classify objects, even in complex and

constrained spaces. This advancement is particularly

beneficial for autonomous electric vehicles, allowing them

to navigate intricate environments more effectively,

anticipate and avoid potential obstacles, and optimize their

path planning. Consequently, our method ensures safer and

more efficient operation of these vehicles, promoting better

route optimization and hazard prevention in limited and

cluttered environments.

III. RESEARCH METHOD

Figure 1 outlines the research method employed in this

study, which was conducted in three primary phases

described as follows. The first phase involved creating a

specific dataset from scratch. The raw dataset, captured by a

Velodyne VLP-16 LiDAR, was in a point cloud format and

saved as '.pcap' files. Thanks to VeloView, the application

that had been provided freely to obtain the raw dataset. The

critical information in the point cloud included the distance

between the LiDAR and the points on the surfaces of

detected objects, where the transmitted light from the

LiDAR was reflected, as well as the three-dimensional

coordinates (x, y, and z) of each detected point [19]-[21].

The raw dataset was then processed according to the KITTI

standard (see [11], [22], [23]), 'bin', before being converted

to a custom format named '.npy'. After that, hundreds of

thousands of frames consisting of point cloud data in that

format were selected to become 2,423 frames. This process

could reduce the almost identical frames. About 90% of

them were selected as a training dataset, while the rest were

available as a testing dataset [24]. They were ready to be

annotated using Supervisely (available at:

https://supervisely.com/) during the following process. In

the dataset annotation process, six classes of objects were to

be annotated in the dataset. They were human, wall, car,

cyclist, cart and tree. After the process of annotating these

objects, the '.json' format, the dataset format given by

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

Supervisely, was converted to a costume PointPillars dataset

('.txt'). This process aimed to enable ground truth database,

custom train info, custom validation info, and custom

database infos train through an information extraction

process. Finally, the appropriate dataset for training and

testing models developed in the further step, which was

presented together with a complete set of the PointPillars

format, could be established. This dataset, crucial for

training and testing models, could be formed according to

the train and test proportion.

In the second phase, as depicted in Figure 1, the focus

shifted to the development of eight model configurations of

PointPillars. These models, a key component of our study,

were designed to optimize the performance of the neural

network. The network configuration employed two distinct

2D backbone networks: BaseBEVBackbone and

BaseBEVResBackbone. The BaseBEVBackbone, a standard

component of our models, utilized convolutional blocks

without residual connections. These blocks, consisting of

layers including zero padding, convolution, batch

normalization, and ReLU activation, were stacked multiple

times to extract features from the input data. On the other

hand, the BaseBEVResBackbone, a unique component of

our models, leveraged residual blocks instead of standard

convolutional blocks. These residual blocks, incorporating

bypass connections, were instrumental in allowing gradients

to flow directly through layers, thereby enhancing the

network's learning capabilities. Subsequently, all model

configurations needed to specify the number of layers and

voxel size for the 2D backbones. The voxel size, a critical

parameter, influenced the collection of points used for

training, while the number of layers determined the structure

and types of layers in a PointPillars model. The choice of

these values was crucial as they significantly impacted the

model's detection performance. The specific configurations

of these values for each model are detailed in Table I. The

first model configuration was promoted firstly by Lang et

al., while the rest were our innovative contributions. After

all model configurations had been established, each could be

trained using the same training dataset that had also been

prepared at the final process of the first phase. However,

before the training process began, hyperparameters, such as

the type of optimizer, learning rate initiation point, number

of epochs, and batch sizes, should be defined to minimize

the training loss. Eight trained model configurations could

be formed after the training process, and they were ready to

be evaluated in the next phase.

Given that the performance of the trained models in 3D

object detection and classification based on point clouds

would be evaluated using Precision, Recall, F1-Score,

Accuracy, and Mean Average Precision (mAP), a

comprehensive set of confusion matrix elements needed to

calculate these metrics had to be obtained at the start of the

third phase. Reference [25] and [26] describe the confusion

matrix as a table that assesses an object detection

algorithm's performance, comparing predicted object classes

with actual (ground truth) object classes. It contains values

for True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN). True Positives

occur when the model correctly identifies and classifies an

object, such as recognizing a car as a car. True Negatives

Fig. 1. The research process diagram.

TABLE I

CONFIGURATION OF THE DEVELOPED POINTPILLARS MODELS

Model Configuration Backbone Layer Composition
Voxel

Size

1 BEV 3;5;5 16,000

2 BEV 3;5;5 8,000

3 BEV 3;5;5 32,000

4 BEV 4;6;6 16,000

5 BEVRes 2;3;3 16,000

6 BEV 3;5;5 64,000

7 BEVRes 2;3;3 8,000

8 BEVRes 2;3;3 64,000

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

represent instances where the model correctly determines

that no object is present or accurately labels a region as

background, like recognizing an area without objects. False

Positives happen when the model incorrectly detects an

object or misclassifies a background area as an object, such

as mistaking a background for a car or identifying a tree as a

car. False Negatives occur when the model fails to detect an

object or incorrectly classifies an object as background, such

as missing a car in the point cloud data or labelling a car as

background. True Negatives only influence the Accuracy

value among these elements, while the other three elements

affect all five-performance metrics.

Prior to determining the elements of the confusion matrix,

it is essential to first calculate the Intersection over Union

(IoU). IoU quantifies the degree of overlap between the

predicted bounding box and the ground truth bounding box.

It is defined as the ratio of the area of their intersection to

the area of their union, providing a standardized measure of

prediction accuracy. This metric is mathematically

expressed as in

 (12)

It is a critical performance metric that decides whether a

predicted bounding box is a True Positive, False Positive, or

False Negative. The IoU does not directly affect True

Negative values since TNs pertain to background regions or

non-object areas.

Since this research utilized six classes of objects, an

illustration described in Table II can express a predefined

process of finding a confusion matrix for this case.

