
 

  

Abstract— Autonomous electric vehicles operating in 

confined environments face unique challenges, as the objects 

within these environments often have specific characteristics 

not adequately covered by general datasets. This condition is 

particularly relevant for the autonomous electric vehicle being 

developed by BRIN in Indonesia, which requires accurately 

recognizing and classifying objects to avoid collisions and 

navigate safely. To address these needs, our research proposes 

the development of an object detection and classification 

system utilizing the Velodyne VLP-16 LiDAR. Given the 

tendency of this LiDAR to produce sparse point clouds, we 

have adjusted the PointPillars method to better adapt to such 

data, showcasing the adaptability of our system. Our findings 

indicate that a backbone network model configuration based 

on a residual network (BaseBEVRESBackbone) outperforms 

the traditional PointPillars backbone configuration 

(BaseBEVBackbone). This superior performance is achieved 

even with a more straightforward layer configuration and 

smaller voxel size, demonstrating the effectiveness of our 

approach in enhancing LiDAR-based object detection and 

classification in constrained environments. 

 
Index Terms—Sparse Data, Adjusted PointPillars, Objects 

Classification, Constrained Environments, Autonomous 

Vehicle 

I. INTRODUCTION 

INCE 2020, we have been dedicated to developing 

autonomous electric vehicles designed to operate in 

limited environments such as office complexes, campuses, 

botanical gardens, and potentially for passenger transport at 

airports. This idea later also becomes an exciting theme in 

other works (see [1], [2]). Initially, our efforts focused on 

utilizing LiDAR technology as the primary sensor system to 

detect objects in front of the vehicle, ensuring it could brake 
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to avoid collisions. This early system effectively prevented 

accidents by recognizing obstacles, but it quickly became 

evident that merely detecting objects was insufficient for 

safe and efficient navigation. 

The current demands for autonomous vehicle systems 

extend beyond simple detection. It is now crucial for LiDAR 

technology to detect, recognize, and classify objects, 

enabling the vehicle to maneuver around obstacles when 

possible. Additionally, understanding the environment, 

including stationary and moving objects, is essential for 

planning safe routes. For example, an autonomous vehicle 

operating on a campus must differentiate between 

pedestrians, bicycles, and other vehicles and anticipate their 

movements to navigate safely. Similarly, in an airport 

setting, the vehicle must recognize and avoid luggage carts, 

other vehicles, and passengers. This research is at the 

forefront of innovation, focusing on developing an advanced 

LiDAR-based object detection and classification system.  

By classifying objects detected by LiDAR, the system can 

provide the vehicle with detailed environmental awareness, 

allowing for sophisticated maneuvering strategies. For 

instance, if the vehicle detects a moving pedestrian, it can 

predict its path and adjust its route accordingly to avoid a 

collision. In scenarios involving multiple dynamic objects, 

the system must be capable of real-time decision-making to 

direct the vehicle on the safest path to its destination.  

Our proposed system leverages cutting-edge 

advancements in LiDAR technology and data processing 

algorithms. One approach involves the refinement of the 

PointPillars method, which converts point cloud data into 

2D pseudo-images that can be processed by convolutional 

neural networks (CNNs). This approach allows for efficient 

and accurate object detection and classification, even in 

sparse point cloud environments like those generated by the 

Velodyne VLP-16 LiDAR. By optimizing the number of 

network layers and adjusting voxel sizes, we aim to enhance 

the resolution and Accuracy of object detection, ensuring 

reliable performance in various confined settings.  

Related works have demonstrated the potential of LiDAR 

technology in enhancing the capabilities of autonomous 

vehicles. For instance, the Apollo Autonomous Driving 

platform by Baidu integrates LiDAR data for robust object 

detection and path planning in complex urban environments 

[3]. Waymo's autonomous vehicles also utilize LiDAR for 

precise mapping and navigation, enabling safe operation in 

diverse settings, from city streets to parking lots. These 

projects highlight the critical role of LiDAR and 
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sophisticated data processing in making autonomous 

vehicles more adaptable and reliable [4].  In addition, Saha 

and Dhara's work on 3D LiDAR-based obstacle detection 

and tracking for autonomous navigation in dynamic 

environments focuses on enhancing robotic perception and 

navigation through advanced algorithms [5].  

Their approach utilized LiDAR sensor data to detect and 

track obstacles in real time, which is crucial for autonomous 

vehicles operating in complex and changing settings. By 

integrating machine learning techniques with geometric 

analysis, their system could accurately identify and predict 

the movement of various obstacles, ensuring reliable 

navigation paths. Similarly, effort in [6] comprehensively 

evaluated contemporary 3D indoor scanning technologies 

and their point cloud generation capabilities. The study 

systematically compared various state-of-the-art methods, 

focusing on their Accuracy, efficiency, and suitability for 

indoor environments. The authors analyzed a range of 3D 

scanners and algorithms, highlighting their strengths and 

weaknesses in generating high-quality point clouds. By 

conducting rigorous experiments and assessments, this work 

offers valuable insights into the performance of these 

technologies, aiding practitioners in selecting the most 

appropriate tools for specific indoor scanning applications.  

Our approach also benefits from advancements in the 

Simultaneous Localization and Mapping (SLAM) 

algorithms, as demonstrated in [7], describing an 

autonomous vehicle created by the Stanford Racing Team 

that won the 2005 DARPA Grand Challenge. A key 

component of Stanley's success was using LiDAR 

technology, which played a crucial role in the vehicle's 

perception system. The LiDAR sensors provided accurate, 

real-time 3D mapping of the environment, enabling the 

vehicle to detect and avoid obstacles, identify drivable 

paths, and make precise navigation decisions. This 

capability was instrumental in Stanley's ability to 

autonomously navigate complex terrains and overcome 

challenges such as rough roads, sharp turns, and varied 

obstacles, demonstrating the profound impact of LiDAR on 

autonomous vehicle performance. Integrating LiDAR with 

other sensor systems, such as GPS and cameras, and 

advanced algorithms for sensor fusion and path planning 

underscored the importance of a multi-faceted approach to 

autonomous navigation. This pioneering work significantly 

advanced the field of autonomous driving, highlighting the 

potential of LiDAR technology in real-world applications, 

further supporting our development goals.  

By integrating cutting-edge technological advancements 

and leveraging research insights, our LiDAR-based system 

aims to revolutionize autonomous vehicle navigation in 

confined environments. The system is designed to generate 

high-definition maps enriched with object classifications 

and precise locations, predict the trajectories of dynamic 

objects, and plan optimal routes with enhanced efficiency. 

These improvements will enable autonomous vehicles to 

avoid obstacles, navigate complex scenarios, and reach their 

destinations safely and seamlessly. Ultimately, this 

innovation represents a significant leap forward in 

advancing autonomous electric vehicles tailored for 

operations in restricted areas. 

II. THE PROPOSED METHOD 

PointPillars, introduced originally by [8] in 2019, is a 

state-of-the-art neural network architecture designed for 3D 

object detection using point cloud data. This technology is 

particularly effective in applications like autonomous 

driving and robotics. The key innovation in PointPillars is 

its method of converting 3D point clouds into 2D pseudo-

images, which can then be processed using standard CNNs. 

This conversion significantly reduces computational 

complexity and improves processing speed, making real-

time object detection feasible.  

The core technology inside PointPillars involves several 

critical steps. Initially, the point cloud data is divided into 

vertical columns, or "pillars," each representing a segment 

of the 3D space. Each pillar contains a set of points within a 

defined grid cell. Features from these points are extracted 

and encoded into a feature map. This feature map is then 

transformed into a pseudo-image by collapsing the height 

dimension, allowing it to be processed by 2D CNNs. The 

resulting pseudo-image is used for further processing, 

including object classification and bounding box regression. 

The mathematical model of PointPillars focuses on 

optimizing the loss function, which typically includes 

components for object classification and bounding box 

regression. The loss function 𝐿 is defined as:  

 

                                                                (1) 

 

where 𝐿cls is the classification loss, 𝐿reg is the regression 

loss, and α is a weighting factor balancing the two 

components. The classification loss is usually computed 

using cross-entropy loss, while the regression loss, 

responsible for predicting the bounding box coordinates, 

often uses a combination of Smooth L1 loss or L2 loss. 

Using backpropagation and optimization methods like 

Adaptive Moment Estimation (Adam) or Stochastic 

Gradient Descent (SGD), the objective is to minimize this 

loss function [8]-[11]. 

The architecture of the PointPillars network significantly 

influences the performance of the model. One critical aspect 

is the number of layers in the 2D CNN backbone. Increasing 

the number of layers typically allows the network to capture 

more complex features, leading to better object detection 

and classification. However, it also increases the 

computational load and the risk of overfitting. Therefore, 

finding the optimal number of layers is crucial. Voxel size is 

another crucial parameter in the PointPillars architecture. 

Voxel size determines the resolution of the grid used to 

partition the point cloud data [11]. Balancing voxel size is 

essential to optimize both performance and efficiency. 

Our proposed method aims to further enhance object 

detection and classification by modifying the PointPillars 

method to utilize LiDAR data better. By refining the 

construction of the number of layers and adjusting the voxel 

size for both BaseBEVBackbone and 

BaseBEVResBackbone types, we seek to optimize the 

handling of sparse point cloud data produced by the 

Velodyne VLP-16 LiDAR. This adjustment involves 

developing more sophisticated neural network architectures 

to better differentiate between objects and accurately predict 
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their movements. 

BaseBEVBackbone is actually based on traditional neural 

networks, such as standard CNNs. These networks use a 

cascade of layers to handle input data, with each layer using 

pooling, activation, and convolution operations to change 

the input. Unlike ResNets, traditional networks do not 

include skip connections, which means each layer relies 

entirely on the previous layer's output. While these networks 

can be effective for many tasks, they can need help training 

very deep architectures due to issues like vanishing 

gradients. 

In contrast, BaseBEVResBackbone adopts Residual 

Networks, or ResNets, introduced in 2015 [12]. These 

neural network types comprise shortcuts or skipping 

connections that go around one or more layers. These 

connections help mitigate the vanishing gradient problem, 

which often hampers the training of intense networks. 

Gradients can flow directly through a ResNet, making it 

easier to train far deeper designs and achieve better results 

on difficult problems. In the context of 

BaseBEVResBackbone, these residual connections improve 

feature learning and allow for more sophisticated 

representations of point cloud data. 

ResNets have the advantage of improved gradient flow, 

enabling deeper networks and better performance on 

complex tasks. Although they are more adept at learning 

hierarchical features, the more connections they make, the 

higher their memory and computational complexity. 

Traditional networks, on the other hand, have a simpler 

architecture with lower computational overhead, making 

them easier to implement and optimize for smaller or less 

complex tasks. However, they can need help with training 

profound networks due to vanishing gradient problems and 

may not capture as rich features as ResNets. 

Using these network architectures in object detection and 

classification for point cloud data has distinct advantages. 

ResNets (BaseBEVResBackbone) allow for better handling 

of complex, high-dimensional point cloud data due to their 

residual connections. This network leads to improved 

detection and classification Accuracy, as the network can 

learn more detailed and hierarchical features from the data. 

This condition benefits applications like autonomous 

driving, where understanding the environment in detail is 

crucial. Traditional networks (BaseBEVBackbone), while 

simpler to train and optimize, are efficient for less complex 

tasks or when computational resources are limited. They can 

still perform well in object detection and classification in 

point cloud data, especially when the task does not require 

extremely deep networks. 

A comprehensive explanation of the proposed method 

regarding the modifications to PointPillars can be 

mathematically described as follows.  

The process of Point Cloud representation to Pillars 

encompasses several key steps. Firstly, the raw point cloud 

data from Velodyne VLP-16 can be represented as a set of 

points in 

 

                                            (2) 

 

where each point pi = (x, y, z, and r). Here, x, y, and z are 

spatial coordinates, r represents reflectance value, and N is 

the total number of points. 

Subsequently, the voxelization process is carried out. The 

3D space is divided into a voxel grid of optimized size. The 

formula for voxel division is formulated as in 

 

 
                                                                                            (3) 

 

where vx, vy, and vz are the voxel dimensions, and ⌊⋅⌋ denotes 

the floor function. 

Finally, the transformation into Pillar representation is 

performed. Each pillar aggregates information from points 

in the vertical voxel using an encoding function. The 

representation is formulated as in 

 

                               (4) 

 

where  

 

                             (5) 

 

The function fencoder maps the set of points into feature 

vectors, and X and Y are the dimensions of the BEV (Bird's 

Eye View) grid. 

With regard to the enhanced neural network architecture, 

the output of the BaseBEVBackbone is formulated as in 

 

                                  (6) 

 

where each layer fi has the structure as in 

 

                                                       (7) 

 

Here, Wi is the weight matrix of the i-th layer, bi is the bias, 

and σ is a non-linear activation function representing 

convolution operations. 

For the BaseBEVResBackbone, skip connections are 

introduced, formulated as in 

 

                                                (8) 

 

From the perspective of object prediction, the class 

probability for each region proposal r is calculated as in 

 

                                      (9) 

 

and the bounding box parameters are presented as in 

 

                                                     (10) 

 

Here, p(c∣r) is the class probability, box(r) represents 

bounding box parameters (dx, dy, dz, dl, dw, dh, and dθ), fr 

is the region feature, and Wc, Wb, bc, and bb are learnable 

parameters. 

The total loss function is defined as in 

 

                                       (11) 

 

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 663-677

 
______________________________________________________________________________________ 



 

Here, Lclass is the focal loss for classification, Lbox is the 

smooth L1 loss for bounding box regression, and Ldir is the 

cross-entropy loss for orientation. The parameters λ1, λ2, and 

λ3 are weighting hyperparameters. 

The above formulas (equation 2 to 11) describe the data 

processing pipeline from raw point cloud data to final object 

predictions, with an emphasis on optimizing network 

architecture and voxel size to enhance object detection 

accuracy from the relatively sparse Velodyne VLP-16 

LiDAR data. Each mathematical component is interlinked in 

the processing pipeline, where the output of one stage 

becomes the input for the next. Optimization is performed at 

every stage to improve the overall system performance. 

Our approach focuses on integrating advanced feature 

extraction techniques and dynamic voxelization methods to 

improve the resolution and Accuracy of object detection. 

This method allows the autonomous vehicle to identify 

obstacles and understand their characteristics, such as size, 

shape, and motion patterns. By incorporating these 

enhancements, the vehicle can create detailed, annotated 

maps of its environment, predict the trajectories of moving 

objects, and plan safe, collision-free paths. 

Several related works have also explored the development 

of PointPillars for various applications. For instance, in 

2020, a work extended the PointPillars framework with 

"3DSSD: Point-based 3D Single Stage Object Detector." 

This effort enhanced object detection performance by 

focusing on point-wise feature aggregation and single-stage 

detection [13]. This approach improved detection Accuracy 

and computational efficiency, making it suitable for real-

time applications in autonomous vehicles. 

