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Abstract—The current urban intelligent transportation is in a 

rapid development stage, and coherence control of vehicle 
formations has important implications in urban intelligent 
transportation research. This article focuses on the problem of 
urban intelligent transportation planning, and proposes a new 
control method for vehicle formation regulation tracking 
performance control with bounded disturbances and model 
uncertainty, combining the multiple advantages of sliding mode 
control and finite time control and utilizing the universal 
approximation of neural network. This method can ensure that 
the vehicle formation can achieve the specified tracking 
performance and be stable in finite time instead of 
asymptotically stable. First, the third-order dynamics model 
and spacing strategy of the vehicle are given. The tracking 
performance of the vehicle formation is specified. Then, the 
control objective of the system is transformed by using the error 
transformation to obtain a new system. An improved sliding 
mode surface is designed for the transformed system. 
Furthermore, the universal approximation property of the 
neural network is utilised to overcome the parameter 
uncertainty in the system. The reconstruction error of neural 
network is handled by a robust term. In addition, the jittery 
vibration phenomenon of sliding mode control has been 
overcome. Finally, the finite-time stability of the system is 
analysed by constructing the Lyapunov function, simulations 
were performed to validate and compare with conventional 
control methods, simulation results show that the novel control 
method proposed in this paper is significantly faster than the 
conventional control method, validated the effectiveness of the 
method proposed in this paper.  
 

Index Terms—finite-time; sliding mode control; vehicle 
formation; neural network 
 

I. INTRODUCTION 

N recent years, accelerated urbanization has expanded the 
demand for Intelligent Transportation Systems (ITS)[1]. 
Vehicle formation system as an important part of the 

intelligent transport system is of great significance in 
improving traffic. Vehicle formation control is to control a 
single vehicle as a control model, and then control the whole  
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formation. Vehicle formation control to dynamically 
simulate vehicle models, and design the controller. Vehicle 
formation improves the density of vehicles to slow down 
traffic congestion, increase the flow of vehicles, make traffic 
control simple, reduce the incidence of traffic accidents, and 
improve the safety of road driving[2].  

Vehicle cooperative control is to enable multiple vehicles 
to travel smoothly in formation with the same state (speed as 
well as acceleration), with adjacent vehicles achieving the 
desired spacing at a steady state[3]. By reducing the 
inter-vehicle distance, the number of vehicles running on a 
section of the road is increased, and the utilization rate of the 
road is increased. It improves the traffic capacity of the 
intelligent transportation system and relieves the pressure of 
traffic congestion[4]. 

Most of the current research on dynamics modelling for 
formation vehicles has been on the dynamics of individual 
vehicles. In the current research results, vehicle models are 
usually classified into linear and non-linear models, which 
can be further classified into first-order, second-order[5] and 
third-order models[6]. The first-order model is the simplest 
kind of linear model describing the vehicle motion, with the 
velocity of the vehicle as the control input and the vehicle 
displacement as the only motion state. Although this model 
can simplify the controller design, the state of the formation 
in the actual travelling process is very complicated, and a 
single first-order model is far away from reality, which does 
not apply to the current research. The second-order model is 
by far the most widely used, and many important current 
theoretical results on vehicle formation control rely on the 
second-order model. [7] proposes a second-order model with 
acceleration as the control input and the velocity and 
displacement of the vehicle as the motion state[7], which 
provides a more accurate modelling of the formation vehicle. 
However, there are still some complex dynamics that cannot 
be described, such as the vehicle's engine mechanics and 
factors such as inertial delays. The third-order model can 
approximate the input-output behaviour of the dynamics in 
the vehicle dynamics system, with the addition of 
acceleration as a state to further characteristics of the real 
vehicle dynamics[8]. 

In formation control, various uncertainties as well as 
external disturbances are often encountered. And the sliding 
mode control has strong robustness to overcome these factors. 
[9] proposed a lateral control method using linear sliding 
mode control to make the formation spacing error minima[9]. 
[10] uses an integral sliding mode control method to propose 
a fixed pitch strategy controller, integrated consideration of 
vehicle interactions, spacing errors, and external 
disturbance[10]. [11] proposes a robust tracking controller 
based on terminal sliding modes to ensure formation 
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stability[11]. However, they don't specify spacing errors for 
formations. [12] uses linear sliding mode control to study the 
problem of formation control with a prescribed spacing 
error[12]. [13] addresses the prescribed spacing error of 
vehicle formations by designing distributed controllers to 
ensure the steady state performance of vehicle 
formations[13]. However, all of their controllers can only 
achieve asymptotically stable control, which is not enough 
for formation control. 