Each value filled out from the observation of the testing

dataset. For instance, when cars actually defined in the

testing dataset were predicted appropriately by a model, the

results can be stated cumulatively as the presence of car (a);

otherwise, they could be avowed cumulatively as the

presence of cyclist (b), human (c), wall (d), tree (e), or even

cart (f). This mechanism applies to the rest of the classes.

From then on, each element in Table II can be used to obtain

the values of TP, FP, FN, and TN using appropriate

formulation as described in Table III.

Finally, four other performance metrics above could be

obtained, as follows. Precision measures the proportion of

True Positive predictions out of all positive predictions

made by the model, indicating how many detected objects

are actually relevant. Precision can be calculated as in

 (13)

High Precision means a low False Positive rate. Recall, or

sensitivity, measures the proportion of True Positive

predictions out of all actual positive instances, indicating

how well the model identifies all relevant objects. Recall

can be calculated as in

 (14)

High Recall means a low False Negative rate. The F1-Score,

the harmonic mean of Precision and Recall, provides a

single metric balancing both concerns and is useful for

imbalanced datasets. F1-Score can be calculated as in

 (15)

Accuracy measures the proportion of correct predictions

(True Positives and True Negatives) out of the total

predictions. It offers a general idea of performance but may

not be the best metric for imbalanced datasets as it does not

differentiate error types. Accuracy can be calculated as in

 (16)

Mean Average Precision (mAP) is the mean of the Average

Precision (AP) values for each class. AP is calculated as the

area under the Precision-Recall curve for a specific class.

mAP provides a comprehensive measure of performance

across all classes, combining Precision and Recall for each,

making it essential for evaluating multi-class detection tasks

by accounting for detection quality and the model's ability to

handle different classes [27]. In this research, mAP was

obtained by extending the mAP calculation to consider the

top K predictions made by a model. It is beneficial in

scenarios where we are interested in the model's ability to

correctly rank the most relevant predictions among the top K

results. This metric is valuable for assessing models in

ranking-related tasks, such as recommender systems. It can

be effectively adapted for 3D object detection and

classification by considering the rank of the 3D predicted

TABLE II

A PREDEFINED PROCESS OF FINDING A CONFUSION MATRIX FOR SIX CLASSES

OF OBJECT

 Predicted

 Classes car cyclist human wall tree cart

Actual

car a b c d e f

cyclist g h i j k l
human m n o p q r

wall s t u v w x

tree y z aa bb cc dd
cart ee ff gg hh ii jj

TABLE III

CONFUSION MATRIX FOR SIX CLASSES OF OBJECT

Classes TP FP FN TN

car a
g+m+s

+y+ee

b+c+d

+e+f

h+i+j+k+n+o+p+q+t
+u+v+w+z+aa+bb+c

c+ff+gg+hh+ii

cyclist h
b+n+t

+z+ff

g+i+j+

k+l

a+c+d+e+f+m+o+p
+q+r+s+u+v+w+x+y

+aa+bb+cc+dd+ee+
gg+hh+ii+jj

human o

c+i+u

+aa+g
g

m+n+p
+q+r

a+b+d+e+f+g+h+j+

k+l+s+t+v+w+x+y+z
+bb+cc+dd+ee+ff+h

h+ii+jj

wall v
d+j+p
+bb+h

h

s+t+u

+w+x

a+b+c+e+f+g+h+i+

k+l+m+n+o+q+r+y+

z+aa+cc+dd+ee+ff+g
g+ii+jj

tree cc
e+k+q

+w+ii

y+z+a

a+bb+
dd

a+b+c+d+f+g+h+i+j
+l+m+n+o+p+r+s+t

+u+v+x+ee+ff+gg+h

h+jj

cart jj
f+l+r+
x+dd

ee+ff+

gg+hh

+ii

a+b+c+d+e+g+h+i+

j+k+m+n+o+p+q+s+
t+u+v+w+y+z+aa+b

b+cc

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

bounding boxes (TPs) in a list composed of predicted and

unpredicted 3D bounding boxes (TPs and FNs). Obtaining

mAP began with calculating AP for each class, as denoted in

 (17)

where the items are relevant divided by the total number of

relevant items (n) in the top K recommendations. By doing

this, the maximum values of AP can be reached 1 when all

relevant items stay in the first ranks, while the minimum can

happen when all relevant items sit in the lower ranks. This

research considered all relevant items on the lower ranks,

avoiding a too-optimistic judgement. Ultimately, mAP could

be calculated by averaging the AP scores across all object

classes, as defined in

 (18)

IV. RESULTS AND DISCUSSION

A. Dataset Production Results

To create the dataset, we embarked on our research

journey by gathering a comprehensive LiDAR point cloud

data from a specific area at KST Samaun Samadikun BRIN

in Bandung, Indonesia. Figure 2 shows the road route

indicated by the yellow line around the office building,

where LiDAR recognizes essential objects constantly visible

on the body or side of the road. The point cloud, a rich

representation, contains six classes of objects found along

the roads within that area. To capture this wealth of data, we

utilized the Velodyne VLP-16 LiDAR device, capable of

capturing up to 600,000 cloud data points per second.

Figures 3.a and 3.b visualize the point cloud data,

representing these objects in a single image. These objects

were displayed in the bird's eye vision provided by the

VelovView application. The point cloud tends to be sparse.

This condition occurs because of the characteristics of the

LiDAR Velodyne VLP-16, which is categorized as low-

resolution LiDAR but has minor computing power

compared to other types of Velodyne LiDAR. In both

images, the solid points at the bottom represent the ground

plane, while the sparse points at the top represent

background objects or noise in the data. In Figure 3.a, it can

be seen that several objects, such as humans and walls, were

clearly visualized, while cars were pretty visible even

though the point cloud was relatively sparse. In Figure 3.b,

the cyclists and trees can be seen clearly, while the visible

point cloud for the carts was relatively sparse. Finally, all

information captured by LiDAR was saved into raw point

cloud data in '.pcap' format.