Moreover, the study in 2021 on "SE-SSD: Self-

Ensembling Single-Stage Object Detector From Point 

Cloud" introduced a self-ensembling mechanism to refine 

the predictions of the PointPillars model, achieving state-of-

the-art results on several benchmark datasets [14]. Their 

work demonstrated the potential of self-ensembling 

techniques in improving the robustness and Accuracy of 3D 

object detection systems. 

Based on previous research, it is clear that several 

limitations and challenges still need to be addressed in the 

context of 3D object detection for autonomous vehicles, 

especially in confined environments such as the one at KST 

Samaun Samadikun BRIN in Bandung. The potential 

benefits of this research are significant. First, most previous 

studies have used datasets such as KITTI or nuScenes, 

which only partially represent the characteristics of objects 

in BRIN-limited environments. This condition causes 

models trained with that dataset to be less effective when 

applied in different environments. Reference [15], 

developed in 2021, Reference [16], developed in 2022, and 

Reference [17], developed in 2023 show that reliance on a 

combination of multisensor data such as LiDAR, radar, and 

high-resolution cameras requires enormous costs and 

computation. This method is impractical for large-scale or 

resource-limited applications. Reference [8], discussing the 

original PointPillars in 2019, and Reference [18], 

introducing 'SECOND: Sparsely Embedded Convolutional 

Detection' in 2018, have proposed a more computationally 

efficient method. However, it still uses data from the KITTI 

dataset, which is less representative of the BRIN 

environment and often only detects particular objects, such 

as cars, pedestrians and cyclists. Therefore, this research 

seeks to develop a 3D object detection model that is more 

adaptive to the characteristics of objects in BRIN's limited 

environment by utilizing the PointPillars-based Deep Neural 

Network method. This method is expected to provide better 

efficiency and Accuracy without relying on high-resolution 

sensor data, thereby offering a more cost-effective and 

practical solution for 3D object detection in confined 

environments. 

Our proposed method specifically targets optimizing the 

PointPillars framework to handle the unique challenges 

posed by sparse point cloud data generated by the Velodyne 

VLP-16 LiDAR. Unlike prior studies that have mainly 

focused on improving detection accuracy and processing 

speed, our approach prioritizes the effective management of 

data sparsity. By strategically adjusting voxel size and layer 

configurations, we aim to minimize the merging of different 

objects within a single voxel, thereby reducing classification 

errors and enhancing detection reliability. These 

modifications enable the framework to better differentiate 

objects, which is crucial in environments where data points 

are limited or scattered. The result is an improved version of 

PointPillars that significantly bolsters the LiDAR’s ability to 

accurately detect and classify objects, even in complex and 

constrained spaces. This advancement is particularly 

beneficial for autonomous electric vehicles, allowing them 

to navigate intricate environments more effectively, 

anticipate and avoid potential obstacles, and optimize their 

path planning. Consequently, our method ensures safer and 

more efficient operation of these vehicles, promoting better 

route optimization and hazard prevention in limited and 

cluttered environments. 

III. RESEARCH METHOD 

Figure 1 outlines the research method employed in this 

study, which was conducted in three primary phases 

described as follows. The first phase involved creating a 

specific dataset from scratch. The raw dataset, captured by a 

Velodyne VLP-16 LiDAR, was in a point cloud format and 

saved as '.pcap' files. Thanks to VeloView, the application 

that had been provided freely to obtain the raw dataset. The 

critical information in the point cloud included the distance 

between the LiDAR and the points on the surfaces of 

detected objects, where the transmitted light from the 

LiDAR was reflected, as well as the three-dimensional 

coordinates (x, y, and z) of each detected point [19]-[21]. 

The raw dataset was then processed according to the KITTI 

standard (see [11], [22], [23]), 'bin', before being converted 

to a custom format named '.npy'. After that, hundreds of 

thousands of frames consisting of point cloud data in that 

format were selected to become 2,423 frames. This process 

could reduce the almost identical frames. About 90% of 

them were selected as a training dataset, while the rest were 

available as a testing dataset [24]. They were ready to be 

annotated using Supervisely (available at: 

https://supervisely.com/) during the following process. In 

the dataset annotation process, six classes of objects were to 

be annotated in the dataset. They were human, wall, car, 

cyclist, cart and tree. After the process of annotating these 

objects, the '.json' format, the dataset format given by 
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Supervisely, was converted to a costume PointPillars dataset 

('.txt'). This process aimed to enable ground truth database, 

custom train info, custom validation info, and custom 

database infos train through an information extraction 

process. Finally, the appropriate dataset for training and 

testing models developed in the further step, which was 

presented together with a complete set of the PointPillars 

format, could be established. This dataset, crucial for 

training and testing models, could be formed according to 

the train and test proportion. 

In the second phase, as depicted in Figure 1, the focus 

shifted to the development of eight model configurations of 

PointPillars. These models, a key component of our study, 

were designed to optimize the performance of the neural 

network. The network configuration employed two distinct 

2D backbone networks: BaseBEVBackbone and 

BaseBEVResBackbone. The BaseBEVBackbone, a standard 

component of our models, utilized convolutional blocks 

without residual connections. These blocks, consisting of 

layers including zero padding, convolution, batch 

normalization, and ReLU activation, were stacked multiple 

times to extract features from the input data. On the other 

hand, the BaseBEVResBackbone, a unique component of 

our models, leveraged residual blocks instead of standard 

convolutional blocks. These residual blocks, incorporating 

bypass connections, were instrumental in allowing gradients 

to flow directly through layers, thereby enhancing the 

network's learning capabilities. Subsequently, all model 

configurations needed to specify the number of layers and 

voxel size for the 2D backbones. The voxel size, a critical 

parameter, influenced the collection of points used for 

training, while the number of layers determined the structure 

and types of layers in a PointPillars model. The choice of 

these values was crucial as they significantly impacted the 

model's detection performance. The specific configurations 

of these values for each model are detailed in Table I. The 

first model configuration was promoted firstly by Lang et 

al., while the rest were our innovative contributions. After 

all model configurations had been established, each could be 

trained using the same training dataset that had also been 

prepared at the final process of the first phase. However, 

before the training process began, hyperparameters, such as 

the type of optimizer, learning rate initiation point, number 

of epochs, and batch sizes, should be defined to minimize 

the training loss. Eight trained model configurations could 

be formed after the training process, and they were ready to 

be evaluated in the next phase. 

Given that the performance of the trained models in 3D 

object detection and classification based on point clouds 

would be evaluated using Precision, Recall, F1-Score, 

Accuracy, and Mean Average Precision (mAP), a 

comprehensive set of confusion matrix elements needed to 

calculate these metrics had to be obtained at the start of the 

third phase. Reference [25] and [26] describe the confusion 

matrix as a table that assesses an object detection 

algorithm's performance, comparing predicted object classes 

with actual (ground truth) object classes. It contains values 

for True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN). True Positives 

occur when the model correctly identifies and classifies an 

object, such as recognizing a car as a car. True Negatives 

 
 

Fig. 1.  The research process diagram. 

 

TABLE I 

CONFIGURATION OF THE DEVELOPED POINTPILLARS MODELS 

Model Configuration Backbone Layer Composition 
Voxel 

Size 

1 BEV 3;5;5 16,000 

2 BEV 3;5;5 8,000 

3 BEV 3;5;5 32,000 

4 BEV 4;6;6 16,000 

5 BEVRes 2;3;3 16,000 

6 BEV 3;5;5 64,000 

7 BEVRes 2;3;3 8,000 

8 BEVRes 2;3;3 64,000 
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represent instances where the model correctly determines 

that no object is present or accurately labels a region as 

background, like recognizing an area without objects. False 

Positives happen when the model incorrectly detects an 

object or misclassifies a background area as an object, such 

as mistaking a background for a car or identifying a tree as a 

car. False Negatives occur when the model fails to detect an 

object or incorrectly classifies an object as background, such 

as missing a car in the point cloud data or labelling a car as 

background. True Negatives only influence the Accuracy 

value among these elements, while the other three elements 

affect all five-performance metrics. 

Prior to determining the elements of the confusion matrix, 

it is essential to first calculate the Intersection over Union 

(IoU). IoU quantifies the degree of overlap between the 

predicted bounding box and the ground truth bounding box. 

It is defined as the ratio of the area of their intersection to 

the area of their union, providing a standardized measure of 

prediction accuracy. This metric is mathematically 

expressed as in  

 

    (12) 

 

It is a critical performance metric that decides whether a 

predicted bounding box is a True Positive, False Positive, or 

False Negative. The IoU does not directly affect True 

Negative values since TNs pertain to background regions or 

non-object areas. 

Since this research utilized six classes of objects, an 

illustration described in Table II can express a predefined 

process of finding a confusion matrix for this case. 

Each value filled out from the observation of the testing 

dataset. For instance, when cars actually defined in the 

testing dataset were predicted appropriately by a model, the 

results can be stated cumulatively as the presence of car (a); 

otherwise, they could be avowed cumulatively as the 

presence of cyclist (b), human (c), wall (d), tree (e), or even 

cart (f). This mechanism applies to the rest of the classes. 

From then on, each element in Table II can be used to obtain 

the values of TP, FP, FN, and TN using appropriate 

formulation as described in Table III. 

Finally, four other performance metrics above could be 

obtained, as follows. Precision measures the proportion of 

True Positive predictions out of all positive predictions 

made by the model, indicating how many detected objects 

are actually relevant. Precision can be calculated as in 

 

                                                           (13) 

 

High Precision means a low False Positive rate. Recall, or 

sensitivity, measures the proportion of True Positive 

predictions out of all actual positive instances, indicating 

how well the model identifies all relevant objects. Recall 

can be calculated as in 

 

                                                                (14) 

 

High Recall means a low False Negative rate. The F1-Score, 

the harmonic mean of Precision and Recall, provides a 

single metric balancing both concerns and is useful for 

imbalanced datasets. F1-Score can be calculated as in 

 

                                        (15)                    

 

Accuracy measures the proportion of correct predictions 

(True Positives and True Negatives) out of the total 

predictions. It offers a general idea of performance but may 

not be the best metric for imbalanced datasets as it does not 

differentiate error types. Accuracy can be calculated as in 

 

                                               (16) 

 

Mean Average Precision (mAP) is the mean of the Average 

Precision (AP) values for each class. AP is calculated as the 

area under the Precision-Recall curve for a specific class. 

mAP provides a comprehensive measure of performance 

across all classes, combining Precision and Recall for each, 

making it essential for evaluating multi-class detection tasks 

by accounting for detection quality and the model's ability to 

handle different classes [27]. In this research, mAP was 

obtained by extending the mAP calculation to consider the 

top K predictions made by a model. It is beneficial in 

scenarios where we are interested in the model's ability to 

correctly rank the most relevant predictions among the top K 

results. This metric is valuable for assessing models in 

ranking-related tasks, such as recommender systems. It can 

be effectively adapted for 3D object detection and 

classification by considering the rank of the 3D predicted 

TABLE II 

A PREDEFINED PROCESS OF FINDING A CONFUSION MATRIX FOR SIX CLASSES 

OF OBJECT 

 Predicted 

 Classes car cyclist human wall tree cart 

Actual 

car a b c d e f 

cyclist g h i j k l 
human m n o p q r 

wall s t u v w x 

tree y z aa bb cc dd 
cart ee ff gg hh ii jj 

 
TABLE III 

CONFUSION MATRIX FOR SIX CLASSES OF OBJECT 

Classes TP FP FN TN 

car a 
g+m+s

+y+ee 

b+c+d

+e+f 

h+i+j+k+n+o+p+q+t
+u+v+w+z+aa+bb+c

c+ff+gg+hh+ii 

cyclist h 
b+n+t

+z+ff 

g+i+j+

k+l 

a+c+d+e+f+m+o+p
+q+r+s+u+v+w+x+y

+aa+bb+cc+dd+ee+
gg+hh+ii+jj 

human o 

c+i+u

+aa+g
g 

m+n+p
+q+r 

a+b+d+e+f+g+h+j+

k+l+s+t+v+w+x+y+z
+bb+cc+dd+ee+ff+h
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bounding boxes (TPs) in a list composed of predicted and 

unpredicted 3D bounding boxes (TPs and FNs). Obtaining 

mAP began with calculating AP for each class, as denoted in  

 

                              (17) 

 
 

where the items are relevant divided by the total number of 

relevant items (n) in the top K recommendations. By doing 

this, the maximum values of AP can be reached 1 when all 

relevant items stay in the first ranks, while the minimum can 

happen when all relevant items sit in the lower ranks. This 

research considered all relevant items on the lower ranks, 

avoiding a too-optimistic judgement. Ultimately, mAP could 

be calculated by averaging the AP scores across all object 

classes, as defined in 

 

  (18) 

IV. RESULTS AND DISCUSSION 

A. Dataset Production Results 

To create the dataset, we embarked on our research 

journey by gathering a comprehensive LiDAR point cloud 

data from a specific area at KST Samaun Samadikun BRIN 

in Bandung, Indonesia. Figure 2 shows the road route 

indicated by the yellow line around the office building, 

where LiDAR recognizes essential objects constantly visible 

on the body or side of the road. The point cloud, a rich 

representation, contains six classes of objects found along 

the roads within that area. To capture this wealth of data, we 

utilized the Velodyne VLP-16 LiDAR device, capable of 

capturing up to 600,000 cloud data points per second. 

Figures 3.a and 3.b visualize the point cloud data, 

representing these objects in a single image. These objects 

were displayed in the bird's eye vision provided by the 

VelovView application. The point cloud tends to be sparse. 

This condition occurs because of the characteristics of the 

LiDAR Velodyne VLP-16, which is categorized as low-

resolution LiDAR but has minor computing power 

compared to other types of Velodyne LiDAR. In both 

images, the solid points at the bottom represent the ground 

plane, while the sparse points at the top represent 

background objects or noise in the data. In Figure 3.a, it can 

be seen that several objects, such as humans and walls, were 

clearly visualized, while cars were pretty visible even 

though the point cloud was relatively sparse. In Figure 3.b, 

the cyclists and trees can be seen clearly, while the visible 

point cloud for the carts was relatively sparse. Finally, all 

information captured by LiDAR was saved into raw point 

cloud data in '.pcap' format.  

The point cloud data, meticulously stored and processed, 

was transformed into a comprehensive dataset. This was 

achieved by annotating six object classes on each point 

cloud data frame using a web-based application called 

Supervisely. Figures 4.a, 4.b, and 4.c vividly depict the 
 

  
(a) (b) 

Fig. 3. Visual representation of objects in two LiDAR point cloud frames. 

 

 
Fig. 2.  The location where LiDAR captured important objects at KST 

Samaun Samadikun BRIN in Bandung, Indonesia. 

 

 

   
(a) (b) (c) 

Fig. 4.  Visualization of annotation outcomes on three different frames: car, cyclist, and human classes (a), human and wall classes (b), and tree class (c). 
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outcomes of this detailed annotation process on such object 

classes that occurred in three different frames. This research 

carried out an annotation process on 2423 frame point 

clouds. This crucial annotation process produced structured 

data, which was then meticulously formatted into a '.bin' 

file. Next, this '.bin' file was converted into '.npy' or numpy 

format, a data format widely recognized and used in 

machine learning and 3D object detection. The 2,438 

datasets that had been converted were then separated into 

two parts, namely training data and testing data. A total of 

2,180 datasets were allocated for training the PointPillars 

model with eight different configurations, while the 

remaining 243 datasets were used for testing the trained 

models. 

B. Training Phase Results 

Each of the eight PointPillars model configurations, 

rigorously assessed during the training phase using the 

identical dataset, demonstrated remarkable precision. The 

outcomes of this meticulous training process are detailed in 

Figure 5. Notably, every model configuration achieved its 

lowest training loss at a specific point during the training, 

with a minimum training loss of 0.09 serving as the 

threshold for a well-trained model. Figure 5 illustrates the 

efficiency of the training process, with configurations 1 and 

8 converging at the minimum training loss value in the 

fewest number of training steps, around 7000000 steps 

(7,000,000/2,195 = 3,189 epochs). Configurations 5 and 3 

followed suits, taking around 7,500,000 steps 

(7,500,000/2,195 = 3,416 epochs). Configuration 7 required 

around 8500000 steps (8,500,000/2,195 = 3,872 epochs), 

while model configurations 4 needed 9,200,000 steps 

(9,200,000/2,195 = 4,191 epochs). Model configuration 2 

and 6, although requiring more steps, still demonstrated the 

efficiency of the process with 10,500,000 steps 

(10,500,000/2,195 = 4,783 epochs) and 11,000,000 steps 

(11,000,000/2,195 = 5,011 epochs) respectively. 

In the training process of the eight model configurations, 

a comprehensive testing and optimization of 

hyperparameters was conducted to ensure the best model 

 
Fig. 5.  Training loss results for each model. The lower figure displays graphs for all models across the entire range of obtained data, while the upper figure 

represents a magnified view of the area marked by a black circle in the lower figure, showing detailed graphs of all models within the training loss range of 

0.08 to 0.1 and training steps range of 6,500,000 to 11,000,000. 
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performance. Among the essential hyperparameters was the 

Adaptive Moment Estimation with Weight Decay (AdamW) 

optimizer, a version that overcomes the shortcomings of its 

predecessor by incorporating a more effective way to 

implement weight decay. The BATCH_SIZE_PER_GPU 

was set at 1, corresponding to the number of GPUs used in 

this research. The initial learning rate was set at 0.003, 

weight decay at 0.01, momentum at 0.9, learning rate decay 

at 0.1, and LR_CLIP at 0.0000001. This LR_CLIP 

hyperparameter was used to prevent the learning rate from 

becoming too small and hindering training progress. The 

thoroughness of the hyperparameter testing is evident in the 

complete settings presented in Table IV. The number of 

parameters resulting from the eight model configurations 

can be seen in Table V, further demonstrating the robustness 

of the model. Tables IV and V offer crucial insights into the 

model configurations and the number of parameters each 

setup produced. Configurations 1, 2, 3, and 6 shared a total 

of 4,874,668 parameters, highlighting a consistent parameter 

count across these models. Configuration 4, with 5,651,508 

parameters, had a more complex structure, while 

Configurations 5, 7, and 8 had the highest parameter count 

at 6,472,500, reflecting potentially more intricate processing 

capabilities. 

C. Testing Phase Results 

 In the testing process, each trained model configuration 

was tested using a 243-frame dataset. During this evaluation 

process, we meticulously assessed the performance of eight 

model configurations, aiming to identify their strengths and 

areas for improvement. The results presented in Table VI, 

VII, VIII, IX, X, XI, XII, and XIII are comprehensively 

discussed in the following paragraphs. 

Model Configuration 1 informed in Table VI, the default 

version, showcased its potential with Accuracy values 

greater than 0.9 for each class. Precision, however, showed 

significant variation, ranging from a maximum of 1 for the 

car class to a minimum of 0.63 for the tree class. Recall 

values spanned from 0.56 for the cyclist class to 0.95 for the 

wall class. The F1-Score, a key metric, ranged from 0.63 for 

the cyclist to 0.94 for the human class, while AP values 

fluctuated between 0.35 for the cyclist and 0.86 for the wall 

class. Despite its decent performance, its mAP score was the 

lowest at 0.64, indicating the potential for further 

improvement. 

Model Configuration 2 presented in Table VII showed an 

improvement, achieving Accuracy values above 0.94 for 

each class. Precision remained high, with a maximum of 1 

for the car class and a minimum of 0.79 for the cyclist class. 

Recall values ranged from 0.85 for the cyclist class to 0.95 

for the car class. The F1-Score varied from 0.82 for the 

cyclist to 0.97 for the car, and AP values ranged between 

0.68 for the cyclist and 0.86 for the car. With a mAP score 

of 0.78, this configuration performed significantly better 

than the default. 

Model Configuration 3 achieved an Accuracy of more 

than 0.92 for each class. Precision varied from 0.71 for the 

TABLE IV 
THE CONFIGURATION OF HYPERPARAMETERS 

Hyperparameters Numbers 

BATCH_SIZE_PER_GPU 1 

OPTIMIZER AdamW 

LEARNING RATE 0.003 

WEIGHT_DECAY 0.01 

MOMENTUM 0.9 

LR_DECAY 0.1 

LR_CLIP 0.0000001 

 
TABLE V 

THE NUMBER OF PARAMETERS PRODUCED BY EACH PARAMETER 

Model Configuration Parameters 

1, 2, 3, 6 4,876,468 

4 5,651,508 

5, 7, 8 6,472,500 

 

TABLE VI 

MODEL CONFIGURATION 1 

Class TP FP FN TN Accuracy Precision Recall F1-Score AP 

car 176 0 32 1,571 0.982012366 1 0.846153846 0.916666667 0.662061733 

cyclist 146 51 114 1,468 0.907251265 0.741116751 0.561538462 0.638949672 0.358144493 

human 708 47 42 982 0.949971894 0.937748344 0.944 0.940863787 0.82967383 

wall 187 39 8 1,545 0.973580663 0.827433628 0.958974359 0.888361045 0.865885776 

tree 89 51 17 1,622 0.961776279 0.635714286 0.839622642 0.723577236 0.655069656 

cart 192 93 68 1,426 0.909499719 0.673684211 0.738461538 0.704587156 0.526918032 

Average                 0.649625587 

 

 

 

 

TABLE VII 
MODEL CONFIGURATION 2 

Class TP FP FN TN Accuracy Precision Recall F1-Score AP 

car 176 0 8 1,548 0.995381062 1 0.956521739 0.977777778 0.860135945 

cyclist 215 55 36 1,426 0.947459584 0.796296296 0.856573705 0.825335893 0.682751267 

human 643 22 63 1,004 0.950923788 0.966917293 0.910764873 0.938001459 0.763943698 

wall 220 34 12 1,466 0.973441109 0.866141732 0.948275862 0.905349794 0.84056931 

tree 109 13 9 1,601 0.987297921 0.893442623 0.923728814 0.908333333 0.791665412 

cart 221 24 20 1,467 0.974595843 0.902040816 0.917012448 0.909465021 0.776801249 

Average                 0.785977814 
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tree class to 0.99 for the car class. Recall values ranged from 

0.70 for the cart class to 0.94 for the car and tree classes. 

The F1-Score spanned from 0.75 for the cart class to 0.96 

for the car class, while AP values ranged between 0.48 for 

the cart and 0.83 for the car class. This configuration had a 

mAP score of 0.72, indicating moderate performance. The 

performance results of Model Configuration 3 are shown in 

Table VIII. 

Model Configuration 4 described in Table IX showed 

high Accuracy above 0.95 for each class. Precision varied 

from 0.84 for the cyclist class to 0.99 for the car class. 

Recall ranged from 0.82 for the cart class to 0.98 for the car 

and wall classes. The F1-Score ranged from 0.85 for the cart 

to 0.99 for the car, with AP values between 0.63 for the cart 

and 0.95 for the car and wall classes. This configuration had 

a high mAP score of over 0.8, demonstrating strong overall 

performance. 

Model Configuration 5 indicated in Table X also achieved 

Accuracy values above 0.95 for each class. Precision varied 

from 0.83 for the cyclist class to 0.98 for the car class. 

Recall ranged from 0.83 for the car and cyclist classes to 

0.99 for the wall class. The F1-Score spanned from 0.83 for 

the cyclist class to 0.96 for the wall class, with AP values 

ranging from 0.64 for the cyclist to 0.98 for the wall class. 

Its mAP score was 0.76, showing solid performance, 

particularly in detecting the wall class. 

Model Configuration 6 (Table XI), while not the top 

scorer, still demonstrated a balanced performance, with an 

Accuracy above 0.95 for each class. Precision, a crucial 

metric, ranged from 0.80 for the cyclist class to 0.98 for the 

TABLE VIII 

MODEL CONFIGURATION 3 

Class TP FP FN TN Accuracy Precision Recall F1-Score AP 

car 121 1 7 1,799 0.995850622 0.991803279 0.9453125 0.968 0.835685705 

cyclist 215 59 40 1,614 0.948651452 0.784671533 0.843137255 0.812854442 0.657321735 

human 727 51 84 1,066 0.929979253 0.934447301 0.896424168 0.915040906 0.738626307 

wall 327 45 21 1,535 0.965767635 0.879032258 0.939655172 0.908333333 0.821114966 

tree 111 44 7 1,766 0.973547718 0.716129032 0.940677966 0.813186813 0.825991701 

cart 188 39 80 1,621 0.938278008 0.828193833 0.701492537 0.75959596 0.487409414 

Average                 0.727691638 

 
 

 

 

TABLE IX 
MODEL CONFIGURATION 4 

Class TP FP FN TN Accuracy Precision Recall F1-Score AP 

car 172 1 2 1,520 0.998230088 0.994219653 0.988505747 0.991354467 0.950707654 

cyclist 184 35 13 1,463 0.971681416 0.840182648 0.934010152 0.884615385 0.810452824 

human 652 20 33 990 0.968731563 0.970238095 0.951824818 0.960943257 0.847219818 

wall 261 16 3 1,415 0.98879056 0.942238267 0.988636364 0.964879852 0.950325009 

tree 106 9 14 1,566 0.986430678 0.92173913 0.883333333 0.90212766 0.732592306 

cart 211 28 44 1,412 0.957522124 0.882845188 0.82745098 0.854251012 0.635548038 

Average                 0.821140941 

 

 
 

 

TABLE X 

MODEL CONFIGURATION 5 

Class TP FP FN TN Accuracy Precision Recall F1-Score AP 

car 183 3 35 1,587 0.978982301 0.983870968 0.839449541 0.905940594 0.652444046 

cyclist 220 42 44 1,502 0.952433628 0.839694656 0.833333333 0.836501901 0.643533676 

human 695 39 28 1,046 0.962942478 0.946866485 0.961272476 0.9540151 0.869703501 

wall 272 19 1 1,516 0.988938053 0.934707904 0.996336996 0.964539007 0.980924567 

tree 90 5 16 1,697 0.988384956 0.947368421 0.849056604 0.895522388 0.668509275 

cart 207 33 17 1,551 0.972345133 0.8625 0.924107143 0.892241379 0.790453263 

Average                 0.767594721 

 

 

 

 

TABLE XI 

MODEL CONFIGURATION 6 

Class TP FP FN TN Accuracy Precision Recall F1-Score AP 

car 185 16 31 1,611 0.974498101 0.92039801 0.856481481 0.887290168 0.67700314 

cyclist 220 52 29 1,542 0.956049919 0.808823529 0.883534137 0.84452975 0.718565354 

human 641 12 45 1,145 0.969072165 0.981623277 0.934402332 0.957430919 0.809478434 

wall 288 40 19 1,496 0.967986978 0.87804878 0.938110749 0.907086614 0.818051808 

tree 105 22 12 1,704 0.981551818 0.826771654 0.897435897 0.860655738 0.74394899 

cart 234 28 34 1,547 0.966359197 0.893129771 0.873134328 0.883018868 0.701866907 

Average                 0.744819106 
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human class. Recall values varied between 0.85 for the car 

class and 0.93 for the human and wall classes. The F1-

Score, a measure of balance between Precision and Recall, 

ranged from 0.84 for the cyclist to 0.95 for the human class, 

with AP values between 0.67 for the car and 0.81 for the 

wall class. The mAP score of 0.74, while slightly lower than 

the top performers, still reflects a balanced performance, 

indicating that the efforts put into this configuration were 

not in vain. 

Model Configuration 7 achieved the highest Accuracy 

above 0.96 for each class. Precision ranged from 0.87 for the 

tree class to 0.98 for the car class. Recall values varied from 

0.83 for the cyclist to 0.98 for the car class. The F1-Score 

ranged from 0.86 for the cyclist to 0.98 for the car class, 

with AP values between 0.63 for the cyclist and 0.95 for the 

car class. This configuration demonstrated the best overall 

performance with a mAP score of over 0.8. The results for 

this Model Configuration can be seen in Table XII. 

Finally, in Table XIII, Model Configuration 8 also 

achieved an Accuracy above 0.96 for each class. Precision 

varied from 0.84 for the cyclist class to 0.98 for the car 

class. Recall ranged from 0.85 for the cyclist class to 0.96 

for the human class. The F1-Score spanned from 0.84 for 

the cyclist to 0.96 for the human class, with AP values 

ranging from 0.67 for the cyclist to 0.87 for the human class. 

The mAP score was 0.76, indicating a strong performance 

similar to Model Configuration 5. 

Figure 6 presents a visualization of the objects predicted 

by Model Configuration 4 on two examples from the testing 

dataset. In Figure 6.a, the model correctly identified two 

walls (indicated by blue boxes) and two humans (indicated 

by green boxes). However, it incorrectly predicted one car 

(indicated by yellow boxes) and two carts (indicated by 

purple boxes). In Figure 6.b, the model accurately predicted 

two cars (yellow boxes), two walls (blue boxes), two 

cyclists (red boxes), two humans (green boxes), one cart 

(purple box), and one tree (blue box). These visualizations 

highlight the model's Accuracy and areas for improvement 

in object detection. 

The analysis of the PointPillars model using the 2D 

BaseBEVBackbone configuration revealed that increasing 

the voxel size beyond 8,000 did not enhance the mean 

Average Precision (mAP) value. This observation held true 

across various model configurations: Model Configuration 2 

with 8,000 voxels, Model Configuration 1 with 16,000 

voxels, Model Configuration 3 with 32,000 voxels, and 

  
(a) (b) 

Fig. 6.  Visualization of predicted objects from the testing phase. 

  

TABLE XII 

MODEL CONFIGURATION 7 

Class TP FP FN TN Accuracy Precision Recall F1-Score AP 

car 188 3 2 1,471 0.996995192 0.984293194 0.989473684 0.98687664 0.953969479 

cyclist 176 19 36 1,433 0.966947115 0.902564103 0.830188679 0.864864865 0.639672854 

human 673 21 31 939 0.96875 0.969740634 0.955965909 0.962804006 0.856862964 

wall 240 24 17 1,383 0.975360577 0.909090909 0.93385214 0.921305182 0.809551586 

tree 94 14 9 1,547 0.986177885 0.87037037 0.912621359 0.890995261 0.771378657 

cart 192 20 6 1,446 0.984375 0.905660377 0.96969697 0.936585366 0.855283925 

Average                 0.814453244 

 
 

 

 

TABLE XIII 
MODEL CONFIGURATION 8 

Class TP FP FN TN Accuracy Precision Recall F1-Score AP 

car 179 2 20 1579 0.987640449 0.988950276 0.899497487 0.942105263 0.745777509 

cyclist 197 36 34 1513 0.960674157 0.845493562 0.852813853 0.849137931 0.671462259 

human 698 25 27 1030 0.970786517 0.965421853 0.962758621 0.964088398 0.87340868 

wall 255 21 17 1487 0.978651685 0.923913043 0.9375 0.930656934 0.816979846 

tree 103 18 16 1643 0.980898876 0.851239669 0.865546218 0.858333333 0.692457326 

cart 217 29 17 1517 0.974157303 0.882113821 0.927350427 0.904166667 0.796695708 

Average                 0.766130221 
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Model Configuration 6 with 64,000 voxels. The underlying 

cause of this phenomenon was the nature of the point cloud 

data generated by the employed LiDAR, which produced 

sparse point clouds. When smaller voxels were used, the 

likelihood of combining distinct objects within a single 

voxel was minimized, thereby reducing classification 

confusion between different objects. 

Additional layer configurations were necessary to 

improve the mAP value, as demonstrated by Model 

Configuration 4, which used a layer composition of 4;6;6 

and 16,000 voxels. However, this enhancement came at the 

cost of increased training steps needed to achieve a training 

loss convergence value of 0.09, indicating a more extended 

training duration. Similar outcomes were noted in the 

configurations using a 2D BaseBEVRESBackbone with a 

layer composition of 2;3;3. For instance, Model 

Configuration 7 with 8,000 voxels achieved a better mAP 

value than configurations with 16,000 (Model Configuration 

5) and 32,000 voxels. 

Based on the configuration details provided for Model 

Configurations 1, 2, 3, 4, and 6 using the BEV backbone, an 

analysis of prediction errors reveals key insights into their 

performance differences due to voxel size and layer 

composition. 

Model Configurations 1, 2, 3, and 6 share the same layer 

composition of 3;5;5 but differ in voxel size. Model 

Configuration 1 uses a voxel size of 16,000, resulting in 

strong car detection with 0 FP but encountering 32 FN, 

indicating challenges in detecting partially obscured cars. 

Cyclist detection shows significant issues with 51 FP and 

114 FN, suggesting difficulties in distinguishing cyclists 

from similar objects, especially at a distance or when 

overlapping. Human detection records 47 FP and 42 FN, 

potentially due to insufficient detail in the point cloud data, 

while walls exhibit 39 FP and 8 FN, showing 

misclassification in identifying elongated structures. The 

tree class reports 51 FP and 17 FN, indicating challenges in 

capturing fine details. The cart class faces 93 FP and 68 FN, 

highlighting problems due to shape similarities with other 

objects. 

Model Configuration 2, with a smaller voxel size of 

8,000, shows improvement in detecting most classes, 

including a lower 8 FN for cars. However, cyclists still pose 

a challenge with 55 FP and 36 FN, and humans face 22 FP 

and 63 FN, suggesting that while a smaller voxel size may 

enhance some aspects of detail, certain objects remain 

difficult to detect due to overlap or complexity. 

Model Configuration 3 uses a larger voxel size of 32,000, 

which impacts detection. This model records 1 FP and 7 FN 

for cars, indicating reliable performance with minimal 

misclassifications. However, cyclists report 59 FP and 40 

FN, and humans show 51 FP and 84 FN, reflecting 

significant detection difficulties, particularly in low 

visibility conditions. Wall detection reports 45 FP and 21 

FN, indicating misclassifications due to complex structures. 

The tree class has 44 FP and 7 FN, suggesting difficulty in 

differentiating objects with similar structures. 

Model Configuration 6, with a voxel size of 64,000, 

shows increased detection challenges. Cars show 16 FP and 

31 FN, indicating errors in distinguishing them from other 

objects. Cyclists have 52 FP and 29 FN, while human 

detection reports 12 FP and 45 FN, pointing to issues in 

complex conditions. Wall detection has 40 FP and 19 FN, 

and the tree class shows 22 FP and 12 FN, indicating 

consistent difficulties in classifying varied object shapes. 

The cart class records 28 FP and 34 FN, highlighting 

detection challenges due to shape similarities. 

Model Configuration 4, with a unique layer composition 

of 4;6;6 and a voxel size of 16,000, demonstrates enhanced 

detection capabilities. It records 1 FP and 2 FN for cars, 

suggesting nearly flawless detection. Cyclist detection 

reports 35 FP and 13 FN, showing more accurate 

identification. Human detection records 20 FP and 33 FN, 

indicating reduced error rates compared to other models. 

Wall detection, with 16 FP and 3 FN, shows high accuracy. 

The tree class records 9 FP and 14 FN, indicating low 

detection errors. However, the cart class, with 28 FP and 44 

FN, still experiences significant challenges. 

In summary, the comparison highlights that Model 

Configurations 1, 2, 3, and 6, despite sharing the same layer 

composition (3;5;5), exhibit varying detection accuracy 

influenced by voxel size. Smaller voxel sizes, such as 8,000 

in Model Configuration 2, generally improve detail capture 

but do not fully eliminate detection errors, particularly in 

complex classes like cyclists and humans. The unique 

structure of Model Configuration 4 (4;6;6) provides better 

overall performance, suggesting that increased layer depth 

contributes to enhanced detection accuracy, particularly for 

cars and walls. 

Among these five model configurations, the object classes 

that frequently demonstrate poor detection accuracy are 

cyclists, humans, and carts. The high number of false 

positives (FP) and false negatives (FN) in these classes, as 

seen in all configurations, suggests that these models 

struggle with distinguishing these objects from others and 

accurately detecting them when they are overlapping or 

positioned in complex scenarios. This can be attributed to 

the complexity of shapes and their resemblance to other 

objects, making feature extraction challenging for the 

models, especially with varying voxel sizes that may either 

lack or over-simplify detail. 

On the other hand, the object classes that consistently 

show good detection accuracy across these configurations 

are cars and walls. The relatively lower FP and FN counts 

indicate that these objects are more straightforward for the 

models to recognize. The consistent shapes and distinctive 

features of cars and walls make them easier to classify 

accurately, even with different voxel sizes and layer 

compositions. The use of a more detailed layer structure in 

Model Configuration 4 (4;6;6) further supports enhanced 

recognition, particularly for classes with clearly defined 

geometries such as walls and cars, due to the deeper feature 

representation and improved segmentation capabilities. 

Based on the configuration details for Model 

Configurations 5, 7, and 8, which use the BEVRes backbone 

with a layer composition of 2;3;3 but differ in voxel sizes, 

the prediction error analysis highlights their comparative 

performance. 

Model Configuration 5 uses a voxel size of 16,000 and 

demonstrates generally reliable detection across most 

classes, with 3 FP and 35 FN for cars, suggesting the model 

effectively identifies cars but may miss some due to 
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occlusions or data limitations. Cyclists pose more 

challenges, with 42 FP and 44 FN, indicating significant 

issues in distinguishing cyclists from other objects and 

detecting them accurately. Humans record 39 FP and 28 FN, 

highlighting errors particularly in low-visibility conditions. 

The wall class has 19 FP and 1 FN, showing excellent 

detection accuracy. Trees report 5 FP and 16 FN, indicating 

detection difficulties under specific conditions. The cart 

class records 33 FP and 17 FN, reflecting struggles in 

correctly identifying carts due to their complex structures. 

Model Configuration 7, with a smaller voxel size of 

8,000, shows enhanced detection for certain classes. For 

cars, the model reports 3 FP and 2 FN, demonstrating high 

accuracy in car detection. Cyclists, however, still present a 

challenge with 19 FP and 36 FN, highlighting some 

undetected cases. The human class has 21 FP and 31 FN, 

indicating moderate detection issues. Walls record 24 FP 

and 17 FN, suggesting some walls are missed, possibly due 

to variations in shape and position. Trees show 14 FP and 9 

FN, reflecting reliable performance but not without errors. 

The cart class performs well with 20 FP and 6 FN, 

indicating effective detection overall. 

Model Configuration 8 uses a larger voxel size of 64,000, 

resulting in minimal errors for cars with 2 FP and 20 FN, 

demonstrating strong car detection but occasional misses. 

Cyclists have 36 FP and 34 FN, continuing to show 

detection challenges. The human class records 25 FP and 27 

FN, indicating some detection errors, although they are 

somewhat reduced. Walls have 21 FP and 17 FN, reflecting 

consistent detection difficulties. Trees report 18 FP and 16 

FN, suggesting issues under certain conditions. The cart 

class records 29 FP and 17 FN, indicating struggles with cart 

identification. 

Across the three configurations, the cyclist, human, and 

cart classes consistently show poor detection accuracy. This 

is evident in the high number of false positives (FP) and 

false negatives (FN), suggesting that these classes have 

complex shapes or frequently overlap with other objects, 

leading to consistent detection challenges regardless of 

voxel size. Cyclists often have high variability in appearance 

and may be mistaken for other moving objects, while 

humans can be difficult to detect accurately due to varied 

poses and partial occlusions. Carts, due to their diverse 

forms and potential resemblance to other structures, also 

show high FP and FN counts, indicating challenges in 

feature extraction and classification. 

Conversely, the car and wall classes generally exhibit 

reliable detection across all configurations, as seen in their 

consistently lower FP and FN counts. The clear and well-

defined structures of cars make them easier to differentiate 

from the background and other objects, contributing to 

higher detection accuracy. Walls, with their typically 

consistent shapes and larger presence in the data, are also 

detected with high reliability. The performance in these 

classes is aided by distinct features that make classification 

straightforward. 

The differences in detection accuracy can also be 

attributed to the voxel size used in each configuration. The 

smaller voxel size in Model Configuration 7 (8,000) helps 

capture finer details, resulting in enhanced performance for 

most object classes due to the higher resolution of data 

points. Conversely, larger voxel sizes, such as 64,000 in 

Model Configuration 8, may simplify the data representation 

too much, leading to a loss of detail and a negative impact 

on the detection of objects with intricate structures. 

Across both BEV and BEVRes backbones, car and wall 

detection exhibit consistently high accuracy, as indicated by 

lower counts of false positives (FP) and false negatives 

(FN). The well-defined shapes and relatively large sizes of 

cars and walls contribute to their reliable classification. This 

trend is particularly noticeable when smaller voxel sizes, 

such as 8,000 in Model Configurations 2 and 7, are 

employed, as they provide the finer detail necessary for 

enhanced detection accuracy. 

The detection of cyclists, humans, and carts consistently 

shows lower accuracy in both the BEV and BEVRes 

backbones, evidenced by higher FP and FN counts. Cyclists 

often pose a challenge due to their variable and complex 

shapes, which can be mistaken for other moving objects. 

Human detection is similarly affected by dynamic poses and 

partial occlusions, leading to inaccuracies. The cart class 

struggles with accurate identification, as their forms can 

closely resemble other objects. Larger voxel sizes, such as 

32,000 and 64,000 used in Model Configurations 3, 6, and 8, 

tend to oversimplify the representation of data, worsening 

detection difficulties for these intricate classes. 

The use of smaller voxel sizes, like 8,000 in Model 

Configurations 2 and 7, typically supports more detailed 

feature extraction. This approach tends to improve detection 

performance for simpler and more defined classes such as 

cars and walls. However, these smaller voxel sizes do not 

entirely resolve the detection challenges faced with more 

complex objects like cyclists, humans, and carts. In contrast, 

larger voxel sizes, such as 64,000 in Model Configurations 6 

and 8, result in a reduction of detail, leading to higher 

detection errors in classes with less distinct or more intricate 

features. 

The deeper layer composition of Model Configuration 4, 

which has a 4;6;6 structure, enhances detection performance 

across most object classes. This suggests that a more 

complex feature extraction pipeline facilitates better 

differentiation of complex shapes and features. Even when 

paired with a standard voxel size of 16,000, this deeper layer 

configuration supports improved recognition and 

classification accuracy. 

Overall, both the BEV and BEVRes backbones face 

recurring challenges in accurately detecting cyclists, 

humans, and carts due to their intricate and variable 

structures. However, car and wall classes generally show 

high detection accuracy across various configurations, 

benefiting from their distinct shapes. The choice of voxel 

size and the refinement of layer composition play critical 

roles in optimizing overall detection performance. Smaller 

voxel sizes enhance detail, aiding in the classification of 

simpler objects, while deeper layer structures, as seen in 

Model Configuration 4, offer improvements across most 

classes by supporting more nuanced feature extraction. 

V. CONCLUSION 

By identifying the most effective architecture 

configuration of this method's backbone, we have 

successfully addressed the challenge of detecting and 
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classifying six classes of objects within a limited area. The 

findings from eight model configurations have provided 

valuable insights into the diverse characteristics of this 

method's architecture configurations.  

Among the model configurations, 4 and 7 emerged as the 

top performers, boasting mAP scores above 0.8 and 

demonstrating superior overall performance. Configuration 

2 was a close competitor with a respectable mAP score of 

0.78, while Configurations 5 and 8 held their ground with 

solid scores of 0.76. Configuration 6 showed a balanced 

performance with a mAP score of 0.74, and Configuration 3 

had a moderate score of 0.72. Unfortunately, the default 

Model Configuration 1 fell behind with the lowest mAP 

score of 0.64, indicating the need for improvement. 

Overall, the PointPillars model with a 2D 

BaseBEVRESBackbone generally outperformed the 2D 

BaseBEVBackbone at equivalent voxel values (8,000, 

16,000, 64,000). Nevertheless, a model configuration using 

the 2D BaseBEVBackbone could slightly surpass the 

BaseBEVRESBackbone's performance if the layer 

composition had been increased, as evidenced by Model 

Configuration 4 (4;6;6). This condition suggests that while 

both backbone types have their strengths, the 

BaseBEVBackbone benefits more significantly from 

additional layers. In contrast, the BaseBEVRESBackbone 

performs optimally with smaller voxel sizes and fewer 

layers. 
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