

Network Traffic Anomaly Detection Based on
DGBi-SA Model

Abstract—Network traffic anomaly detection plays a crucial

role in today's network security and performance management.
In response to the challenges in current network traffic data
processing, such as insufficient structuring and dynamics, the
paper proposes a network traffic anomaly detection approach
based on DGBi-SA model, which integrates Dynamic Graph
Convolutional Networks (DyGCN), Bi-directional Long Short-
Term Memory (Bi-LSTM), and the Self-Attention mechanism.
To solve the problem of insufficient structuring, the model
employs DyGCN to capture network traffic's dynamic graph
structural characteristics proficiently. Simultaneously,
combining Bi-LSTM and the Self-Attention mechanism
enhances the model's ability to capture temporal and spatial
dependencies. The main objective of the research in the paper is
to improve the accuracy and detection efficiency of network
traffic prediction, thereby achieving effective detection and
timely response to abnormal behaviors in complex network
environments. Through a sequence of experiments conducted on
the CICIDS-2017 dataset, the paper verifies that the DGBi-SA
model can effectively solve the above problems. The
experimental results indicate that the model outperforms
existing methods in key performance indicators such as AUC,
precision, recall, and F1 score, thereby proving that the DGBi-
SA model has important application value and scientific
significance in network traffic anomaly detection.

Index Terms—Network Traffic Anomaly Detection, Dynamic

Graph Convolutional Network, Bi-directional Long Short-Term
Memory, the Self-Attention Mechanism

Ⅰ. INTRODUCTION

n today's digital age, computer networks have become
indispensable to people's daily lives, business activities,

and scientific research. However, with the popularization of
the Internet and the rapid development of information
technology, network security is also facing increasingly
complex and frequent threats. Network anomaly behaviors
include network attacks, malicious traffic, and unauthorized
access, which pose serious threats to the data security of the

individuals, businesses, organizations, and may lead to
service interruptions, system failures, and financial losses[1].
Therefore, effective network anomaly detection technologies
ensure network security and performance.

Traditional network traffic anomaly detection methods are
classified into three categories: supervised learning,
unsupervised learning, and semi-supervised learning
anomaly detection[2]. Among them, supervised learning is
suitable for the case where there is a sufficiently large number
of labeled samples in the dataset. In contrast, unsupervised
learning is suitable for completely unlabeled datasets, and
semi-supervised learning is for the case where only some of
the samples in the dataset are labeled. In recent years,
numerous researchers have utilized Support Vector Machines
(SVMs) for network traffic anomaly detection. Eskin et al.[3]
applied SVMs to anomaly detection. However, in practice,
the training process often contains much noise, which can
lead to poor generalization ability of the model. Subsequently,
Hu et al. proposed the Robust Support Vector Machine
(RSVM) algorithm that reduces noise interference, leading to
improved results. In 2021, Ma et al.[4] employed Kernel
Support Vector Machines (KSVM) for anomaly detection in
network traffic. The study was innovative in choosing the
appropriate kernel function and parameter settings, which
allowed the model to handle nonlinear and high-dimensional
data more efficiently. Then, Fosić et al.[5] presented a
supervised learning method for Netflow network traffic
anomaly detection. The method analyzes normal and
anomalous network traffic data distribution and compares
multiple algorithms to select the best anomaly detection
solutions. However, although the method achieved some
results in improving detection efficiency and accuracy,
supervised learning still relied on a large amount of labeled
data, and it is extremely difficult to obtain large-scale, high-
quality labeled data in real network environments.
Furthermore, when the distribution of network traffic data
changes, the supervised learning model may need to be
retrained to adapt to these changes, which greatly limits the
model's adaptability and usefulness.

In order to further improve the performance of network
traffic anomaly detection, researchers have integrated deep
learning algorithms, including Convolutional Neural
Networks (CNNs)[6], Recurrent Neural Networks (RNNs)[7],
and Deep Auto-encoders[8]. These algorithms showed
impressive results in various experiments. Compared with
traditional machine learning algorithms, deep learning
algorithms have stronger expressive and generalization
abilities and can more accurately detect anomalous behaviors
in network traffic. References[9-10] introduce the network
traffic anomaly detection model that integrates the CNN with
the spatio-temporal data features and the Bi-directional Long
Short-Term Memory Network (Bi-LSTM), yielding

Xin Wang, Hong Dai*, Zheng Huang, Yue Han

I

Manuscript received July 17, 2024; revised December 13, 2024. The
research work was supported by the Fundamental Research Funds for the
Liaoning Universities (No. LJ212410146058) and the Graduate student
science and technology innovation project of University of Science and
Technology Liaoning. (No. LKDYC202423).