The point cloud data, meticulously stored and processed,

was transformed into a comprehensive dataset. This was

achieved by annotating six object classes on each point

cloud data frame using a web-based application called

Supervisely. Figures 4.a, 4.b, and 4.c vividly depict the

(a) (b)

Fig. 3. Visual representation of objects in two LiDAR point cloud frames.

Fig. 2. The location where LiDAR captured important objects at KST

Samaun Samadikun BRIN in Bandung, Indonesia.

(a) (b) (c)

Fig. 4. Visualization of annotation outcomes on three different frames: car, cyclist, and human classes (a), human and wall classes (b), and tree class (c).

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

outcomes of this detailed annotation process on such object

classes that occurred in three different frames. This research

carried out an annotation process on 2423 frame point

clouds. This crucial annotation process produced structured

data, which was then meticulously formatted into a '.bin'

file. Next, this '.bin' file was converted into '.npy' or numpy

format, a data format widely recognized and used in

machine learning and 3D object detection. The 2,438

datasets that had been converted were then separated into

two parts, namely training data and testing data. A total of

2,180 datasets were allocated for training the PointPillars

model with eight different configurations, while the

remaining 243 datasets were used for testing the trained

models.

B. Training Phase Results

Each of the eight PointPillars model configurations,

rigorously assessed during the training phase using the

identical dataset, demonstrated remarkable precision. The

outcomes of this meticulous training process are detailed in

Figure 5. Notably, every model configuration achieved its

lowest training loss at a specific point during the training,

with a minimum training loss of 0.09 serving as the

threshold for a well-trained model. Figure 5 illustrates the

efficiency of the training process, with configurations 1 and

8 converging at the minimum training loss value in the

fewest number of training steps, around 7000000 steps

(7,000,000/2,195 = 3,189 epochs). Configurations 5 and 3

followed suits, taking around 7,500,000 steps

(7,500,000/2,195 = 3,416 epochs). Configuration 7 required

around 8500000 steps (8,500,000/2,195 = 3,872 epochs),

while model configurations 4 needed 9,200,000 steps

(9,200,000/2,195 = 4,191 epochs). Model configuration 2

and 6, although requiring more steps, still demonstrated the

efficiency of the process with 10,500,000 steps

(10,500,000/2,195 = 4,783 epochs) and 11,000,000 steps

(11,000,000/2,195 = 5,011 epochs) respectively.

In the training process of the eight model configurations,

a comprehensive testing and optimization of

hyperparameters was conducted to ensure the best model

Fig. 5. Training loss results for each model. The lower figure displays graphs for all models across the entire range of obtained data, while the upper figure

represents a magnified view of the area marked by a black circle in the lower figure, showing detailed graphs of all models within the training loss range of

0.08 to 0.1 and training steps range of 6,500,000 to 11,000,000.

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

performance. Among the essential hyperparameters was the

Adaptive Moment Estimation with Weight Decay (AdamW)

optimizer, a version that overcomes the shortcomings of its

predecessor by incorporating a more effective way to

implement weight decay. The BATCH_SIZE_PER_GPU

was set at 1, corresponding to the number of GPUs used in

this research. The initial learning rate was set at 0.003,

weight decay at 0.01, momentum at 0.9, learning rate decay

at 0.1, and LR_CLIP at 0.0000001. This LR_CLIP

hyperparameter was used to prevent the learning rate from

becoming too small and hindering training progress. The

thoroughness of the hyperparameter testing is evident in the

complete settings presented in Table IV. The number of

parameters resulting from the eight model configurations

can be seen in Table V, further demonstrating the robustness

of the model. Tables IV and V offer crucial insights into the

model configurations and the number of parameters each

setup produced. Configurations 1, 2, 3, and 6 shared a total

of 4,874,668 parameters, highlighting a consistent parameter

count across these models. Configuration 4, with 5,651,508

parameters, had a more complex structure, while

Configurations 5, 7, and 8 had the highest parameter count

at 6,472,500, reflecting potentially more intricate processing

capabilities.

C. Testing Phase Results

 In the testing process, each trained model configuration

was tested using a 243-frame dataset. During this evaluation

process, we meticulously assessed the performance of eight

model configurations, aiming to identify their strengths and

areas for improvement. The results presented in Table VI,

VII, VIII, IX, X, XI, XII, and XIII are comprehensively

discussed in the following paragraphs.

Model Configuration 1 informed in Table VI, the default

version, showcased its potential with Accuracy values

greater than 0.9 for each class. Precision, however, showed

significant variation, ranging from a maximum of 1 for the

car class to a minimum of 0.63 for the tree class. Recall

values spanned from 0.56 for the cyclist class to 0.95 for the

wall class. The F1-Score, a key metric, ranged from 0.63 for

the cyclist to 0.94 for the human class, while AP values

fluctuated between 0.35 for the cyclist and 0.86 for the wall

class. Despite its decent performance, its mAP score was the

lowest at 0.64, indicating the potential for further

improvement.

Model Configuration 2 presented in Table VII showed an

improvement, achieving Accuracy values above 0.94 for

each class. Precision remained high, with a maximum of 1

for the car class and a minimum of 0.79 for the cyclist class.

Recall values ranged from 0.85 for the cyclist class to 0.95

for the car class. The F1-Score varied from 0.82 for the

cyclist to 0.97 for the car, and AP values ranged between

0.68 for the cyclist and 0.86 for the car. With a mAP score

of 0.78, this configuration performed significantly better

than the default.