Finite-time control has the advantages of fast response 
speed, high disturbance resistance and high control 
accuracy[14]. [15] proposes a finite time control method that 
allows for fast convergence of formation spacing errors, but 
only for second-order vehicle models[15]. [16] proposes 
controllers that keep the formation stable for a finite amount 
of time, but they ignore the queue stability of the 
formation[16]. 

In actual formation driving, there are often many 
uncertainties that affect the system parameters. As neural 
networks have strong nonlinear approximation ability and 
learning ability, they can counteract the negative effects of 
these uncertainties on system control, and open up a new way 
for the control of complex nonlinear systems[17]. Adaptive 
control of neural networks is a new method based on the 
basic principle of adaptive, combined with the characteristics 
and theories of neural networks, which simplifies the 
complexity of the design of purely adaptive control systems, 
and thus has received widespread attention in the field of 
intelligent control research. 

Based on the above analyses, this paper addresses the 
vehicle formation provision tracking performance problem. 
The main innovations of this paper are concluded as follows: 

(1) This paper addresses the prescribed spacing error of the 
third-order vehicle model and designs a novel control 
algorithm based on improved sliding mode control and neural 
network. The neural network is used to approximate the 
complex fuzzy dynamics in the control process, the adaptive 
term is used to overcome the external interference, and the 
robust term to overcome the reconstruction error of the neural 
network. 

(2) The new control algorithm proposed in this paper can 
ensure that the vehicle formation is stable in finite time 
instead of asymptotically stable. 

The paper is structured as follows: section 2 describes the 
vehicle model and control objectives of the formation system. 
Section 3 gives the design of the finite time controller. 
Section 4 verifies the controller by numerical simulation. 
Section 5 concludes the paper. 

 

II. PROBLEM DESCRIPTION 

A. Vehicle dynamics modelling 

In this paper, the vehicle formation structure is a 
Predecessor Following (PF) structure, which consists of a 
leader vehicle ( 0)i   and N  following vehicles. As shown 

in Fig. 1, where ( )iL t , ( )iv t  and ( )ia t  denote the real-time 

position, velocity and acceleration of the vehicle i , 
respectively. ,d iP  represents the desired spacing between 

vehicles 1i   and i , the ideal distance between vehicles 

including the length of the vehicle as well as the safety 
distance required to start and stop the vehicle, ie  represents 

the error between the ideal spacing of vehicles 1i   and i  
with the actual spacing in the control, known as the spacing 
error. It is assumed that vehicles can communicate with each 
other while travelling, detecting the state information of 
adjacent vehicles, and that the communication channel is 
completely reliable. 
 

 
 

Fig. 1 Vehicle formation model 
 

The model of the third-order dynamics of a single vehicle 
in a formation can be represented as 
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(1) 
where im  is the mass of the vehicle i ;   is the engine time 

constant of the vehicle, assuming that all vehicles are of the 
same model and have the same engine time constant; 

2
iA

P
 

 , P  is the air resistance during travelling;   is 

the density of air around the vehicle; iA  is the maximal 

cross-sectional area of vehicle i ;   is the air resistance 
coefficient; f  is the frictional resistance of the vehicle 

during travelling, to facilitate the calculations, define 
(cos sin )f mg    ,   is the wheel rolling resistance 

coefficient,    is the gradient of the road travelled; ( )iu t  is 

the control input; ( )i t  is a concentrated disturbance caused 

by weather versus roads. 
 

B. quadratic spacing strategy 

The stability of the formation is critical, and the key to 
controlling stability is to control the tracking performance of 
the vehicles in the formation, which is the spacing error 
between each vehicle. Common spacing strategies are fixed 
spacing strategies and variable spacing strategies[18]. 