Xin Wang is a postgraduate student of University of Science and
Technology Liaoning, Anshan, Liaoning, CO 114051 China (e-mail:
2185803177@qq.com).

Hong Dai* is a professor in the School of Computer Science and Software
Engineering, University of Science and Technology Liaoning, Anshan,
Liaoning, CO 114051 China (corresponding author to provide phone: +086-
186-4226-8599; fax: 0412-5929818; e-mail: dear_red9@163.com).

Zheng Huang is an associate professor of School of Computer Science and
Software Engineering, University of Science and Technology Liaoning,
Anshan, Liaoning, CO 114051 China (e-mail: huangzheng@ustl.edu.cn).

Yue Han is a postgraduate student of University of Science and
Technology Liaoning, Anshan, Liaoning, CO 114051 China (e-mail:
296872286@qq.com).

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 612-619

__

favorable outcomes. References[11-12] proposed a model
based on the Self-Attention Mechanism (SAM) for extracting
the correlation of multiple features of network traffic data.

However, despite the progress made by existing research,
the network traffic anomaly detection field still needs to
overcome many challenges. One of the main challenges is the
need for more structure and dynamics in processing network
traffic data, making traditional network anomaly detection
methods difficult to adapt. Based on these challenges, the
paper proposes a network traffic anomaly detection method
based on DGBi-SA model. The model leverages the
capabilities of DyGCN[13] for handling graph-structured
data, effectively extracting spatial features from network
traffic while incorporating time-series dependencies through
Bi-LSTM[14] to enhance the predictive performance for
changing traffic. In addition, integrating the Self-Attention
mechanism[15], the model integrates the screening of key
information and focuses analysis into the overall detection
process, realizing comprehensive and accurate network
traffic anomaly detection.

 Ⅱ. PROPOSED METHOD

A. Flow Matrix Prediction Model

In the paper, we defined the network traffic matrix as:

11 12 1

21 22 2

1 2

t t t
n

t t t
t n

t t t
n n nn

m m m

m m m
M

m m m

 
 
 

  
 
 
 




   


 (1)

Here, tM represents the traffic matrix at the t-th time
interval, and t

abm denotes the traffic value of the Origin-

Destination (OD) pair from node a to node b. The prediction
model aims to estimate the traffic matrix for the next time
interval, based on historical data:

  1 1 2 3, , , ,t tM f M M M M   (2)

Where, ()•f is a mapping function that predicts the future

traffic matrix 1tM  based on the historical flow matrix tM .

 Input

Construct
graph

sequence

GCN
spatial
feature

extraction

Bi-LSTM
time

feature
extraction

GCN

Xg Xg Xg Xg

LSTM

LSTM

Xt-1

Yt-1

Backward

LSTM

LSTM

Yt+n

LSTM

LSTM

Xt

Yt

Forward

Xt-τ Gt-τ Xt-τ+1 Gt-τ+1 Xt-τ+2 Gt-τ+2 Xt

Gt

t-τ t-τ+2 t t-τ+1

LSTM

LSTM

Xt+1

Yt+1

Output Mt+1

Self-
Attention

feature
extraction

GCN GCN GCN

t t t
11 12 1n
t t t
21 22 2n

t t t
n1 n2 nn

m m m

m m m

m m m

 
 
 
 
 
  




   


t t t
11 12 1n
t t t
21 22 2n

t t t
n1 n2 nn

m m m

m m m

m m m

 
 
 
 
 
  




   


M t-τ M t-τ+1 M t-τ+2 M t

Gt

…

…

…

…

…

xn

an

qn kn vn

x2

a2

q2 k2 v2

x1

a1

q1 k1 v1

x3

a3

q3 k3 v3

t t t
11 12 1n
t t t
21 22 2n

t t t
n1 n2 nn

m m m

m m m

m m m

 
 
 
 
 
  




   


t t t
11 12 1n
t t t
21 22 2n

t t t
n1 n2 nn

m m m

m m m

m m m

 
 
 
 
 
  




   


α1,1
 α1,2

 α1,3
 α1,n

α1,1
 α1,2

 α1,3
 α1,n

Soft-max

^

^

^

^

…

~

Fig. 1. The overall architecture of the flow matrix prediction model

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 612-619

__

The overall architecture of the flow matrix prediction
model is shown in Fig.1. The purpose of the paper
specifically refers to the DGBi-SA model, which integrates
graph-structured data processing, the capture of dependencies
in time series data, and the Self-Attention mechanism to
achieve the comprehensive analysis and prediction of the
traffic matrix.