Model Configuration 3 achieved an Accuracy of more

than 0.92 for each class. Precision varied from 0.71 for the

TABLE IV
THE CONFIGURATION OF HYPERPARAMETERS

Hyperparameters Numbers

BATCH_SIZE_PER_GPU 1

OPTIMIZER AdamW

LEARNING RATE 0.003

WEIGHT_DECAY 0.01

MOMENTUM 0.9

LR_DECAY 0.1

LR_CLIP 0.0000001

TABLE V

THE NUMBER OF PARAMETERS PRODUCED BY EACH PARAMETER

Model Configuration Parameters

1, 2, 3, 6 4,876,468

4 5,651,508

5, 7, 8 6,472,500

TABLE VI

MODEL CONFIGURATION 1

Class TP FP FN TN Accuracy Precision Recall F1-Score AP

car 176 0 32 1,571 0.982012366 1 0.846153846 0.916666667 0.662061733

cyclist 146 51 114 1,468 0.907251265 0.741116751 0.561538462 0.638949672 0.358144493

human 708 47 42 982 0.949971894 0.937748344 0.944 0.940863787 0.82967383

wall 187 39 8 1,545 0.973580663 0.827433628 0.958974359 0.888361045 0.865885776

tree 89 51 17 1,622 0.961776279 0.635714286 0.839622642 0.723577236 0.655069656

cart 192 93 68 1,426 0.909499719 0.673684211 0.738461538 0.704587156 0.526918032

Average 0.649625587

TABLE VII
MODEL CONFIGURATION 2

Class TP FP FN TN Accuracy Precision Recall F1-Score AP

car 176 0 8 1,548 0.995381062 1 0.956521739 0.977777778 0.860135945

cyclist 215 55 36 1,426 0.947459584 0.796296296 0.856573705 0.825335893 0.682751267

human 643 22 63 1,004 0.950923788 0.966917293 0.910764873 0.938001459 0.763943698

wall 220 34 12 1,466 0.973441109 0.866141732 0.948275862 0.905349794 0.84056931

tree 109 13 9 1,601 0.987297921 0.893442623 0.923728814 0.908333333 0.791665412

cart 221 24 20 1,467 0.974595843 0.902040816 0.917012448 0.909465021 0.776801249

Average 0.785977814

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

tree class to 0.99 for the car class. Recall values ranged from

0.70 for the cart class to 0.94 for the car and tree classes.

The F1-Score spanned from 0.75 for the cart class to 0.96

for the car class, while AP values ranged between 0.48 for

the cart and 0.83 for the car class. This configuration had a

mAP score of 0.72, indicating moderate performance. The

performance results of Model Configuration 3 are shown in

Table VIII.

Model Configuration 4 described in Table IX showed

high Accuracy above 0.95 for each class. Precision varied

from 0.84 for the cyclist class to 0.99 for the car class.

Recall ranged from 0.82 for the cart class to 0.98 for the car

and wall classes. The F1-Score ranged from 0.85 for the cart

to 0.99 for the car, with AP values between 0.63 for the cart

and 0.95 for the car and wall classes. This configuration had

a high mAP score of over 0.8, demonstrating strong overall

performance.

Model Configuration 5 indicated in Table X also achieved

Accuracy values above 0.95 for each class. Precision varied

from 0.83 for the cyclist class to 0.98 for the car class.

Recall ranged from 0.83 for the car and cyclist classes to

0.99 for the wall class. The F1-Score spanned from 0.83 for

the cyclist class to 0.96 for the wall class, with AP values

ranging from 0.64 for the cyclist to 0.98 for the wall class.

Its mAP score was 0.76, showing solid performance,

particularly in detecting the wall class.

Model Configuration 6 (Table XI), while not the top

scorer, still demonstrated a balanced performance, with an

Accuracy above 0.95 for each class. Precision, a crucial

metric, ranged from 0.80 for the cyclist class to 0.98 for the

TABLE VIII

MODEL CONFIGURATION 3

Class TP FP FN TN Accuracy Precision Recall F1-Score AP

car 121 1 7 1,799 0.995850622 0.991803279 0.9453125 0.968 0.835685705

cyclist 215 59 40 1,614 0.948651452 0.784671533 0.843137255 0.812854442 0.657321735

human 727 51 84 1,066 0.929979253 0.934447301 0.896424168 0.915040906 0.738626307

wall 327 45 21 1,535 0.965767635 0.879032258 0.939655172 0.908333333 0.821114966

tree 111 44 7 1,766 0.973547718 0.716129032 0.940677966 0.813186813 0.825991701

cart 188 39 80 1,621 0.938278008 0.828193833 0.701492537 0.75959596 0.487409414

Average 0.727691638

TABLE IX
MODEL CONFIGURATION 4

Class TP FP FN TN Accuracy Precision Recall F1-Score AP

car 172 1 2 1,520 0.998230088 0.994219653 0.988505747 0.991354467 0.950707654

cyclist 184 35 13 1,463 0.971681416 0.840182648 0.934010152 0.884615385 0.810452824

human 652 20 33 990 0.968731563 0.970238095 0.951824818 0.960943257 0.847219818

wall 261 16 3 1,415 0.98879056 0.942238267 0.988636364 0.964879852 0.950325009

tree 106 9 14 1,566 0.986430678 0.92173913 0.883333333 0.90212766 0.732592306

cart 211 28 44 1,412 0.957522124 0.882845188 0.82745098 0.854251012 0.635548038

Average 0.821140941

TABLE X

MODEL CONFIGURATION 5

Class TP FP FN TN Accuracy Precision Recall F1-Score AP

car 183 3 35 1,587 0.978982301 0.983870968 0.839449541 0.905940594 0.652444046

cyclist 220 42 44 1,502 0.952433628 0.839694656 0.833333333 0.836501901 0.643533676

human 695 39 28 1,046 0.962942478 0.946866485 0.961272476 0.9540151 0.869703501

wall 272 19 1 1,516 0.988938053 0.934707904 0.996336996 0.964539007 0.980924567

tree 90 5 16 1,697 0.988384956 0.947368421 0.849056604 0.895522388 0.668509275

cart 207 33 17 1,551 0.972345133 0.8625 0.924107143 0.892241379 0.790453263

Average 0.767594721

TABLE XI

MODEL CONFIGURATION 6

Class TP FP FN TN Accuracy Precision Recall F1-Score AP

car 185 16 31 1,611 0.974498101 0.92039801 0.856481481 0.887290168 0.67700314

cyclist 220 52 29 1,542 0.956049919 0.808823529 0.883534137 0.84452975 0.718565354

human 641 12 45 1,145 0.969072165 0.981623277 0.934402332 0.957430919 0.809478434

wall 288 40 19 1,496 0.967986978 0.87804878 0.938110749 0.907086614 0.818051808

tree 105 22 12 1,704 0.981551818 0.826771654 0.897435897 0.860655738 0.74394899

cart 234 28 34 1,547 0.966359197 0.893129771 0.873134328 0.883018868 0.701866907

Average 0.744819106

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

human class. Recall values varied between 0.85 for the car

class and 0.93 for the human and wall classes. The F1-

Score, a measure of balance between Precision and Recall,

ranged from 0.84 for the cyclist to 0.95 for the human class,

with AP values between 0.67 for the car and 0.81 for the

wall class. The mAP score of 0.74, while slightly lower than

the top performers, still reflects a balanced performance,

indicating that the efforts put into this configuration were

not in vain.

Model Configuration 7 achieved the highest Accuracy

above 0.96 for each class. Precision ranged from 0.87 for the

tree class to 0.98 for the car class. Recall values varied from

0.83 for the cyclist to 0.98 for the car class. The F1-Score

ranged from 0.86 for the cyclist to 0.98 for the car class,

with AP values between 0.63 for the cyclist and 0.95 for the

car class. This configuration demonstrated the best overall

performance with a mAP score of over 0.8. The results for

this Model Configuration can be seen in Table XII.

Finally, in Table XIII, Model Configuration 8 also

achieved an Accuracy above 0.96 for each class. Precision

varied from 0.84 for the cyclist class to 0.98 for the car

class. Recall ranged from 0.85 for the cyclist class to 0.96

for the human class. The F1-Score spanned from 0.84 for

the cyclist to 0.96 for the human class, with AP values

ranging from 0.67 for the cyclist to 0.87 for the human class.

The mAP score was 0.76, indicating a strong performance

similar to Model Configuration 5.

Figure 6 presents a visualization of the objects predicted

by Model Configuration 4 on two examples from the testing

dataset. In Figure 6.a, the model correctly identified two

walls (indicated by blue boxes) and two humans (indicated

by green boxes). However, it incorrectly predicted one car

(indicated by yellow boxes) and two carts (indicated by

purple boxes). In Figure 6.b, the model accurately predicted

two cars (yellow boxes), two walls (blue boxes), two

cyclists (red boxes), two humans (green boxes), one cart

(purple box), and one tree (blue box). These visualizations

highlight the model's Accuracy and areas for improvement

in object detection.

The analysis of the PointPillars model using the 2D

BaseBEVBackbone configuration revealed that increasing

the voxel size beyond 8,000 did not enhance the mean

Average Precision (mAP) value. This observation held true

across various model configurations: Model Configuration 2

with 8,000 voxels, Model Configuration 1 with 16,000

voxels, Model Configuration 3 with 32,000 voxels, and

(a) (b)

Fig. 6. Visualization of predicted objects from the testing phase.

TABLE XII

MODEL CONFIGURATION 7

Class TP FP FN TN Accuracy Precision Recall F1-Score AP

car 188 3 2 1,471 0.996995192 0.984293194 0.989473684 0.98687664 0.953969479

cyclist 176 19 36 1,433 0.966947115 0.902564103 0.830188679 0.864864865 0.639672854

human 673 21 31 939 0.96875 0.969740634 0.955965909 0.962804006 0.856862964

wall 240 24 17 1,383 0.975360577 0.909090909 0.93385214 0.921305182 0.809551586

tree 94 14 9 1,547 0.986177885 0.87037037 0.912621359 0.890995261 0.771378657

cart 192 20 6 1,446 0.984375 0.905660377 0.96969697 0.936585366 0.855283925

Average 0.814453244

TABLE XIII
MODEL CONFIGURATION 8

Class TP FP FN TN Accuracy Precision Recall F1-Score AP

car 179 2 20 1579 0.987640449 0.988950276 0.899497487 0.942105263 0.745777509

cyclist 197 36 34 1513 0.960674157 0.845493562 0.852813853 0.849137931 0.671462259

human 698 25 27 1030 0.970786517 0.965421853 0.962758621 0.964088398 0.87340868

wall 255 21 17 1487 0.978651685 0.923913043 0.9375 0.930656934 0.816979846

tree 103 18 16 1643 0.980898876 0.851239669 0.865546218 0.858333333 0.692457326

cart 217 29 17 1517 0.974157303 0.882113821 0.927350427 0.904166667 0.796695708

Average 0.766130221

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

Model Configuration 6 with 64,000 voxels. The underlying

cause of this phenomenon was the nature of the point cloud

data generated by the employed LiDAR, which produced

sparse point clouds. When smaller voxels were used, the

likelihood of combining distinct objects within a single

voxel was minimized, thereby reducing classification

confusion between different objects.

Additional layer configurations were necessary to

improve the mAP value, as demonstrated by Model

Configuration 4, which used a layer composition of 4;6;6

and 16,000 voxels. However, this enhancement came at the

cost of increased training steps needed to achieve a training

loss convergence value of 0.09, indicating a more extended

training duration. Similar outcomes were noted in the

configurations using a 2D BaseBEVRESBackbone with a

layer composition of 2;3;3. For instance, Model

Configuration 7 with 8,000 voxels achieved a better mAP

value than configurations with 16,000 (Model Configuration

5) and 32,000 voxels.

Based on the configuration details provided for Model

Configurations 1, 2, 3, 4, and 6 using the BEV backbone, an

analysis of prediction errors reveals key insights into their

performance differences due to voxel size and layer

composition.

Model Configurations 1, 2, 3, and 6 share the same layer

composition of 3;5;5 but differ in voxel size. Model

Configuration 1 uses a voxel size of 16,000, resulting in

strong car detection with 0 FP but encountering 32 FN,

indicating challenges in detecting partially obscured cars.