This paper considers the vehicle length, the driver's 
reaction time, the vehicle's safety braking distance and the 
vehicle's speed to propose a variable quadratic spacing 
strategy. The ideal workshop distance is set as a quadratic 
function about the speed, so that the workshop spacing is 
automatically adjusted with the speed of the vehicle to obtain 
the ideal workshop spacing, with the expression as follows 

2

1 1, 2

( )
( )

2
i

i i i i s i
n

v t
e L L q q t v t

a


                 (2) 
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, 1, 2

( )
( )

2
i

d i i s i
n

v t
P q q t v t

a


                    (3) 

where 1& ( )i i it L L   represents the actual distance 

between any two adjacent vehicles, 1,iq  denotes the length of 

vehicle i , 2q  denotes the given safety distance, st  denotes 

the reaction time for braking or accelerating, ( )s it v t  denotes 

braking distance,   denotes a safety factor based on the 

external environment, na  denotes the absolute value of the 

maximal deceleration. 
 

C. control objective 

The objective of this paper is to design an adaptive control 
algorithm, and the control objective is to use this control 
algorithm to control each vehicle in the formation. When the 
leader vehicle operates in an arbitrary state (speed as well as 
acceleration), the state of each follower vehicle can follow 
the leader vehicle for a finite time, and the spacing between 
two adjacent vehicles can reach a desired state, thus 
achieving the transient and steady-state performance of the 
formation. More specifically, the objective of the research in 
this paper is to design a controller ( )iu t  such that the 

(1) Finite-time stability[19]: ensure that in a finite time, the 
spacing error of the formation can satisfy the regulations, and 
at the same time, the speed and acceleration of each vehicle 
can keep up with the leader vehicle. 

0

0

lim ,

( ) ( )

( ) ( )

it T

i

i

e

v t v t

a t a t


  
 
 

                            (4) 

(2) Traffic flow stability[20]: when the formation is stable, 

the derivative 
dD

d
 of the traffic volume D  with respect to 

the traffic density   is positive, 0
dD

d
 . 

 

D. prerequisite knowledge 

Lemma 1[21]  For a nonlinear system ( , )x f x u


, if there 

exists a positive definite function ( )V x  and exist parameters 

0c   and      such that 

( ) ( ), 0V x cV x t  


           (5) 

Then the system is finite time stable. The time of 
convergence depends on the initial state 0(0)x x , which is 

given by 
1

0
0

( )
( )

(1 )

l

x

V x
T x

c l






              (6) 

Lemma 2[22]  For a nonlinear system ( , )x f x u


, if there 

exists a positive definite function ( )V x  and exist parameters 

, 0a b   and r    such that 

( ) ( ) ( ), 0rV x aV x bV x t   


        (7) 

Then the system is exponentially stable and faster finite 

time stable. The time of convergence depends on the initial 
state 0(0)x x , which is given by 

1
0

0

( )1
( ) ln

(1 )

r

x

aV x b
T x

a r b

 



       (8) 

Lemma 3[23]  For a nonlinear function ( ) : nf x R R , 

there exists an ideal weight vector W  and an arbitrarily small 
positive constant e  enabling the neural network to 
approximate ( )f x  in the following way: 

( ) ( )Tf x W h X  e             (9) 

where nW   is the ideal weight matrix of the output layer 
of the neural network, e   is the reconstruction error of 
the neural network approximation, and ( )h X  is the activation 

function. 
 

III. CONTROL METHODS 

A. system transformation 

The system (1)  is the vehicle dynamics model of the 
formation system, and the control of the vehicle system can 
only be dependent on the dynamics model, the control 
objective of this paper is to control the spacing error(2), so to 
facilitate the achievement of the control objective and to 
make the control inputs dependent on the spacing error(2), 
we choose the new state variable as: 

2
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   (10) 

By deriving the new state variables and combining them 
with the vehicle dynamics model of the system(1) , we can 
get the new system: 

1, 2,
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where 

2
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(12) 
The control objective of this paper is to make 

1,lim it T
x


               (13) 

To simplify the calculation, we can transform the target so 
that the 

1, min max 1,( , ) ( ) ( , )i ix F x        

that is 

1, max

1, min

1,

1,

lim ( )

lim ( )
i

i

ix

ix

F x

F x









 
  

         (14) 

where min max   , for ease of calculation, we need to 

obtain a function of 1,ix  about 1,( )iF x , which is calculated: 
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1, 1,

1, 1,

( ) ( )
max min

1, ( ) ( )
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i i

F x F x
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e e
x

e e


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Continuing the calculation, the transformation function 

1,( )iF x  is derived as 

1, min
1,

max 1,

1
( ) ln( )

2
i

i
i

x
F x

x




 
       (16) 

In order to transform 1, min max( , )ix     to 

1,( ) ( , )iF x    , we should choose the transformation 

function 1,( )iF x  to be an invertible smooth singular function. 

For ease of computation, we take the new state variable 

1, 1,( )i iy F x , substitute it into equation (16) and derive it to 

obtain the following new system 

1, 2,

2
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2, 2,2
1,1,
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    (17) 

From equation (16), it follows that whenever 

1,( ) ( , )iF x    , we get 1, min max( , )ix    , which means 

that the prescribed properties of 1,ix  are satisfied whenever 

1,iy  is bounded. Therefore, the control objective can be 

achieved by controlling the new system(17). 
 

B. slide mode control 

Vehicle formation systems suffer from model uncertainty 
as well as external disturbances. Due to the specification of 
the tracking performance, in order to achieve the control 
objective in a finite time, based on the converted system (17), 
a modified sliding mode surface is designed 

2, 1,( )i i is y y          (18) 

where 
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where 1

2
< g < 1 , and g  are fractions with positive odd 

numerators and denominators, u > 0  is a small positive 

number, 1
1 (2 )l   gg u , 2

2 ( )l  gg -1 u , sgn( )  are signed 

functions. 
When the slide mode surface 0is  , 2, 1,( )i iy y  . 
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When 1,iy  u ,  2, 1 1, 2 1, 1,sgni i i iy l y l y y  
2

   has a 

faster convergence rate than  2, 1, 1,sgni i iy y y 
g

 . This 

indicates that the convergence rate of the improved slip mode 
surface is improved. 

Derivation of the sliding mode surface (18) yields 
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where 
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choosing the sliding mode to be 1,( )iy , rather than 

 1, 1,sgni iy y
g

, can avoid the singularity problem of 

1,0, 0is y   or 2, 0iy  . Moreover, its derivative is a 

continuous function. 
Remark 1 Conventional sliding mode control, because of 

discontinuity in the control inputs, sgn( )  causes the 

well-known phenomenon of jitter. We will therefore use the 
saturation function (20) instead of sgn( ) , where h is a small 

positive number indicates the thickness of the sliding mode 
boundary layer. 
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C. neural network approximation 

Neural networks have universal approximations, in 
applications, they are often used to estimate nonlinear 
dynamics and functions where uncertainty exists. Since there 
is some uncertainty in the system (17), 1,ix  and 2,ix  are 

measurable, we use RBF neural networks to approximate 
them 

2
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 (21) 

According to the universal approximation property of 
neural networks, the unknown continuous function ( )iG X  

can be rewritten as 
( ) ( )T

i i iG X W h X  e           (22) 

where 1, 2,[ , ]i i iX x x  is the input of the neural network, 
nW   is the desired weights of the output layer of the 

neural network which can be adjusted according to the 
adaptive law given later, ne  is the reconstruction error 
of the neural network, and the activation function is chosen as 

Gaussian function 

2

2
( )

2( )
i i

i

X c

bh X e



 , where 1,...,i m , m  is 

the number of nodes in the hidden layer, ic  and ib  are 

constants, ( )h h , h  are positive numbers. 

Assumption 1 In the neural network approximation 
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process, it is assumed that the ideal weights W  and the 
reconstruction error e  are bounded, which satisfies 

,m mW w e e . Since the neural network is unknown, we 

use W  as an estimate of the ideal weights W . Define 
 W W W   as the neural network weights estimation error. 
 

D. finite-time controller design 

The controller of the system (17) is designed as follows: 


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sgn( ) ( ) sgn( )

n m
i i i

ii
s

n i

T

p i

k s k s
u m t

dF xv t
t

a dx

k s W h X s


   




   s

    (23) 

where mk , nk , and pk  are all positive numbers, 0i s  is an 

adaptive variable, is  is used as an estimate of is . 

 
i i i s s s  is defined as the estimation error of the adaptive 

variable. Since the reconstruction error of neural networks is 
unavoidable, in many literature the reconstruction error of 
neural networks is treated as a known perturbation and needs 
to be computed in advance. In this paper, a robust term 

sgn( )pk s  is proposed to counteract the reconstruction error, 

which reduces the impact of the reconstruction error on the 
performance of the system without the need to be computed 
in advance. 

The neural network's weights adaptive law W  is 

 1,

1,
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i i s
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
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c       (24) 

The adaptive law s  is 

 1,

1,
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i i s
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
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E. stability analysis 

In order to ensure that the designed controller can satisfy 
the control requirements of the whole system, we use the 
Lyapunov theory to prove the whole system. The following 
theorem proves the stability results and performance of the 
proposed controller. 