For the historical traffic matrix time series
1 2 3{ }, , , , tM M M M , we first construct a sequence of graphs

to derive the traffic matrix graph sequence 1 2 3{ }, , , , tG G G G

and the sequence of feature matrices 1 2 3{ }, , , , tX X X X . Then,

the Graph Convolutional Network (GCN) is used for spatial
feature extraction to capture the representation of the traffic
matrix at each moment. Next, we use Bi-LSTM to extract
temporal characteristics, outputting a sequence of temporal
features 1 2 3{ }, , , , th h h h .

Next, the Self-Attention calculates the correlation scores
among all positions in the traffic matrix sequence. These
scores are used as weights to sum up the representations of all
positions, forming a new representation for each position.
Finally, the output from the Self-Attention layer is passed
through the Softmax activation function to generate the
predicted matrix

1tM 
 .

The model continuously optimizes the model parameters
by backpropagation and stochastic gradient descent method
during each round of iteration, and finally, the loss between
the prediction matrix

1tM 
 and the true matrix 1tM  is

minimized.

B. Constructing Graph Sequence

The flow matrix modeling is transformed into the graph
structure in the paper. Fig.2 illustrates the traffic matrix for
different time slices to build the graph sequence. In the
structure, the network nodes are used as the nodes in the graph,
and the OD flows between two nodes are used as edges
between two nodes in the graph. Each edge's weight
represents the OD flow's size between the two nodes.

The left matrix tM represents the network flow matrix at
the one-time slice, with each node in the right graph
representing a backbone network node. It can be seen from

the figure that the traffic matrix tM is an N N matrix,
where N nodes are in the network, and N nodes are also in the
graph structure. The element t

abm in the matrix represents

the traffic size from the source node a to the destination node
b. Therefore, an edge between node a and node b exists in the
graph data, with a weight t

abm directed from node a to b.

The relationship expressed by the traffic matrix is
mathematically represented as:

    , , 1,2,3, ,t t tG v t T  (3)

Here, v represents the set of all nodes in the graph and 
denotes the set of all edges. The count of network nodes
remains constant across different time slices within the same
network. Therefore, traffic matrix prediction can be further
abstracted as the link prediction problem, where the objective
is to predict the set of edges in the graph for the next time
slice based on the historical edge set. This involves learning
structure over time to accurately forecast future links.

It can also be regarded as the problem of predicting the
edge weights in the graph, that is, predicting the weights of

all edges in the graph 1 tG  at the forthcoming moment
based on the historical graph sequence of the graph

1 2 3{ }, , , , tG G G G .

 
 
 
 
 
  

11 12 1

21 22 2

1 2




   


t t t
n

t t t
n

t t t
n n nn

m m m

m m m

m m m

 
 
 
 
 
  

11 12 1

21 22 2

1 2




   


t t t
n

t t t
n

t t t
n n nn

m m m

m m m

m m m

 
 
 
 
 
  

11 12 1

21 22 2

1 2




   


t t t
n

t t t
n

t t t
n n nn

m m m

m m m

m m m

TimeTime

Fig. 2. Flow matrix pre-time series converted to graph time series

schematic

After extracting the node features for each time slice, the

generated node features form the feature matrix tX N dR 
of the node-set, where d denotes the number of node features.
Each time slice extracts the network node features similarly,
forming a graph time series 1 2 3{ }, , , , tG G G G for each graph

in the sequence of node feature matrices 1 2 3{ }, , , , tX X X X .

C. Spatial Feature Modeling Based on GCN

GCN extracts features through neighborhood aggregation
and the utilization of graph topological structures, enabling it
to adapt to graphs of varying sizes and complexities. In the
paper, we take advantage of GCN's graph structure extraction
to learn the structure information under each time slice. GCN
extends the idea of convolution to graphs by aggregating
neighbor information through the defined spectral graph
convolution.