Cyclist detection shows significant issues with 51 FP and

114 FN, suggesting difficulties in distinguishing cyclists

from similar objects, especially at a distance or when

overlapping. Human detection records 47 FP and 42 FN,

potentially due to insufficient detail in the point cloud data,

while walls exhibit 39 FP and 8 FN, showing

misclassification in identifying elongated structures. The

tree class reports 51 FP and 17 FN, indicating challenges in

capturing fine details. The cart class faces 93 FP and 68 FN,

highlighting problems due to shape similarities with other

objects.

Model Configuration 2, with a smaller voxel size of

8,000, shows improvement in detecting most classes,

including a lower 8 FN for cars. However, cyclists still pose

a challenge with 55 FP and 36 FN, and humans face 22 FP

and 63 FN, suggesting that while a smaller voxel size may

enhance some aspects of detail, certain objects remain

difficult to detect due to overlap or complexity.

Model Configuration 3 uses a larger voxel size of 32,000,

which impacts detection. This model records 1 FP and 7 FN

for cars, indicating reliable performance with minimal

misclassifications. However, cyclists report 59 FP and 40

FN, and humans show 51 FP and 84 FN, reflecting

significant detection difficulties, particularly in low

visibility conditions. Wall detection reports 45 FP and 21

FN, indicating misclassifications due to complex structures.

The tree class has 44 FP and 7 FN, suggesting difficulty in

differentiating objects with similar structures.

Model Configuration 6, with a voxel size of 64,000,

shows increased detection challenges. Cars show 16 FP and

31 FN, indicating errors in distinguishing them from other

objects. Cyclists have 52 FP and 29 FN, while human

detection reports 12 FP and 45 FN, pointing to issues in

complex conditions. Wall detection has 40 FP and 19 FN,

and the tree class shows 22 FP and 12 FN, indicating

consistent difficulties in classifying varied object shapes.

The cart class records 28 FP and 34 FN, highlighting

detection challenges due to shape similarities.

Model Configuration 4, with a unique layer composition

of 4;6;6 and a voxel size of 16,000, demonstrates enhanced

detection capabilities. It records 1 FP and 2 FN for cars,

suggesting nearly flawless detection. Cyclist detection

reports 35 FP and 13 FN, showing more accurate

identification. Human detection records 20 FP and 33 FN,

indicating reduced error rates compared to other models.

Wall detection, with 16 FP and 3 FN, shows high accuracy.

The tree class records 9 FP and 14 FN, indicating low

detection errors. However, the cart class, with 28 FP and 44

FN, still experiences significant challenges.

In summary, the comparison highlights that Model

Configurations 1, 2, 3, and 6, despite sharing the same layer

composition (3;5;5), exhibit varying detection accuracy

influenced by voxel size. Smaller voxel sizes, such as 8,000

in Model Configuration 2, generally improve detail capture

but do not fully eliminate detection errors, particularly in

complex classes like cyclists and humans. The unique

structure of Model Configuration 4 (4;6;6) provides better

overall performance, suggesting that increased layer depth

contributes to enhanced detection accuracy, particularly for

cars and walls.

Among these five model configurations, the object classes

that frequently demonstrate poor detection accuracy are

cyclists, humans, and carts. The high number of false

positives (FP) and false negatives (FN) in these classes, as

seen in all configurations, suggests that these models

struggle with distinguishing these objects from others and

accurately detecting them when they are overlapping or

positioned in complex scenarios. This can be attributed to

the complexity of shapes and their resemblance to other

objects, making feature extraction challenging for the

models, especially with varying voxel sizes that may either

lack or over-simplify detail.

On the other hand, the object classes that consistently

show good detection accuracy across these configurations

are cars and walls. The relatively lower FP and FN counts

indicate that these objects are more straightforward for the

models to recognize. The consistent shapes and distinctive

features of cars and walls make them easier to classify

accurately, even with different voxel sizes and layer

compositions. The use of a more detailed layer structure in

Model Configuration 4 (4;6;6) further supports enhanced

recognition, particularly for classes with clearly defined

geometries such as walls and cars, due to the deeper feature

representation and improved segmentation capabilities.

Based on the configuration details for Model

Configurations 5, 7, and 8, which use the BEVRes backbone

with a layer composition of 2;3;3 but differ in voxel sizes,

the prediction error analysis highlights their comparative

performance.

Model Configuration 5 uses a voxel size of 16,000 and

demonstrates generally reliable detection across most

classes, with 3 FP and 35 FN for cars, suggesting the model

effectively identifies cars but may miss some due to

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

occlusions or data limitations. Cyclists pose more

challenges, with 42 FP and 44 FN, indicating significant

issues in distinguishing cyclists from other objects and

detecting them accurately. Humans record 39 FP and 28 FN,

highlighting errors particularly in low-visibility conditions.

The wall class has 19 FP and 1 FN, showing excellent

detection accuracy. Trees report 5 FP and 16 FN, indicating

detection difficulties under specific conditions. The cart

class records 33 FP and 17 FN, reflecting struggles in

correctly identifying carts due to their complex structures.

Model Configuration 7, with a smaller voxel size of

8,000, shows enhanced detection for certain classes. For

cars, the model reports 3 FP and 2 FN, demonstrating high

accuracy in car detection. Cyclists, however, still present a

challenge with 19 FP and 36 FN, highlighting some

undetected cases. The human class has 21 FP and 31 FN,

indicating moderate detection issues. Walls record 24 FP

and 17 FN, suggesting some walls are missed, possibly due

to variations in shape and position. Trees show 14 FP and 9

FN, reflecting reliable performance but not without errors.

The cart class performs well with 20 FP and 6 FN,

indicating effective detection overall.

Model Configuration 8 uses a larger voxel size of 64,000,

resulting in minimal errors for cars with 2 FP and 20 FN,

demonstrating strong car detection but occasional misses.

Cyclists have 36 FP and 34 FN, continuing to show

detection challenges. The human class records 25 FP and 27

FN, indicating some detection errors, although they are

somewhat reduced. Walls have 21 FP and 17 FN, reflecting

consistent detection difficulties. Trees report 18 FP and 16

FN, suggesting issues under certain conditions. The cart

class records 29 FP and 17 FN, indicating struggles with cart

identification.

Across the three configurations, the cyclist, human, and

cart classes consistently show poor detection accuracy. This

is evident in the high number of false positives (FP) and

false negatives (FN), suggesting that these classes have

complex shapes or frequently overlap with other objects,

leading to consistent detection challenges regardless of

voxel size. Cyclists often have high variability in appearance

and may be mistaken for other moving objects, while

humans can be difficult to detect accurately due to varied

poses and partial occlusions. Carts, due to their diverse

forms and potential resemblance to other structures, also

show high FP and FN counts, indicating challenges in

feature extraction and classification.

Conversely, the car and wall classes generally exhibit

reliable detection across all configurations, as seen in their

consistently lower FP and FN counts. The clear and well-

defined structures of cars make them easier to differentiate

from the background and other objects, contributing to

higher detection accuracy. Walls, with their typically

consistent shapes and larger presence in the data, are also

detected with high reliability. The performance in these

classes is aided by distinct features that make classification

straightforward.

The differences in detection accuracy can also be

attributed to the voxel size used in each configuration. The

smaller voxel size in Model Configuration 7 (8,000) helps

capture finer details, resulting in enhanced performance for

most object classes due to the higher resolution of data

points. Conversely, larger voxel sizes, such as 64,000 in

Model Configuration 8, may simplify the data representation

too much, leading to a loss of detail and a negative impact

on the detection of objects with intricate structures.

Across both BEV and BEVRes backbones, car and wall

detection exhibit consistently high accuracy, as indicated by

lower counts of false positives (FP) and false negatives

(FN). The well-defined shapes and relatively large sizes of

cars and walls contribute to their reliable classification. This

trend is particularly noticeable when smaller voxel sizes,

such as 8,000 in Model Configurations 2 and 7, are

employed, as they provide the finer detail necessary for

enhanced detection accuracy.

The detection of cyclists, humans, and carts consistently

shows lower accuracy in both the BEV and BEVRes

backbones, evidenced by higher FP and FN counts. Cyclists

often pose a challenge due to their variable and complex

shapes, which can be mistaken for other moving objects.

Human detection is similarly affected by dynamic poses and

partial occlusions, leading to inaccuracies. The cart class

struggles with accurate identification, as their forms can

closely resemble other objects. Larger voxel sizes, such as

32,000 and 64,000 used in Model Configurations 3, 6, and 8,

tend to oversimplify the representation of data, worsening

detection difficulties for these intricate classes.

The use of smaller voxel sizes, like 8,000 in Model

Configurations 2 and 7, typically supports more detailed

feature extraction. This approach tends to improve detection

performance for simpler and more defined classes such as

cars and walls. However, these smaller voxel sizes do not

entirely resolve the detection challenges faced with more

complex objects like cyclists, humans, and carts. In contrast,

larger voxel sizes, such as 64,000 in Model Configurations 6

and 8, result in a reduction of detail, leading to higher

detection errors in classes with less distinct or more intricate

features.

The deeper layer composition of Model Configuration 4,

which has a 4;6;6 structure, enhances detection performance

across most object classes. This suggests that a more

complex feature extraction pipeline facilitates better

differentiation of complex shapes and features. Even when

paired with a standard voxel size of 16,000, this deeper layer

configuration supports improved recognition and

classification accuracy.

Overall, both the BEV and BEVRes backbones face

recurring challenges in accurately detecting cyclists,

humans, and carts due to their intricate and variable

structures. However, car and wall classes generally show

high detection accuracy across various configurations,

benefiting from their distinct shapes. The choice of voxel

size and the refinement of layer composition play critical

roles in optimizing overall detection performance. Smaller

voxel sizes enhance detail, aiding in the classification of

simpler objects, while deeper layer structures, as seen in

Model Configuration 4, offer improvements across most

classes by supporting more nuanced feature extraction.

V. CONCLUSION

By identifying the most effective architecture

configuration of this method's backbone, we have

successfully addressed the challenge of detecting and

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

classifying six classes of objects within a limited area. The

findings from eight model configurations have provided

valuable insights into the diverse characteristics of this

method's architecture configurations.

Among the model configurations, 4 and 7 emerged as the

top performers, boasting mAP scores above 0.8 and

demonstrating superior overall performance. Configuration

2 was a close competitor with a respectable mAP score of

0.78, while Configurations 5 and 8 held their ground with

solid scores of 0.76. Configuration 6 showed a balanced

performance with a mAP score of 0.74, and Configuration 3

had a moderate score of 0.72. Unfortunately, the default

Model Configuration 1 fell behind with the lowest mAP

score of 0.64, indicating the need for improvement.

Overall, the PointPillars model with a 2D

BaseBEVRESBackbone generally outperformed the 2D

BaseBEVBackbone at equivalent voxel values (8,000,

16,000, 64,000). Nevertheless, a model configuration using

the 2D BaseBEVBackbone could slightly surpass the

BaseBEVRESBackbone's performance if the layer

composition had been increased, as evidenced by Model

Configuration 4 (4;6;6). This condition suggests that while

both backbone types have their strengths, the

BaseBEVBackbone benefits more significantly from

additional layers. In contrast, the BaseBEVRESBackbone

performs optimally with smaller voxel sizes and fewer

layers.

ACKNOWLEDGMENT

Special acknowledgement is given to the students from

Universitas Pendidikan Indonesia, Universitas Nurtanio,

Universitas Majalengka, and Universitas Garut, who have

actively contributed to supporting this research.

REFERENCES

[1] J.W. Pyo, S.H. Bae, S.H. Joo, M.K. Lee, A. Ghosh, and T.Y. Kuc,

“Development of an Autonomous Driving Vehicle for Garbage
Collection in Residential Areas,” Sensors, vol. 22, no. 23, p. 9094,

2022.

[2] P. de S. Carneiro, A. R. Pereira, and M. Mira da Silva, “A Model for
the Deployment of Shared Autonomous Vehicles in Urban Areas

Based on the Research Literature,” International Journal of Transport

Development and Integration, vol. 7, no. 3, pp. 199–213, 2023.
[3] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The

ApolloScape Open Dataset for Autonomous Driving and Its

Application,” IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 10,
pp. 2702–2719, 2020.

[4] P. Sun et al., “Scalability in Perception for Autonomous Driving:

Waymo Open Dataset,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, pp. 2443–2451. 2020.

[5] A. Saha and B. C. Dhara, “3D LiDAR-based obstacle detection and

tracking for autonomous navigation in dynamic environments,” Int J
Intell Robot Appl, vol. 8, no. 1, pp. 39–60, 2024.

[6] V. Lehtola et al., “Comparison of the Selected State-Of-The-Art 3D

Indoor Scanning and Point Cloud Generation Methods,” Remote Sens
(Basel), vol. 9, no. 8, p. 796, 2017.

[7] S. Thrun et al., “Stanley: The robot that won the DARPA Grand

Challenge,” J Field Robot, vol. 23, no. 9, pp. 661–692, 2006.
[8] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,

“PointPillars: Fast Encoders for Object Detection from Point Clouds,”

in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 12697–12705, 2019.

[9] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference

on Computer Vision (ICCV), IEEE, pp. 1440–1448, 2015.
[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks,” IEEE

Trans Pattern Anal Mach Intell, vol. 39, no. 6, pp. 1137–1149, 2017.

[11] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point
Cloud Based 3D Object Detection,” in 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, IEEE, pp. 4490–4499,

2018.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), IEEE, pp. 770–778, 2016.
[13] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3DSSD: Point-Based 3D Single

Stage Object Detector,” in 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, pp. 11037–11045,
2020.

[14] W. Zheng, W. Tang, L. Jiang, and C.-W. Fu, “SE-SSD: Self-

Ensembling Single-Stage Object Detector from Point Cloud,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), IEEE, pp. 14489–14498, 2021.

[15] B. Sun, W. Li, H. Liu, J. Yan, S. Gao, and P. Feng, "Obstacle
Detection of Intelligent Vehicle Based on Fusion of Lidar and

Machine Vision," Engineering Letters, vol. 29, no.2, pp722-730,

2021.
[16] X. Bai et al., “TransFusion: Robust LiDAR-Camera Fusion for 3D

Object Detection with Transformers,” in 2022 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), IEEE, pp.
1080–1089, 2022.

[17] X. Xu et al., “FusionRCNN: LiDAR-Camera Fusion for Two-Stage

3D Object Detection,” Remote Sens (Basel), vol. 15, no. 7, p. 1839,
2023.

[18] Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely Embedded
Convolutional Detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[19] M. Hollaus, W. Wagner, B. Maier, and K. Schadauer, “Airborne

Laser Scanning of Forest Stem Volume in a Mountainous
Environment,” Sensors, vol. 7, no. 8, pp. 1559–1577, 2007.

[20] B. Lohani and S. Ghosh, “Airborne LiDAR Technology: A Review of

Data Collection and Processing Systems,” Proceedings of the
National Academy of Sciences, India Section A: Physical Sciences,

vol. 87, no. 4, pp. 567–579, 2017.

[21] Z. Wang and M. Menenti, “Challenges and Opportunities in Lidar
Remote Sensing,” Frontiers in Remote Sensing, vol. 2, 2021.

[22] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P.

Martinez-Gonzalez, and J. Garcia-Rodriguez, “A survey on deep
learning techniques for image and video semantic segmentation,”

Appl Soft Comput, vol. 70, pp. 41–65, 2018.

[23] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in 2012 IEEE

Conference on Computer Vision and Pattern Recognition, IEEE, pp.

3354–3361, 2012.

[24] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data

set),” in 2015 Military Communications and Information Systems
Conference (MilCIS), IEEE, pp. 1–6, 2015.

[25] K. M. Ting, “Confusion Matrix,” in Encyclopedia of Machine

Learning and Data Mining, Boston, MA: Springer US, pp. 260–260.
[26] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit Lett,

vol. 27, no. 8, pp. 861–874, 2006.

[27] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” in
ECCV 2014, pp. 740–755, 2014.

Alif Ilman Nafian received a Bachelor's degree from
the Software Engineering Department at Universitas

Pendidikan Indonesia in 2024. For the past two years

(2022-2024), he has started an apprenticeship in
BRIN's research and development of object detection

for autonomous vehicles. His current research

interests are machine learning, artificial intelligence,
and LiDAR-based object detection.

Dian Anggraini is a lecturer in the Software
Engineering Department at Universitas Pendidikan

Indonesia. The author holds a Masters in Engineering

(M.T) from the Department of Electrical Engineering
at the Bandung Institute of Technology in Indonesia

in 2018. Her areas of interest are artificial

intelligence, database and software engineering.

Mochamad Iqbal Ardimansyah received his

Master’s degree from Telkom University in Indonesia
in 2017. He works as a lecturer in the Software

Engineering Department at Universitas Pendidikan
Indonesia. His research interests are machine

learning, data mining, internet of things, and related

about parallel and distributed computing.

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

Arief Suryadi Satyawan received his master's
degree in Electrical Engineering from the Bandung

Institute of Technology in Indonesia in 2007. In 2019,

he received his Computer and Communication

Engineering Doctorate from Waseda University,

Japan. Since 1997, he has worked for the Indonesian

Institute of Sciences, which was later merged into the
National Research and Innovation Agency, Indonesia,

in 2021. Since 2020, he has been researching the

development of object detection and
telecommunication for the application on autonomous vehicles operated in

limited areas, which the Indonesia Endowment Fund for Education

(Lembaga Pengelola Dana Pendidikan) and the National Research and
Innovation Agency (BRIN), Indonesia, support. His research interests are

applications of machine learning, artificial intelligence, LiDAR-based

object detection, and visual communication based on machine learning.

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

__