Theorem 1 For a vehicle formation system with PF 
structure, considering a single vehicle dynamics model (1), 
combining the vehicle spacing strategy (2), using the 
transformed system (17), designing an adaptive controller 
(23) based on the improved sliding modal surface (18) and 
the neural network (21), and combining the adaptive laws 
(24) and (25), the tracking control of the formation system 
can be achieved and the system is guaranteed to be stable in 
finite time. The system is stable for a finite time, the sliding 
mode surface is  can converge to zero in a finite time and the 

spacing error can satisfy the regulations: 
lim it T

e


   

Proof: choose the following Lyapunov function: 

   221 1 1

2 2 2

T
i ii iV s W W   s

c
      (26) 

Derivation of (26) yields: 

   1 T
i ii i iV s s W W  

  
ss

c
        (27) 

where 
2

1, 1,2
1, 2,2

1,1,

( ) ( )
{ ( ) [

( ) ( )
        ][ ( , ) ( )]}

i i
i i i i i s

ii

i i
i i i

n i

d F x dF x
s s s y x t

dxdx

v t u t
f v a t

a m

   


 



 


(28) 

      1 1 1
( )

T T T
i i i iW W W W W W W



 
 

= -
c c c

    (29) 

thus 

   

   

2
1, 1,2

2, 1,2
1,1,

1,

1,

2

1

( ) ( )
   { ( ) [

( ) ( ) 1
        ][ ( , ) ( )]}

( ) ( ) ( )
   [ ]{ ( , )

       ( )

T
i ii i i

i i
i i i s

ii

Ti i
ii i i

n i

i i i
i s i i

i n i

i

V s s W W

d F x dF x
s x y t

dxdx

v t u t
f v a t W W

a m

dF x v t u t
s t f v a

dx a m

d F

t

  

   


  




    



 

  



 

ss
c

- ss
c



   
1, 2

2, 1,2
1,

1,

1,

( )
( )

1
}

( ) ( )
[ ]

i
i i

Ti
i

i i
s

i n

x
x y

dx
W W

dF x v t
t

dx a









 

- ss
c



(30) 

Combining equations (21) and (22), it is obtained using 
neural network approximation: 

 ( ) ) ( )iG X W W h X  ( e          (31) 

Substituting equation (31) into equation (27) yields 

     

1,

1,

( ) ( ) ( )
[ ]{ ( )

1
      ) ( ) }

i i i
i i s i

i n i

T
i

dF x v t u t
V s t t

dx a m

W W h X W W


    



  



 

( e - ss
c

   (32) 

Substituting the controller (23) into equation (32) yields 



 

1,

1,

1,

1,

( ) ( )
[ ]{ ( ) sgn( )

sgn( ) 1
       sgn( )}

( )( )
[ ]

Ti i

i i s p

i n

T
n m

i

ii
s

n i

dF x v t
V s t W h X k s

dx a

k s k s
s W W

dF xv t
t

a dx


   


 






 



e -

s - s s
c

 (33) 

Substituting the adaptive laws (24) and (25) into (33)yields 







1,2

1,

1,

1,

1,2

1,

( )
sgn( ) [

( )
      ]{ ( ) sgn( )}

( )( )1
[ ] ( )

( )
  sgn( ) [

( )
      ][ sgn( ) sgn( )]

i
i n i m i i i s

i

Ti
p

n

T ii
i i s

n i

i
n i m i i i s

i

i
p i

n

dF x
V k s k s s s t

dx

v t
W h X k s

a

dF xv t
W s t h X

a dx

dF x
k s k s s s t

dx

v t
k s s

a

    







    






e - -

    c
c

e - s

   (34) 
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In equation (34), sgn( )pk s  is the robust term to counteract 

the reconstruction error e  of the neural network 
approximation, thus 

2

2

sgn( )i n i m i i

n i m i

V k s k s s

k s k s

  

  



  
          (35) 

Thus, it can be shown that the system is consistent and 

eventually bounded, and we can know  ( )
T

W h X  t , t  is a 

small constant. Next, prove finite-time stability. The 
Lyapunov function is set to be 

21

2s iV s              (36) 

The derivation of this gives 





2
1, 1,2

2, 1,2
1,1,

1,

1,

( ) ( ) ( )
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( )
       ][ ( , ) ( )]}
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i i i
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f v a t
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W h X




   

 



     





 



(

e



  

(37) 

Substituting the controller (23) yields 





1,2

1,

1,2

1,

( ) ( )
[ ]{ ( )

        sgn( ) sgn( )}

( ) ( )
   [ ][ ( )

       sgn( )]

i i
s n i m i i s

i n

p i i

i i
n i i s

i n

i

dF x v t
V k s k s s t Wh X

dx a

k s s

dF x v t
k s s t Wh X

dx a

s


     




    



e - s

s

  

(38) 

Recall that equation (16) shows that there exists a positive 

number 1f  satisfying 1,

1,

( )
0i

i

dF x

dx
 f , and there exists a 

small positive number &  satisfying 
( )i

s
n

v t
t

a


  & > 0 . 

Knowing s > t , set b = s - t > 0 . Thus 
1

2 22s n i i n s sV k s s k V V     


f&b f&b      (39) 

Using Lemma 2, we conclude that s  is finite time stable 
and the stability time function T  satisfies 

1

22
ln

aV b
T

a b


             (40) 

where 2 na k , b  f&b , therefore, it can be shown that the 

system can reach stability in finite time, and it can be shown 
that 1,iy  is bounded, so we get 1, min max( , )ix    , which 

satisfies the control objective of the system. 
 

F. traffic flow stability 

Theorem 2 For a vehicle formation system with a PF 
structure, considering a single vehicle dynamics model (1) , 
combined with a vehicle spacing strategy (2) , the stability of 
the traffic flow of the whole convoy can be ensured. 

Proof: 

ρ
S

N D

L V
                (41) 

where ρ  is the traffic density, N  is the number of vehicles 

in the road section, L  is the length of the road section, D  is 

the amount of traffic on the lane (flow rate), SV  is the 
average speed of vehicles in the interval. Assuming that the 
formation system arrives at a steady state, the safety distance 
of vehicles and the average speed arrives at the same, take the 

length of the road section L  as 
2

1, 2 2i s
n

v
L q q t v

a


    , the 

vehicles within the road section N  as 1, the average speed 

SV  as v , the traffic density as 

2

1, 2

1
ρ

2i s
n

v
q q t v

a




  
           (42) 

The function v  can be introduced and substituted into the 
flow rate ρD v  to get 

2
1, 2

ρ

21
  ρ( ( ) ( ) )

ρ
n s n s n

i

D v

a t a t a
q q



    
  

       (43) 

Derivation of this yields: 

2
1, 2

2
1, 2

21
( ) ( )
ρ

      
21

ρ ( ) ( )
ρ

n s n s n
i

n

n s n
i

a t a t a
D q q

a

a t a
q q

     
  

   
 



    (44) 

From equation (44), it can be shown that the derivative D


 
is 0 when the critical density 

1, 2
1, 2

1
ρ

2( )
2( )

s

i n
i s

q q a
q q t




 


 

and ρ ρs , so 0D 


, the formation reaches traffic flow 

stability. 
 

IV. SIMULATION EXPERIMENT 

To verify the effectiveness of the proposed control 
algorithm, the vehicle formation is simulated in MATLAB 
environment. In the simulation, the vehicle formation 
consists of a leader vehicle and four follower vehicles 
travelling in a straight lane. Set the leader vehicle's initial 
states to be 0 (0) 0L  , 0 (0) 0v  . With no collision risk 

guaranteed, the initial states of the four following vehicles are 
(0) [ 24; 48; 72; 96]iL      , (0) [0;0;0;0]iv  , 

(0) [0;0;0;0]ia  . 

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 620-629

 
______________________________________________________________________________________ 



 

The time of the simulation experiment is set to 80 s , 
assuming that each vehicle has the same parameters, where 
the parameters of the vehicle are set as follows[24]: mass of 
the vehicle im  = 1600 kg , air resistance P  = 0.414, running 

resistance of the vehicle f  = 240, length of the vehicle 1,iq  

= 4 m , ideal safety distance 2q = 7 m , safety factor of the 

external environment of the vehicle  = 0.2, braking or 

acceleration reaction time st = 0.12 s , maximum deceleration 

of the possible value na =7, and concentrated disturbance 

( ) 0.1cos( )i t t  . The parameters of the controller are 

shown in Table Ⅰ. 
 

TABLE I 
CONTROLLER PARAMETERS 

min

  max


 

g
 u  

-0.05 0.05 7 / 9   0.1 

  nk  mk  pk  

0.03 0.03 1 10 

 
The acceleration of the leader vehicle is set to 

2

2

0 2

2

0.5  /           0 4

2  /              4 8

0.5 6 /    8 12

0 /                  12

t m s t s

t m s t s
a

t m s t s

m s t

  


  
   
 

 

The leader's acceleration, velocity, and displacement are 
shown in Fig. 2-4. The leader's acceleration increases and 
then decreases to zero after 12 s , and its velocity settles to 
16 m s¤  after 12 s . 

 

A. simulation results 

This paper designed the control algorithm simulation 
results are shown in Figs. 5-10. Fig. 5 shows the displacement 
relationship of the formation vehicle, which can be intuitively 
seen that the displacement of the follower vehicle always 
follows the leader vehicle. Fig. 6 shows the velocity 
relationship of the formation vehicle, and Fig. 7 shows the 
acceleration relationship of the formation vehicle. After the 
system is stable, the velocity and acceleration can be 
consistent with the leader vehicle. Fig. 8 reflects the 
information of the displacement error of the formation, the 
displacement error will be adjusted with the speed of the 
vehicles, and finally kept at about 14 m , that is, the 
inter-vehicle distance between two adjacent vehicles will be 
kept at about 14 m . Fig. 9 reflects the information of the slip 
mode surface, which converges to zero. Fig. 10 reflects the 
spacing error information of the formation, the formation 
system can reach the specified spacing error within 2 s , and 
then continue to converge, the analysis shows that the RBF 
neural network has very good real-time performance. The 
spacing error can be converged to 0 around 6 s , to achieve the 
stability of the whole formation. 

 
 

Fig.2 Leader car acceleration 
 

 
 

Fig.3 Leader car speed 
 

 
 

Fig.4 Leader car displacement 
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Fig.5 Displacement of formation vehicles 

 

 
 

Fig.6 Speed of formation vehicles 
 

 
 

Fig.7 Acceleration of formation vehicles 

 

 
 

Fig.8 Displacement error of formation vehicles 

 

 
 

Fig.9 Surface of sliding mode 
 

 
 

Fig.10 Spacing error of formation vehicles 
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B. comparative experiment 

In order to further illustrate the performance advantages of 
the novel control algorithm designed in this paper, 
simulations are compared with literature[19], which does not 
specify the spacing error and uses a conventional sliding 
mode function. Set the sliding mode function as 

1

2( ) ( ( )) ( )i i i is e t csign e t e t  , the controller is 

2

sgn( ) ( , )
( )

( )
     

1 1
[ ( 2 ) ] ( )

n m i i
i i i

i
s

n

i i i i
i

k s k s f v a
u m t

v t
t

a

P v v a f a t
m

 
   




     
 

    (45) 

The initial conditions are consistent with this paper, the 
simulation results are shown in Figs. 11-16. Fig. 11 shows the 
displacement relationship of the formation vehicles, which 
can be seen intuitively that the follower vehicle spends more 
time following the leader vehicle. Figs. 12-13 are the speed 
and acceleration relationship of the formation vehicles. Fig. 
14 is the vehicle displacement error. Fig. 15 is the spacing 
error information of the formation vehicles. Fig. 16 is the 
information of the sliding mode surface, and analysis can be 
obtained that the spacing error can be converted to 0 around 
16 s . Comparing Figs. 5-10, it can be obtained that the 
control algorithm proposed in this paper converges faster 
than the conventional finite-time sliding-mode control with 
the unspecified spacing error by about 10 s , which can better 
achieve the formation control requirements. 
 

V. CONCLUSION 

This paper investigates the vehicle formation control 
problem and proposes a novel control algorithm. Vehicle 
formations can reach a steady state in a finite time and satisfy 
the specified tracking performance. Using a combination of 
improved sliding modes and neural networks to improve the 
performance of the formation system. The bounded 
perturbation and reconstruction errors of the neural networks 
are compensated with adaptive laws and robust terms, and the 
jitter phenomenon of the sliding modes is improved. Finally, 
the validity of the proposed method is verified by simulation. 
In this paper, during the control of vehicle formation, the 
system communication channel is completely reliable, 
without considering the possible interference. In the future, 
vehicle formation control with incompletely reliable 
communication channels is worth investigating. 
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