Given a directed graph (, ,)G v X , where v,  and X are

the set of nodes, the set of edges, and all the node features
that form the node feature matrix in the graph, respectively.
Approximation of convolution operations using Chebyshev
polynomials is an effective optimization method for GCN.
The approach allows GCN to approximate the spectral
convolution of a graph without directly computing the feature
decomposition of the graph, thus enabling more efficient
operation on large graphs and reducing computational
complexity. The Chebyshev polynomial is calculated as
follows:

    
0

ˆ*
K

k k
k

f G X T L X 


 (4)

Here, f represents the convolution kernel; KR is a

polynomial vector of degree K;)ˆ(kT L is the K-th order

polynomial of the Chebyshev polynomials in the graphical
Laplacian in the normalized form ˆ 2 / max NL L I  , where

max is the largest eigenvalue of L, and NI is the N-

dimensional identity matrix. Define  0 1T X  ,  1T X X ,

  1k 1 2 () ()k kT X XT X T X   .

Solve the above equations by using an approximate
expansion, from which the information of the neighboring
nodes up to the K-th order can be extracted.

The process allows for the aggregation of information from
a node's neighbors at various levels of proximity, capturing

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 612-619

__

both direct and indirect relationships within the network. This
enhances the model’s ability to capture complex
dependencies.

Additionally, the GCN operates through an activation
function to introduce non-linearity. In the paper, the ReLU
(Rectified Linear Unit) activation function is employed,
which is commonly used due to its effectiveness in preventing
vanishing gradients and promoting faster convergence during
training. Fig.3 shows the GCN message passing process.

x3

x6

x2

x1

x4
x5

e65

e45
e25

Fig. 3. GCN message passing process

According to the above formula, assuming 1k  and
2max  , then the formula for the first-order graph

convolution operation can be expressed as:

1 1

() ()2 2() ˆ l l
GX f G X D AD X W 

  
   
 
 

 (5)

Here,
1 1

2 2ˆ
NA I D AD

 
  , where D and A represent the

degree and adjacency matrices of the graph, respectively; W
are the model parameters; and  is the activation function.

Fig.3 illustrates the process of the first-order message
passing in GCN when k=1. Node X5 represents the central
node, with the other nodes representing its neighboring nodes.
The first-order GCN aggregates neighbor features through the
relationships between the central node and its neighboring
nodes, thereby obtaining the spatial features of the central
node.

In summary, first-order graph convolution can effectively
obtain the first-order neighbor spatial features. Therefore,
graph convolution is used to process the traffic matrix graph
time series in the paper so that each node's representation
contains the spatial information of its first-order neighbors.
The method aggregates OD flows with the same source and
destination nodes to extract spatial correlation features
between them.

Finally, spatial representation for each traffic matrix is
generated using spatial relationships.

D. Temporal Feature Modeling Based on Bi-LSTM

This section will model and analyze the temporal
dependence properties between time series, mainly by
inputting the vector of high-dimensional flow matrix
representations into a recurrent neural network to explore the
temporal correlation between the flow matrices.

The Long-short-term memory (LSTM) networks[16]are a
type of RNN that combines short-term and long-term

memories through a gate control mechanism to solve the
gradient vanishing problem and enable the modeling of long
sequence dependencies.

The propagation equation is expressed as follows[17]:

  1t ix t ih t ii W x W h b    (6)

  1t ix t ih t ii W x W h b    (7)

  1t ox t oh t oo W x W h b    (8)

 1()t gx t gh t gg tanh W x W h b   (9)

 1* *t t t t tc f c i g  (10)

)* tanh(t t th o c (11)

In the above equation, xt is the t-th element in the input
sequence, ht is the hidden state at time step t, and ct is the cell
state at the t-th time step. it, ft and ot are the activation values
of the input gate, the forget gate, and the output gate,
respectively.

And gt is the current candidate memory value. W and b are
trainable parameters in the LSTM model, which are tuned to
minimize the prediction error during the training process. W
determines the impact of different input features on the model
output, while b provides additional flexibility to the model.

 and ()•tanh are the activation functions used to

introduce nonlinear transformations into the computation of
the model. And  usually refers to the Sigmoid function,
which compresses the input between 0 and 1, and it is used to
control the degree of door opening.

Whereas, ()•tanh is the hyperbolic tangent function which

compresses the input between -1 and 1, and it is used to
generate updates of cell states and candidate memory values.

The structure of the LSTM unit is shown in Fig.4, which
includes three gates: the forget gate, the input gate, and the
output gate.

x

σ tanh σ

x

tanh

xt

ht

Ct-1

ht-1

+ Ct

ht

Forget Gate

Input Gate Output Gate

x

σ

Fig. 4. An LSTM cell

Among them, the forget gate plays a crucial role in

deciding which hidden information should be forgotten or
discarded. It uses the Sigmoid activation function to
determine which details need to be deleted from memory,
ensuring that only relevant information is retained.

The input gate, on the other hand, can selectively add the
input information of the current moment to the memory state,
updating the cell state with new data. The gate regulates how
much new information enters the memory by controlling the
flow of input signals.

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 612-619

__

Finally, the output gate is responsible for generating a new
hidden state and the output of the time step. It combines the
inputs and the memory to determine the output, ensuring that
the model retains important features while passing forward
the necessary information for future time steps. The allows
the model to focus adaptively on relevant data. Moreover, the
output gate helps the model maintain a balance between
short-term memory and long-term context, crucial for
sequential data tasks.

Bi-LSTM[18] is an enhanced version of the traditional
LSTM model. Its structure consists of LSTM units in two
directions: one that processes the input sequence in
chronological order, called the forward LSTM, and another
that processes the input sequence in reverse chronological
order, called the reverse LSTM[20]. The bidirectional
structure allows Bi-LSTM to capture both past and future
dependencies in the data, improving its ability to model
complex temporal relationships.

The bi-directional feature extraction process of Bi-LSTM
is shown in Fig.5.

ht-τ

σ

LSTM

LSTM

ht-τ+1

σ

LSTM

LSTM

ht-τ+2

σ

LSTM

LSTM

ht

σ

LSTM

LSTM

……

……Backward

Forward

t-τ
GX t-τ+2

GX t
GX1t-τ+

GX
Fig. 5. Forward and backward feature extraction in Bi-LSTM

As shown in the figure, the outputs of these two directions
are concatenated or merged to produce the final output. The
advantage of this structure is that the forward LSTM captures
pre-temporal features. In contrast, the reverse LSTM captures
post-temporal features, and combining the two provides a
more comprehensive feature-capturing capability for network
anomaly detection.

For example, certain anomalous behavior may manifest as
an abnormal packet increase in the first few moments of the
flow and as a disconnection in the subsequent moments.
Combining the timing information from these two directions
allows Bi-LSTM to capture this back-and-forth dependency
more effectively.

As shown in the above figure: Assuming that the input
sequence is 1 2 3 }, , ,={ , tX X X X X , the forward LSTM unit

receives the input sequence from the forward direction and
outputs the hidden state ht step by step.

In contrast, the reverse LSTM unit processes the input
sequence from the backward direction and outputs the hidden
state ht. At each time step t, the final output of Bi-LSTM is
splicing the output of forward LSTM with the output of
reverse LSTM, as shown in Eq.(12):

 ,t t th h h   
 

 (12)

Here, th is the output of the spliced, th


 and th


 denote

the output of the forward and reverse LSTM, respectively.
This bi-directional splicing enables the model to capture both
forward and backward information.

The calculation of th


 and th


 can be expressed by the

following equation:

  * tanht t th o c
   (13)

  * tanht t th o c
   (14)

Here, to


 and to
 are the forward and reverse outputs of

time t, respectively. tc


 and tc
 are the forward and reverse

hidden unit cell states at the moment t.

E. Feature Correlation Detection

Self-Attention[20] is a mechanism for capturing the
dependencies among different positions within the sequence.

First, the correlation scores of each position in the input
sequence with all other positions are computed, which reflect
the relevance between different elements in the sequence.
Then, weighting and summing the representations of all
positions using these scores as weights allows the model to
focus on the most relevant parts of the sequence.

As shown below, Fig.6 illustrates the specific process of
calculating the attention value.

qi

Softmax normalization

A(qi,v)

K1

S(qi,K1)

A(qi,K1)

*

V1

K2

S(qi,K2)

A(qi,K2)

*

V2

K3

S(qi,K3)

A(qi,K3)

*

V3

Kn

S(qi,Kn)

A(qi,Kn)

*

Vn

Step 1

Step 2

Step 3

…

…

…

…

…
Fig. 6. Specific workflow for calculating attention value

Here, qi represents the query vector associated with the i-th

input. Meanwhile, kj and vj represent the key vector and value
vector of the j-th input, respectively. Consequently, the
attention value is determined by evaluating the relationship
between the i-th input and each of the 1st, 2nd, ..., and the j-
th inputs, thereby emphasizing the correlation among all
inputs. The specific calculation is divided into three steps.

Firstly, the correlation score between each pair of elements
is calculated by the Scaled Dot-Product score function, which
is generally scaled by dividing by

kd (the dimension of k);

the calculation is as follows:

  ,
i j

i j
k

q k
S q k

d


 (15)

Then, the scores are normalized by using the Softmax
function to obtain the attention weights, which are given by
the following equation:

     
  

1

exp ,
,

exp ,

i j

i j n

i j
j

S q k
A q k

S q k





 (16)

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 612-619

__

Finally, the value vectors are weighted and summed using
the attention weights to obtain the output representation,
which can be articulated as follows:

    
1

, ,
n

i i j jj
A q V A q k v


  (17)

In this way, for each element xi, the Self-Attention
mechanism computes the weighted representation,
considering information from all other positions in the
sequence, creating long-distance dependencies among
different positions.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset

The CICIDS-2017 dataset was created by the Canadian
Institute for Cybersecurity Research[21]. The dataset
contains 283,0743 traffic records, with 70% allocated for the
training set, 15% for the validation set, and 15% for the
testing set. Each traffic record consisted of 78 features. The
data collection period started on July 3 and ended on July 7,
2017, spanning 5 days. The first day's traffic contained only
normal traffic. In contrast, over the next four days, a variety
of malicious traffic was collected, including File Transfer
Protocol (FTP), Secure Shell (SSH), Distributed Denial of
Service (DDoS) attacks, Heartbleed vulnerabilities, Web
attacks, infiltration, and botnets.

Compared with most other traffic datasets (such as the
classic KDDCUP99, NSLKDD, etc.), the CICIDS-2017
dataset has more varied traffic types and a larger scale, which
better reflects the real network environment and thus
becomes one of the most used datasets in the field of anomaly
traffic detection[22].The following table describes the main
features of the CICIDS-2017 dataset, as shown in Table Ⅰ.

TABLE Ⅰ

INTRODUCTION TO THE CICIDS-2017 DATASET

Node
Number

/units

Edge
Number
/ units

Graph
Number/

units

Attack
types
/types

Flow Feature
Dimensions/
dimensions

19211 2824000 2824 14 78

The following preprocessing steps are required before
inputting the traffic data into the model:

1) Constructing Graph Data Structure
For each traffic record in a CSV file, an edge list is first

constructed based on the source IP, destination IP, and labels.
Next, the IP addresses are encoded using LabelEncoder to
convert them into corresponding node ID, and based on these
encodings the characteristics of the nodes are generated, such
as the number of packets or bytes transmitted and other traffic
statistics.

2) Adjacency Matrix Construction and Normalization
For each communication graph, the adjacency matrices of

source IPs to flows, the adjacency matrices of destination IPs
to flows, and the adjacency matrices between IP nodes are
constructed, respectively. Subsequently, these adjacency
matrices are normalized, and commonly used methods
include random walk normalization and symmetric
normalization.

3) Graph Segmentation and Labeling
Each communication graph's edge list, feature list, and

label list are sorted for subsequent processing. In temporal
order, every 1000 flow records form a communication graph
G, creating a sequence of graphs that represent the network's
behavior over time.

4) Communication graph labeling
Set labels for each communication graph. If malicious

traffic is detected, set its label to 1; conversely, if it is normal
traffic, set it to 0. The labeling process is crucial for
supervised learning, as it provides the necessary ground truth
for training the model.

B. Experimental Parameter Design

While performing the dynamic graph anomaly detection
task, the model learns the normal pattern using normal data,
and then identifies points on the new data that significantly
depart from the learned normal pattern, which are judged as
anomalies.

Therefore, the data in the training set should be normal and
time-continuous. For the CICIDS-2017 dataset, the training
set was constructed from data generated on Monday, and the
test set consisted of data from Tuesday through Friday. The
results of the division of the dataset are shown in Table II.

TABLE Ⅱ

 PARTITIONING OF THE CICIDS-2017 DATASET

Training set/
records

Validation Set/
records

Testing set/ records

1976 423 423

In order to evaluate the performance of the model, the

paper draws ROC curves consisting of True Positive Rate
(TPR) and False Positive Rate (FPR) at the different
thresholds. TPR refers to the proportion of actual positive
cases that the model correctly identifies as positive, meaning
the true positives are divided by the total number of actual
positives. In contrast, FPR refers to the proportion of actual
negative cases the model incorrectly identifies as positive,
meaning the false positives are divided by the total number of
actual negatives. The area under the ROC curve (the AUC
value) is a key measure of the model's predictive performance,
where a higher AUC value indicates better model
performance.

The shape of the ROC can help analyze the performance of
the model under different thresholds, especially when dealing
with unbalanced datasets. It can clearly demonstrate the effect
of the model.

Additionally, the paper calculates the threshold on the
ROC curve that maximizes the difference between TPR and
FPR to determine the optimal cut point and evaluate the
precision, recall, and F1 score corresponding to that point.
Together, these metrics provide a comprehensive view of the
model's performance evaluation.

Firstly, during the model training process, in order to
obtain sufficient training samples while maintaining the order
of the time series data, to better learn the characteristics of the
data, and to enhance the generalization ability of the model,
the paper adopts the sliding window with a size of 5 and a
step size of 1 to segment the graphical dataset. Specifically,
the sliding window is shifted to one unit on the right at a time
to generate continuous time series samples. The approach

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 612-619

__

ensures that each sample contains sufficient contextual
information, enhancing the model's understanding of time
series data.

Secondly, the learning rate is an important hyperparameter
of the optimization algorithm, which directly affects the
learning speed and stability of the model during the training
process. A higher learning rate may cause the model to
converge quickly during training, but it may likely skip the
global optimal solution. In contrast, the lower learning rate
can make the model more stable towards the global optimal
solution but with a slower convergence speed. After many
experiments and tuning, this paper determines that a learning
rate of 0.0001 can well balance the stability of the model and
the quality of convergence. In addition, the learning rate is
also automatically adjusted using the Adam optimizer, which
can effectively accelerate the training process and improve
the model performance.

Next, Layer Normalization was implemented in the DGBi-
SA model, which is designed to stabilize changes in the
internal activation distribution during training.

In addition, the choice of dimension for node embedding is
crucial; too small a dimension may lead to information loss,
while too large a dimension may increase the computational
complexity and risk of overfitting. Ultimately, based on the
previous experiments' multiple attempts and evaluations,
when the node embedding dimension is set to 64, it can
achieve excellent information characterization under an
acceptable computational load.

Finally, the paper chose 50 iterations of training to ensure
that the algorithm can converge and avoid overfitting. The
setting maximizes the model performance within a reasonable
training time, while the training process is controlled by
monitoring it through methods such as cross-validation to
ensure the model's ability to generalize on the test data.

C. Anomaly Detection Performance

In order to validate the performance of the DGBi-SA
model, the research conducted ablation experiments designed
to clarify the extent to which the Self-Attention mechanism
and the Bi-LSTM layer contribute to the overall performance
of the model. By excluding these two key components one by
one, we analyzed the performance of the model under
different constructions. The ablation method can clearly
demonstrate the impact of each component on the model
performance and justify further optimization of the model. In
the experiment, the paper set the anomaly score
corresponding to the optimal cut point on the ROC curve as
the anomaly detection threshold to ensure optimal sensitivity
and specificity are considered when evaluating the model
performance.

The results of the experimental data are shown in Table Ⅲ.

TABLE Ⅲ
 ANOMALY DETECTION RESULTS

Model AUC(%) Precision(%) Recall(%) F1(%)
DGBi-SA 0.83 0.95 0.80 0.87

DyGCN+Bi-
LSTM

0.76 0.86 0.66 0.77

DyGCN+Self-
Attention

0.74 0.82 0.55 0.61

Table III shows that the DGBi-SA model performs well in

terms of AUC, precision, recall, and F1 score, which proves
its effectiveness and reliability in anomaly detection tasks.
These results provide an important reference for further
research and application. The superior performance of the
DGBi-SA model indicates its ability to accurately detect
anomalies, even in complex and dynamic network
environments. By achieving high precision and recall, it
demonstrates a balanced ability to correctly identify both
normal and anomalous behaviors, reducing the likelihood of
false positives and false negatives. Furthermore, the
impressive F1 score highlights the model's robustness in
handling imbalanced datasets, where the distribution of
normal and anomalous instances may be skewed. These
findings suggest that the DGBi-SA model is a promising
candidate for real-world anomaly detection applications,
offering a reliable solution for improving network security
and operational efficiency.

The results of the ROC curves for each model in Fig.7
illustrate their performance and capabilities.

Fig. 7. The ROC curve of CICIDS-2017

The above experiments show that the DGBi-SA model
performs significantly better than the rest of the configuration
models. Specifically, it maintains the optimal balance
between TPR and FPR and has better generalization ability
and robustness.

The DGBi-SA model incorporates graph representation
techniques and sequence analysis methods. The model
employs DyGCN to capture data structure features and Bi-
LSTM to deepen the understanding of time series
dependencies. Meanwhile, the introduction of the Self-
Attention mechanism further improves the efficiency of
recognizing key data points related to anomaly detection. The
combination enables the model to capture the traffic data's
spatial correlation and temporal evolution. Experimental
results show that the model performs well in AUC, precision,
recall, and F1 scores, demonstrating a good balance of
accuracy and recall, effectively reducing false alarms and
improving the ability to capture real anomalies.

The DyGCN+Bi-LSTM model combines the ability of
dynamic graph convolutional networks to aggregate
information about neighboring nodes with the power of Bi-
LSTM to capture time series dependencies. The combination
improves the model's sensitivity to network mobility and
temporal continuity, thus enhancing its overall performance.
Nevertheless, there is still a gap in the overall performance of

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 612-619

__

the model in terms of various metrics compared to the DGBi-
SA model.

The DyGCN+Self-Attention model combines the DyGCN
and the Self-Attention mechanisms, which are designed to
enhance the ability to capture critical information. DyGCN
effectively aggregates information from neighboring nodes to
enhance the understanding of the network structure. At the
same time, the Self-Attention mechanisms enable the model
to be more flexible in focusing on important parts of the
traffic data related to anomaly detection when processing
sequence data. The combination enhances the model's
sensitivity to dynamic network environments.

However, the experimental results indicate that relying
solely on the combinations is insufficient for optimal
anomaly detection. Additional methods or model refinements
are needed to fully capture the complex patterns in the data.

IV. CONCLUSION

In the realm of contemporary cybersecurity and
performance management, the effective detection of network
traffic anomalies is of paramount importance. To overcome
the current challenges in processing traffic data, such as the
dynamic nature of data processing and the lack of structured
information, the paper proposes a model based on DGBi-SA
to cope with these complexities. The model effectively
captures and analyzes the dynamic graph structural
information and time-series network traffic features,
significantly improving the monitoring and response speed of
abnormal behavior in network environments.

The experimental results on the CICIDS-2017 dataset
show that the DGBi-SA model demonstrates higher
efficiency and precision in processing network traffic data
and has obvious advantages in key performance metrics such
as AUC value, precision rate, recall rate, and F1 score.

The achievements not only show the potential of the model
in the current application of network traffic anomaly
detection but also provide strong guidelines and a research
foundation for future research directions. Through the
research, we further deepen the theoretical architecture of
network anomaly detection technology and provide practical
and effective technical support for maintaining network
security.

REFERENCES

[1] M. Ahsan, K. E. Nygard, R. Gomes, M. M. Chowdhury, N. Rifat，
and J. F. Connolly, “Cybersecurity Threats and Their Mitigation
Approaches Using Machine Learning—A Review,” Journal of
Cybersecurity and Privacy, vol.2, no.3, pp527-555, 2022.

[2] Buecker, S. Arunkumar, B. Blackshaw, M. Borrett, P. Brittenham, J.
Flegr, J. Jacobs, V. Jeremic, M. Johnston, and C. Mark. Using the
IBM Security Framework and IBM Security Blueprint to Realize
Business-Driven Security; IBM Redbooks, 2014.

[3] W. Hu, Y. Liao, and V. R. Vemuri, “Robust Anomaly Detection
Using Support Vector Machines,” Proceedings of the International
Conference on Machine Learning, vol.6, 2003.

[4] Q. Ma, C. Sun, B. Cui, and X. Jin, “A Novel Model for Anomaly
Detection in Network Traffic based on Kernel Support Vector
Machine,” Computers & Security, vol.104, pp102215-102228, 2021.

[5] Fosić, D. Žagar, K. Grgić, and V. Križanović, “Anomaly Detection in
NetFlow Network Traffic Using Supervised Machine Learning
Algorithms,” Journal of Industrial Information Integration, vol.33, pp
100466, 2023.

[6] K. Mishra, S. Paliwal, and G. Srivastava, “Anomaly Setection Using
Deep Convolutional Generative Adversarial Networks in the Internet
of Things,” ISA Transactions, vol.145, pp493-504, 2024.

[7] S. J. Kumaresan, C. Senthilkumar, D. