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Abstract—Industries like construction, mining and explo-
ration enforce mandatory helmet regulations, leading to the
widespread use of helmet detection algorithms in these fields.
However, existing algorithms often need help with high pa-
rameter counts, complexity, poor real-time performance, and
balancing accuracy and speed. We propose a new helmet detec-
tion algorithm based on Real-Time Object Detectors (RTMDet),
PSP-RTMDet, to address the need for both high precision
and lightweight real-time performance. The core innovation
of this algorithm is the introduction of Partial Convolution
(PConv), which replaces traditional convolution methods to
reduce computational load and enhance the extraction of spatial
features. The backbone network structure has been optimized
using basic building blocks, and the global attention mechanism
Parameter-Free Attention (SimAM) has been incorporated.
This enhances the model’s ability to extract critical features
without adding extra parameters. To further minimize feature
information loss for small targets during feature fusion and
to boost their representation in the shallow feature map, we
developed a new lightweight feature fusion module, Symmetric
Positive Definite Convolution (SPD-RPAFPN), which improves
the detection of dense helmet targets. We conducted experimen-
tal comparisons using the public Safety Helmet Wearing Dataset
(SHWD). The results showed that our improved algorithm
increased the total mAP-50 value by 3.88%, reaching 93.33%,
compared to the baseline RTMDet model. Additionally, the
number of model parameters and FLOPs was reduced by
9.33% and 12.44%, respectively. Moreover, compared to current
mainstream algorithms such as YOLOv8, our method improved
detection accuracy by 4.78%, demonstrating the PSP-RTMDet
algorithm’s effectiveness in helmet detection.

Index Terms—dense-detection, helmet-detection, RTMDet,
lightweight-model.

I. INTRODUCTION

ACCIDENTS at construction sites, such as falls from
heights and object impacts, account for over 50% of

fatalities. Safety helmets are crucial for protecting workers
from these injuries, making the detection of helmet usage
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among construction personnel vital for site safety manage-
ment and future intelligent construction platforms. Object
detection, an essential aspect of computer vision research,
identifies objects in images and provides information on their
categories and positions. Safety helmet detection, a specific
object detection application, is essential for intelligent mon-
itoring systems at construction sites.

The single-stage safety helmet detection algorithm based
on deep learning features a simple model structure and rapid
detection speed, making it ideal for helmet detection tasks.
Commonly used algorithms include the YOLO series, SSD,
RetinaNet, EfficientDet, and RTMDet.

YOLO (You Only Look Once) [1] significantly improves
detection speed. YOLOv3 is used for real-time safety helmet
detection in complex scenarios [2]. By modifying the clas-
sifier for single-class detection, YOLOv3 achieves an 18-
dimensional tensor output and an average detection speed
of 35 frames per second. YOLOv5 offers high accuracy
(92.4%) in detecting people with helmets in complex scenes.
The SSD algorithm balances high accuracy and speed, using
an improved VGG backbone to detect small objects with
accuracy similar to Faster R-CNN efficiently but with speed
comparable to YOLO [3]. RetinaNet addresses sample imbal-
ance in single-stage detection with a weighted cross-entropy
loss function, improving detection accuracy [4]. EfficientDet
combines EfficientNet with a bi-directional feature pyramid
network, enhancing generalization ability and addressing
network depth, width, and resolution imbalances [5].

Another method integrates attentional mechanisms with
Faster R-CNN [6], using a self-attention layer to cap-
ture global information and enhance feature richness. A
YOLOv3-based algorithm incorporates an attention mech-
anism and a bidirectional feature pyramid for improved
accuracy in helmet detection [7]. A pyramid attention net-
work (PANet) is introduced to minimize false detections and
reduce feature loss. Lyu et al. summarized and integrated the
series with current improvement ideas to further advance the
YOLO series to construct a new series: RTMDet [14]. This
series enhances feature extraction, improves label assignment
and data enhancement strategies, and balances computational
efficiency and accuracy. RTMDet performs well across multi-
ple tasks, including instance segmentation and rotating target
detection, achieving state-of-the-art results. However, it must
still work on balancing high accuracy and speed in practical
helmet detection applications.

Despite the success of the algorithms above in safety
helmet detection, challenges remain. Inaccurate bounding
box localization poses difficulties in detecting miniature
target safety helmets, leading to suboptimal performance and
missed detections. YOLOv3 faces challenges in detecting
overlapping safety helmets in crowded environments. Ap-
plying the YOLOv5 model to a small embedded safety hel-
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met detection device requires further refinement of the net-
work architecture [8]. The SSD algorithm’s detection speed
decreases significantly with increased complexity, making
applying safety helmet detection tasks with high-speed re-
quirements challenging. RetinaNet lacks real-time detection
speed in helmet detection [9]. EfficientNet suffers from
decreased detection speed due to increased network com-
plexity. Faster R-CNN uses an attentional mechanism that
requires additional memory for storing attentional weights,
leading to increased parameters, reduced detection speed, and
unsatisfactory accuracy in dense worker helmet detection.
For detecting dense images, a larger and more powerful
receptive field in the Backbone can better adapt to dense
feature extraction, such as object detection and instance seg-
mentation. This approach aids in capturing and constructing
surrounding features of key image points [10]. However, the
computational cost of dilated convolutions [11] and non-local
blocks [12] is usually high, making real-time applications
challenging and imposing various limitations. YOLOv7-DSE
[13], an improved YOLOv7 model for complex target scenes,
detects objects with large-scale differences but requires ad-
vanced hardware and significant memory usage, hindering its
deployment in standard embedded systems.

Building on previous research, we identified several chal-
lenges, including significant model parameters, slow training
speeds, inaccuracies in dense helmet detection, and issues
with small targets, deformable helmets, and stacked scenar-
ios.

To address the need for high accuracy and real-time
performance in lightweight models, we propose a new PSP-
RTMDet, which builds upon the RTMDet baseline model.
The core idea of PSP-RTMDet involves introducing a new
Partial Convolution block (PConv) to extract spatial fea-
tures more efficiently by reducing redundant computations
and memory accesses. The PConv convolution applies a
feature extraction scheme to part of the input channels,
leaving the rest unprocessed while maintaining the same
number of channels in the input and output feature maps.
This approach reduces the computational burden compared
to traditional convolution methods. We also optimize the
basic building blocks in the backbone network structure and
introduce the global attention mechanism SimAM. SimAM,
which combines channel and spatial attention mechanisms,
derives accurate 3-D attention weights for the feature map
without adding extra parameters. This mechanism improves
the model’s ability to extract compelling features by high-
lighting important neurons based on their discharge patterns,
which enhances the extraction of crucial feature information.
Finally, to reduce the loss of small target feature information
and increase its fusion proportion in the shallow feature
map, we construct a new lightweight feature fusion module,
SPD-RPAFPN. SPD-RPAFPN modifies the traditional FPN
feature pyramid by reversing the top-down path to a bottom-
up approach. This adjustment, combined with SPD-Conv for
downsampling, retains a higher proportion of small target
feature information while integrating higher-order semantic
information.

Our experiments demonstrate the effectiveness of these
innovations. PSP-RTMDet achieves high precision and
lightweight helmet detection capabilities.

Our contributions are outlined as follows:

1) Novel Partial Convolution Block (PConv): We intro-
duce a novel PConv block that replaces the orig-
inal convolutional layers. This block enhances the
efficiency of spatial feature extraction by reducing
redundant computation and memory usage.

2) Optimized Backbone Network: We optimize the back-
bone network by enhancing the basic building blocks
and incorporating a lightweight global attention mech-
anism. This improves the model’s focus on the target
region.

3) Improved Feature Fusion: We enhance the network’s
ability to fuse features by increasing small target
feature information integration. This improvement is
achieved without adding to the model’s parameters.

4) Extensive Testing: Our model extensively tests the
publicly available SHWD dataset. It achieves a 3.88%
improvement in average accuracy compared to the
baseline RTMDet and a 4.78% improvement com-
pared to the state-of-the-art YOLOv8. Additionally, our
model reduces the number of parameters and FLOPs
by 9.33% and 12.44%, respectively.

The rest of the paper is organized as follows: Section II
discusses the baseline model RTMDet. Section III presents
the innovative approach of PSP-RTMDet. Section IV covers
the experimental results, and Section V concludes the paper.

II. REVIEW OF BASELINE MODEL RTMDET

RTMDet is a high-performance, low-latency, single-stage
targeting algorithm. It fully utilizes large kernel deep con-
volution and a dynamic soft-label assignment strategy. As
shown in Fig. 1, the model’s structure includes four main
components: a data enhancement module, a backbone net-
work module, a feature fusion module, and a prediction
module.

A. Network Architecture Analysis

Single-image data enhancement techniques such as scale-
transformed random cropping and auto-cropping are used in
the data enhancement module. Mixed-class data enhance-
ment methods, including Mosaic and Mixup, are also applied
through strong-weak two-phase training. The Cache adjusts
the enhancement strength to improve the efficiency of mixed
data enhancement.

The image enters the backbone network module after
passing through the data enhancement module. This module
includes Conv convolution layers, CSP convolution layers,
and SPPFBottleneck. The CSP convolution layer consists
of 3 Convs, n-th CSPNextBlocks with residual connections,
and a channel attention mechanism. CSPNextBlock includes
one Conv and one large kernel depth-separable convolution
(DWConv) [15].

The feature fusion module is based on the PAFPN struc-
ture, which integrates a Feature Pyramid Network (FPN) [16]
and a Path Aggregation Network (PAN) [17]. This module
fuses and reconstructs abstract semantic information and
shallow features from different scales, achieving complete
multi-scale feature fusion. The fused features are then input
to the prediction module for classification and regression.

In the prediction module, the classification and regression
branches are decoupled. A SepBNHead [18] is used to share
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Fig. 1. RTMDet Network Structure

convolutional weights across different layers while indepen-
dently calculating BatchNorm (BN) statistics to reduce the
number of parameters. Finally, an unanchored frame algo-
rithm generates the prediction frames. The final prediction
value is obtained after applying non-maximum suppression
and the loss function.

B. Label Assignment Strategy

To enhance the training of a single-object detection model
for prediction tasks at various scales, RTMDet adopts a novel
label assignment approach. This approach aligns with the
boundaries of the actual annotated boxes for objects. Recent
studies [19] have used dynamic label assignment rules as
matching benchmarks. However, these methods are compu-
tationally expensive. To address this, RTMDet introduces a
new soft label assignment rule, given by:

C = α1Cclass + α2Cregress + α3Ccenter , (1)

where α1 = 1, α2 = 3, and α3 = 1 are the initial weight
ratios for classification cost (Cclass), regression cost (Cregress),
and local prior cost (Ccenter), respectively. Previously, classifi-
cation cost was calculated using binary labels. However, this
approach includes bounding boxes with high classification
scores but incorrect predictions. RTMDet addresses this issue
by incorporating soft labels into the classification cost, as
follows:

Cclass = ce (p, ysoft )× (ysoft − p)
2
. (2)

Here, ce denotes the cost mean weighting function, p is
the probability of the correct value, and ysoft represents the
soft-labeled value.

Inspired by GFL [20], RTMDet introduces a new mecha-
nism. Soft labels are defined as the joint intersection (IoU)
values between predicted boxes and ground truth boxes,
which serve as training criteria for classification. This method
reweights costs based on regression quality and resolves
noise and match instability issues encountered in previous
methods. Traditional IoU [21] can have values less than 1 for
the best and worst matches, limiting the ability to distinguish
between high- and low-quality matches. RTMDet uses the
logarithmic rule of IoU as a regression cost to improve
matching accuracy, enhancing the matching cost for low IoU
values. RTMDet employs a soft centre rule rather than a
fixed centre for regional costs, stabilizing matching between
dynamic costs. The formulas are:

Cregress = − log(IoU), (3)

Ccenter = α|Xpre −Xgt|−β . (4)

Here, α and β are parameter-matching values for a given
soft centre region.

Recent research [22] highlights the use of cross-sample
techniques [23] to enhance data. Despite their effectiveness,
these techniques introduce challenges, such as the need
to load multiple images, which slows down training. Ad-
ditionally, generated samples may contain noise, affecting
model performance. RTMDet proposes improved rules for
MixUp and Mosaic with a caching effect. MixUp generates
new training samples by linearly interpolating features and
labels of two samples, enhancing model generalization. Mo-
saic stitches together multiple randomly selected images to
help the model learn complex scenes. By using a caching
mechanism, RTMDet reduces the time cost of blending
images to that of single-image input, alleviating data loading
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requirements. This rule is controlled by the cache length
and output method, with larger values corresponding to
the original non-caching rule and smaller values enabling
repeated augmentation.

RTMDet will integrate PConv enhancements, SimAM
attention, and a novel downsampling strategy for SPD-
RPAFPN based on these improvements.

III. PROPOSED PSP-RTMDET

In this section, we present the improved structure of the
article. Subsection III-A introduces the concept of PConv.
Subsection III-B discusses the optimized backbone, while
subsection III-C covers the improved feature fusion.

A. Fusion Embedding for Lightweight Convolutional PConv

The FasterNet convolutional neural network [24] intro-
duces a new Partial Convolutional Block (PConv) that ex-
tracts spatial features more efficiently. This is achieved by
simultaneously reducing redundant computations and mem-
ory accesses. PConv convolution applies a regular feature
extraction scheme to some input channels while leaving
the rest unprocessed. This approach maintains the same
number of input and output feature map channels. In contrast,
standard convolution is a feature extraction method that
keeps the number of convolution kernel channels equal to
the number of input feature map channels. The following
section compares the performance of PConv convolution with
standard convolution, as illustrated in Fig. 2.

For an input I ∈ Rc×h×w, PConv uses cn filters, while
ordinary convolution (Conv) uses c filters. The memory usage
of PConv is given by:

Pconvmem = h×w× 2cn + k2 × cpcn ≈ h×w× 2cn (5)

The FLOPs for PConv are calculated as follows:

FPconv = h× w × k2 × cpcn (6)

The memory usage of a Conv convolution is:

Convmem = h× w × 2c+ k2 × cc2 ≈ h× w × 2c (7)

The FLOPs for Conv are:

Fconv = h× w × k2 × c2 (8)

From the above equations (5), (6), (7), and (8), we derive:

Pconvmem

Convmem
≈ cn

c
(9)

FPconv

Fconv
=
(cn
c

)2
(10)

PConv replaces standard convolution by convolving only
the cn channels. It does not aim to resist the un-convolved
channels; instead, it uses the Fourier transform to extract
unique features. This reduces memory usage and operational
complexity, contributing to a lighter model. Additionally,
PConv effectively extracts information from the feature map
by retaining all feature channels through convolutional trans-
formations and combining these with standard convolution to
extract features.

B. Improvement of Basic Building Blocks CSP

This section focuses on the improvements made to the CSP
section, explicitly introducing the SimAM global attention
mechanism [25] and optimising parameter values in the
CSPNextBlock.

1) SimAM Integration of Attention Mechanisms: Due to
the wide variety of helmet images and the significant inter-
ference from complex backgrounds, it is essential to focus
effectively on important regions. Attention mechanisms are
widely used in deep learning to enhance feature extraction
and reduce the dispersion of target information. However,
most current attention mechanisms typically assign weights
along the channel or spatial dimensions to improve model
performance. Classical approaches, such as BAM [26] and
CBAM [27], calculate 1-D channel weights and 2-D spatial
weights, respectively. These methods then set hyperparam-
eters for parallel or serial combinations to form reasonable
global attention. Generally, these attention mechanisms do
not realistically simulate the information selection process
during visual processing and often introduce extra parameters
into the model.

SimAM is a mechanism that combines channel and spa-
tial attention, as shown in Fig. 3. It derives accurate 3-D
attention weights for feature maps without adding additional
parameters, enhancing the model’s ability to extract com-
pelling features. SimAM draws on neuroscience principles
to differentiate the importance of feature information at var-
ious locations and successfully achieve attention. It suggests
that information-rich neurons exhibit different firing patterns
compared to surrounding neurons. Activated neurons tend to
inhibit their neighbours, known as spatial inhibition. Thus,
neurons with spatial inhibitory effects should be assigned
higher importance.

To identify important feature information straightfor-
wardly, SimAM defines an energy function that measures the
linear separability of a single feature from all other features
in the same channel. The energy function for each feature is
defined as follows:

et(wt, bt, y, xi) =
1

M − 1

(
M−1∑
i=1

(1− (wtxi + bi))
2

)
(11)

+(1− (wtt+ bt))
2
+ λw2

t

In this equation, t and xi represent the channel’s target
feature and other features, respectively. wt and bt are the
linear transformation weight and bias of t, t is the spatial
dimensionality ordinal, λ is a hyperparameter, and M is the
total number of features in a single channel. The transfor-
mation weights and biases are expressed as follows:

wt =
2(t− ut)

(t− ut)2 + 2σ2
t + 2λ

(12)

bt =
1

2
(t+ ut)wt (13)

Here, ut =
1

M−1

∑M−1
i=1 xi and σ2

t = 1
M−1

∑M−1
i=1 (xi −

ut)
2 represent the mean and variance of all feature infor-

mation except t. By calculating wt, bt, and the mean and
variance of all features in the channel, the minimized energy
formula is obtained as follows:
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Fig. 2. Comparison of the Structure of PConv and Convolution

Fig. 3. Comparison of Different Attention Mechanisms

e∗t =
4(σ2

t + λ)

(t− µt)2 + 2σ2
t + 2λ

(14)

In this case, µt = 1
M

∑M
i=1 ti is the mean value of

the feature information t. According to Equation (8), as
µt increases, e∗t decreases, indicating that the feature in-
formation t is less important in the channel. This implies
that the greater the difference between feature information
and background features, the more crucial it is for image
processing. Therefore, the importance of each feature can be
determined by 1/e∗t .

2) CSPNextBlock: While the basic building block of tra-
ditional CSPDarkNet consists of various convolution opera-
tions, the current YOLOv7-v8 models incorporate RepVGG’s
reparameterized convolution module into their basic units.
This reparameterized module enhances performance without
increasing inference computation by employing a multi-
branch structure during training, which is then fused into
a single branch for inference. However, it faces challenges
such as high training costs and difficulties with quantization,
necessitating alternative methods to compensate for quanti-
zation errors.

To reduce training costs and improve the feature extraction
capability of the basic unit, RTMDet draws inspiration from
RepLKNet [28]. Key concepts include the efficiency of large
kernel deep convolution, the importance of constant skip
connections for large kernel convolutions, the role of small
kernel reparameterizations in addressing optimization issues,
and the effectiveness of large kernel convolutions for down-
stream tasks. Additionally, large kernel convolution remains
effective for small images. As a result, the CSPNextBlock is
constructed with the structure shown in Fig. 4.

However, the introduction of large kernel depth-separable
convolution (DWConv) in the basic unit increases the overall
depth of the model compared to CSPDarkNet, resulting in
slower inference speeds. To address this issue, the number of

basic units at different resolution layers is adjusted based on
the experimental techniques used in ConvNeXt [29]. After
conducting several experiments, it was determined that using
a 5×5 DWConv with C2-C5 adjusted to 3-6-6-3 blocks allows
the model to achieve the best balance between computational
efficiency and accuracy in the helmet target detection task.

Finally, to verify the effectiveness of the improved basic
building block, the enhanced algorithm is compared with
YOLOv8 and RTMDet using the Grad-CAM [30] visualiza-
tion technique to assess its focus on the target area. The
results, shown in Fig. 5, demonstrate that the improved
module enhances the network’s ability to concentrate on the
target area and extract critical feature information.

C. Improved Neck Module

Since the feature map shrinks during the downsampling
process in RTMDet’s feature fusion, fine-grained information
is lost, resulting in decreased detection accuracy at low
resolutions. SPD-Conv [31] is used in the feature fusion
module instead of the original downsampling module to
address this issue. SPD-Conv reduces the loss of fine-grained
information while enhancing feature details. It incorporates
a traditional image transformation technique [32] within the
CNN, consisting of a space-to-depth layer and a non-stepwise
convolutional layer.

The SPD-Conv process is illustrated in Fig. 6. The specific
steps are as follows: First, the feature map X(S × S × Cl)
is divided into N parts along the channel dimension, re-
sulting in sub-feature maps of size S/N by S/N , with the
number of channels unchanged. These sub-features are then
combined along the channel direction to form the feature
map X1, so X(S × S × Cl) → X1

(
S
N × S

N ×N2Cl

)
.

Finally, X1 is convolved using a non-strided convolutional
layer (stride = 1) to obtain the feature map X2, i.e.,
X1

(
S
N × S

N ×N2Cl

)
→ X2

(
S
N × S

N × C2

)
.
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Fig. 4. Several Different Comparisons of Basic Building Blocks

Fig. 5. Attention Effect Comparison Heat Maps

The helmet image features a smaller, more densely ar-
ranged target size set against a more extensive background.
As convolutions increase in the backbone network, the recep-
tive field gradually enlarges. This enhances the richness of
higher-order semantic information but also results in the loss
of small target feature information. The small feature infor-
mation in the shallow feature map is crucial for such targets.
It is essential to minimize unnecessary processing loss and
increase the proportion of feature information fusion.

The SPD-RPAFPN network structure is illustrated in
Fig. 7. By reversing the direction of the traditional feature
pyramid network (FPN), the top-down path is converted to
a bottom-up approach: (P5 >P4 >P3) becomes (P3 >P4

>P5). With this change in the feature pyramid direction,
fusion from the shallow layer to the deeper layer occurs
earlier. However, downsampling is required to reduce the
size, which can lead to the premature loss of small target
feature information. To address this, SPD-Conv is employed
for downsampling. After feature pyramid fusion, although
the feature information in the shallow feature map P3 re-
mains unchanged, the deeper feature maps P4 and P5 have
already incorporated the shallow feature information. When
the subsequent lightweight network adjusts the direction
of the current response back to top-down, the P4 and P5
maps, which have fused shallow feature information, can
flow back to the P3 layer. This allows the shallow feature
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Fig. 6. SPD-Conv Network Architecture Diagram

Fig. 7. SPD-RPAFPN Network Architecture Diagram

map to represent a more significant proportion of the feature
information for small targets while enabling the fusion of
higher-order semantic information.

This entire process enhances the role of shallow feature
maps in detecting small targets within helmet image-dense
scenes. Additionally, it reduces the number of parameters and
FLOPs by one-eighth and one-fifth, respectively, compared to
the original RTMDet. This reduction is due to the integration
of PConv’s lightweight convolutional blocks, early dimen-
sionality reduction of feature maps, and decreased reliance
on the basic building block CSP, resulting in a lighter and
more efficient overall module.

The original RTMDet structure is modified in the improved
algorithm by replacing traditional convolutional blocks with

the PConv lightweight convolutional block. The basic build-
ing block in the backbone network is optimized, and the
lightweight global attention mechanism SimAM is intro-
duced. A new fusion method, SPD-RPAFPN, is constructed
in the feature fusion module, enhancing the processing of
feature information and improving helmet targets’ detec-
tion capability. The improved RTMDet network structure is
shown in Fig. 8.

IV. EXPERIMENTS

In this module, we conduct extensive experiments on
the models. Subsection IV-D focuses on validation ablation
experiments and baseline model comparisons for each inno-
vative module. Subsection IV-E presents a comprehensive
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Fig. 8. Our PSP-RTMDet Network Structure Diagram

Fig. 9. Example of a Partial Image of the Dataset

range of comparison experiments with state-of-the-art de-
tection models. Finally, subsection IV-F provides a detailed
visualization and analysis of the differences between the
baseline and improved models.

A. Settings

The system configuration used in this study is Linux
Ubuntu 20.04. The CPU model is Intel Xeon Platinum
8255C, and the GPU model is NVIDIA GeForce RTX 3080
Ti. The system has 40 GB of memory and uses Python 3.8.0
as the programming language. The deep learning framework
employed is PyTorch 1.10.0, with GPU acceleration enabled
via CUDA 11.3.

B. Dataset

In this paper, we used the public dataset Safety-Helmet-
Wearing Dataset (SHWD) [33] for the experiments. The
SHWD dataset is designed explicitly for helmet-wearing
detection. It contains a total of 7,581 images, which include
helmet-wearing head objects (positive samples) and non-
helmet-wearing head objects (negative samples). Positive
samples are sourced from Google and Baidu and are manu-
ally labelled using LabelImg. In this context, positive sam-
ples refer to heads wearing helmets, while negative samples
refer to heads without helmets.

We randomly divided the SHWD dataset into training,
testing, and validation sets in a ratio of 7:1:2. The training set
consists of 5,457 images, the test set includes 607 images,
and the validation set contains 1,517 images. The SHWD
dataset includes two categories: hat and person. Examples of
images from the SHWD dataset are shown in Fig. 8.

Analysis reveals that most data in the dataset consists of
small targets. The feature information of these small targets
could be more comprehensive, making it easier to locate
and classify them accurately. Additionally, these targets often
need to be detected in small-scale images. Therefore, the
target detection algorithm must be capable of effectively
searching for and locating objects at this dense, small target
scale.

C. Evaluation Indicators

This document uses several evaluation metrics: Precision,
Recall, F1 Score, mean Average Precision (mAP), Inter-
section over Union (IoU), floating point operations, and
the number of parameters. The evaluation is based on the
number of positive samples, with an IoU threshold set at 0.5.
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Specifically, mAP@0.5 represents the average precision at an
IoU threshold of 0.5. In contrast, mAP@0.5:0.95 represents
the average precision over IoU thresholds ranging from 0.5
to 0.95 in increments of 0.05. Floating point operations are
computed based on the number of operations, while the num-
ber of parameters is counted based on the model parameters.
The specific definitions of the performance metrics are as
follows:

1) Precision: Measures the ratio of correctly predicted
positive samples to the total predicted positive samples,
i.e., the number of true positive samples divided by the
total number of predicted positive samples. As shown
in formula (15):

P =
TP

TP + FP
(15)

2) Recall: Measures the ratio of correctly predicted pos-
itive samples to the total positive samples, i.e., the
number of true positive samples divided by the total
positive samples. As shown in formula (16):

R =
TP

TP + FN
(16)

3) Average Precision (AP) he method for calculating AP
is as follows, as shown in Equation (17):

AP =

∫ 1

0

PRdr (17)

where AP is the area under the P-R curve of a certain
class.

4) Mean Average Precision (mAP): Used to evaluate the
target detection task, considering the precision and
recall of different categories. By calculating the area
under the precision-recall curve for each category, the
average precision for each category is obtained, and
finally, the average of all categories is taken. As shown
in formula (18):

mAP =
1

N

N∑
i=1

APi (18)

D. Ablation Experiments

To demonstrate the lightweight and high efficiency of
the PConv convolution, we conducted a comparison test to
evaluate the performance of five types of convolutions: Conv,
Depth-Conv, GSConv, PConv, and DCNV2. All tests were
performed under the same experimental conditions, assessing
metrics such as running time, frames per second (FPS), and
the number of parameters. The results of the experiments are
presented in Table I.

As shown in Table I, the total running time of the
PConv convolution is 10.478 seconds, significantly lower
than the running times of Conv (21.487 seconds), Depth-
Conv (21.652 seconds), GSConv (23.836 seconds), and
DCNV2 (97.254 seconds). The average time per operation
for PConv reaches 0.00218 seconds, comparable to DCNV2
but much lower than that of the other three convolution
types. Additionally, the FPS of the PConv convolution
reaches 435, indicating that it processes image data more
quickly than the other four convolution types. The parameter
count and floating point operations (FLOPs) for PConv are

TABLE I
COMPARATIVE PERFORMANCE OF MULTIPLE CONVOLUTIONS

Methods Time/s Average Time FPS FLOPs Param(K)

Conv 21.487 0.00438 221 76.78G 146.23
Depth-Conv 21.652 0.00441 219 8.931G 16.694

GSConv 23.836 0.00485 200 38.962G 74.102
DCNV2 97.254 0.01932 49 15.776G 29.777
PConv 10.478 0.00218 435 4.317G 7.862

7.862K and 4.317G, respectively. This significantly reduces
the computational burden associated with the more exten-
sive computational requirements of the other convolutions.
PConv demonstrates the best real-time performance and the
lowest number of parameters and computations of the five
convolutions tested. This suggests that the embedding based
on PConv convolution is well-suited for lightweighting the
backbone network of RTMDet.

To validate the proposed algorithm for helmet image
detection in complex scenes, we used the original RTMDet
network as the baseline for ablation experiments on the
SHWD dataset. The environment and parameter settings
were kept unchanged. A checkmark (✓) indicates that the
corresponding module was added to the model, while bold
text indicates the optimal results for each column. The results
are shown in Table II.

The first row of Table II displays the results of the
baseline RTMDet model, which serves as a benchmark for
comparison in subsequent experiments. The baseline model
has 52.19M parameters, 51.02G FLOPs, and an mAP-50(%)
of 89.45%. Each improvement point is evaluated indepen-
dently by adding PConv, SAM-Attention, and Spd-RPAFAN.
The results for RTMDet(1), RTMDet(2), RTMDet(3), RT-
MDet(4), RTMDet(5), and RTMDet(6) are as follows:

RTMDet(1): By optimizing the conventional convolution
and introducing PConv, the model’s parameters are reduced
by 1.85M, FLOPs decrease by 3.23G, and the mAP-50(%)
improves by 1.8%. RTMDet(2): This version optimizes
the baseline architecture by replacing the original attention
mechanism with SimAM. This change results in a reduction
of 0.87M parameters and an improvement in the mAP-50(%)
by 1.32%. RTMDet(3): We improved the feature fusion mod-
ule by constructing Spd-RPAFAN. This modification reduces
the parameter count by 0.3M and FLOPs by 5.52G while
enhancing accuracy. RTMDet(4): By combining PConv and
SimAM, this model achieves a detection accuracy of 92.15%
with 3.25M fewer parameters and 3.23G fewer FLOPs,
representing a 2.7% improvement over the baseline model.
RTMDet(5): This model optimizes both the traditional con-
volution and the feature fusion module, reducing 2.83M
parameters and 6.35G FLOPs while improving accuracy by
over 1%. RTMDet(6): This model optimizes the baseline
architecture and simultaneously improves the feature fusion
module, resulting in significantly lower parameter counts and
improved accuracy.

Finally, by integrating all three improvements, the mAP-
50(%) is enhanced to 93.33%, with reductions of 4.87M
parameters and 6.35G FLOPs. This represents an overall
improvement of 3.88%, demonstrating the effectiveness and
good compatibility of each enhancement.
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TABLE II
ABLATION EXPERIMENTS FOR IMPROVED PROCESSES

Methods PConv SAM-Attention Spd-RPAFPN Params FLOPs mAP-50(%)

RTMDet 52.19M 51.02G 89.45
RTMDet(1) ✓ 50.34M 47.79G 91.25
RTMDet(2) ✓ 51.32M 51.02G 90.77
RTMDet(3) ✓ 51.89M 45.50G 90.64
RTMDet(4) ✓ ✓ 48.94M 47.79G 92.15
RTMDet(5) ✓ ✓ 49.36M 44.67G 91.32
RTMDet(6) ✓ ✓ 49.81M 45.50G 91.57

PSP-RTMDet(Ours) ✓ ✓ ✓ 47.32M 44.67G 93.33

E. Comparative Experiments with Advanced Detection Mod-
els

In this experimental section, we conducted model compar-
ison experiments using the ResNet [34] family pre-trained on
ImageNet, along with our modified CSPNeXt as alternative
networks for ablation studies. The experiments involved
comparing models with different backbones, including the
ResNet family and our improved CSPNeXt. Additionally, in
the Neck module, we performed comparative experiments on
multiscale feature extraction using standard Feature Pyramid
Networks (FPNs) [16] and our proposed novel Neck layer.

We ensured a fair assessment of our PSP-RTMDet for
the comparison experiments against current state-of-the-art
object detection models. These models include YOLOX [19],
YOLOv7 [35], YOLOv8 [36], ViTDet [37], Conditional
DETR [38], Sparse R-CNN [39], and RTMDet [14]. These
state-of-the-art models perform well across various tasks.
Our goal is to validate the advantages of our model, specif-
ically for helmet detection.

As shown in Table III comprehensively compares the
performance of our proposed PSP-RTMDet in ablation ex-
periments. In modelling, we compared the baseline RTMDet
with our proposed PSP-RTMDet. The backbones used for
the investigation are CSPNeXt and Improved CSPNeXt. We
perform ablation experiments to evaluate the advantages
of the innovative modules and verify their superiority. We
compare the experimental results by modifying the optimizer,
learning rate (LR), momentum, and weights.PSP-RTMDet
achieves the best detection performance in the Improved
CSPNeXt configuration with each innovative module, the
SGD optimizer, and LR = 0.01. Table IV, our model achieves
a mAP-50(%) of 93.33% after utilizing the improved CSP-
NeXt backbone module, surpassing the performance of other
state-of-the-art models. For instance, the YOLOv8 model
achieves a mAP-50(%) of 88.55%, indicating that our model
outperforms YOLOv8 by 4.78%. Additionally, our model
reaches mAP(bbox), mAPs(bbox), mAP75(bbox), and Av-
erage Recall (AR) values of 93.21%, 93.29%, 93.27%, and
93.31%, respectively, all of which are significantly higher
than those of other advanced models. Our model has a
parameter count of only 47.32M and 44.67G FLOPs. This
significantly alleviates the computational burden compared
to state-of-the-art models, which typically have at least 60M
parameters and over 50G FLOPs. Furthermore, in terms
of real-time detection, our model achieves an impressive
inference FPS of 29.8, which far exceeds YOLOX’s 17.5.
This demonstrates that our model has significantly stronger
practical real-time performance in application scenarios.

The results highlight the excellent convergence of the
PSP-RTMDet model and its robust real-time detection ca-
pabilities. From the experimental data, it is evident that

PSP-RTMDet not only achieves substantial improvements
in accuracy and real-time performance over the baseline
model but also outperforms the latest YOLO and DETR
series models in average accuracy and average recall. This
improvement can primarily be attributed to the introduc-
tion of PConv, which alleviates the computational pressure
associated with traditional convolution, thereby enhancing
its suitability for real-time helmet detection scenarios. Ad-
ditionally, by optimizing the basic building blocks in the
backbone network structure and incorporating the global
attention mechanism SimAM, the model’s ability to extract
critical feature information is improved without increasing
the number of parameters. Moreover, to minimize the loss
of small target feature information and enhance its represen-
tation in the shallow feature map during the fusion process,
we constructed a new lightweight feature fusion module,
SPD-RPAFPN. The experimental results demonstrate that
PSP-RTMDet significantly reduces FLOPs while maintaining
strong real-time inference performance. This balance of
parallelism and testing speed without compromising accuracy
underscores the robust application of our model in real-time
helmet detection scenarios.

F. Visual Analysis of Detection Effects

To intuitively illustrate the differences between the im-
proved model and the baseline RTMDet in terms of detection
performance, we selected images of occluded targets and
small targets viewed from a distance for comparison. The
results are presented in Fig. 10 and Fig. 11. Observing the de-
tection outcomes, it is evident that PSP-RTMDet outperforms
RTMDet in detecting helmets with occlusion, as shown in
Fig. 10. In detecting small, distant targets, RTMDet fails to
identify them correctly, whereas PSP-RTMDet successfully
detects them, as shown in Fig. 11.

In intensive target detection tasks, PSP-RTMDet and RT-
MDet experience varying degrees of missed detection due to
image resolution. However, PSP-RTMDet has a lower error
rate than RTMDet, especially in cases of shallow resolution.
RTMDet exhibits a significantly higher misdetection and
missed detection rate than FEVYOLOv8n, as illustrated in
Fig. 12.

Comparing the detection performance of PSP-RTMDet
and RTMDet across different helmet detection scenarios
reveals that the improved PSP-RTMDet achieves lightweight
performance while reducing the number of parameters and
computation. It maintains relatively high accuracy and adapts
to complex scenarios, meeting the expected detection goals.

V. CONCLUSION

To address the limitations of previous helmet detection
models, such as high accuracy, which is hampered by
complex network structures and high parameter counts that
hinder the deployment of embedded devices, limiting real-
world applicability, as well as the trade-off between extreme
lightweight and reduced accuracy, we propose PSP-RTMDet.
This model aims to balance high detection accuracy with
real-time performance for monitoring helmet usage on con-
struction sites. PSP-RTMDet builds on RTMDet by integrat-
ing PConv to reduce computational pressure from traditional
convolutions, optimizing backbone network components, and
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TABLE III
OPTIMAL PARAMETER RATIO EXPERIMENT

Method Backbone Optimizer LR Momentum weight decay bbox mAP AP bbox mAP 75 bbox mAP s AR

RTMDet CSPNeXt SGD 0.001 0.8 0.001 77.45 79.13 78.55 78.57 78.01

RTMDet CSPNeXt SGD 0.005 0.9 0.0001 89.34 89.45 89.37 89.43 89.43

PSP-RTMDet Improved CSPNeXt AdamW 0.02 - 0.0001 23.13 42.15 23.38 28.39 41.49

PSP-RTMDet Improved CSPNeXt SGD 0.02 0.9 0.0001 67.98 92.27 73.84 70.09 74.68

PSP-RTMDet Improved CSPNeXt SGD 0.05 0.9 0.0001 26.49 45.87 28.79 31.72 44.46

PSP-RTMDet Improved CSPNeXt SGD 0.001 0.9 0.0001 33.49 56.72 33.98 41.88 53.79

PSP-RTMDet Improved CSPNeXt SGD 0.0001 0.9 0.0001 91.37 91.78 91.47 91.22 91.52

PSP-RTMDet Improved CSPNeXt SGD 0.01 0.9 0.0001 93.21 93.33 93.27 93.29 93.31

TABLE IV
COMPARATIVE EXPERIMENTS ON ADVANCED DETECTION MODELS

Method Backbone mAP-50(%) mAP(bbox) mAP s(bbox) mAP 75(bbox) AR Params FLOPs Inference FPS

YOLOX ResNet-50 87.45 87.34 87.43 87.39 87.43 64.18M 82.12G 17.5
Sparse R-CNN ResNet-50 88.21 88.11 88.21 88.15 88.19 67.62M 72.54G 19.8

YOLOV8 CSPDarknet 88.55 88.44 88.53 88.49 88.53 69.21M 81.22G 17.5
YOLOV7 ResNet-50 88.73 88.62 88.71 88.660 88.71 69.82M 52.13G 26.3

Conditional DETR ResNet-50 89.01 88.89 88.98 88.95 88.99 99.21M 99.52G 14.9
ViTDet ResNet-50 89.21 89.09 89.18 89.15 89.19 68.52M 68.15G 26.1

RTMDet CSPNeXt 89.45 89.34 89.43 89.37 89.43 52.19M 51.02G 27.1
PSP-RTMDet(Ours) Improved CSPNeXt 93.33 93.21 93.29 93.27 93.31 47.32M 44.67G 29.8

Fig. 10. Comparison of the Detection Effect of Occlusion Types

Fig. 11. Comparison of the Detection Effect of Small Target Types in the Vision
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Fig. 12. Comparison of Dense Target Detection Effectiveness

incorporating the lightweight global attention mechanism
SimAM to enhance feature extraction. It also introduces the
SPD-RPAFPN fusion approach to improve handling small
and dense targets, effectively integrating helmet features in
crowded environments.

We evaluate PSP-RTMDet comprehensively for efficiency,
real-time performance, and inference speed through exten-
sive ablation and model comparison experiments on the
SHWD dataset. The results indicate that the model achieves
a detection accuracy of 93.3%, with a 9.33% reduction
in parameters, a 12.44% decrease in FLOPs, and an FPS
of 29.8. The mAP-50 improves by 3.88% compared to
RTMDet. Additionally, PSP-RTMDet significantly outper-
forms mainstream advanced algorithms in detection accuracy
and efficiency, demonstrating the algorithm’s effectiveness.
Our research contributes to high-precision, real-time helmet
detection for construction site workers.

Although the model performs exceptionally well, its ability
to detect helmets under extreme environmental conditions
still requires improvement. Future research will focus on en-
hancing detection capabilities in such challenging scenarios.
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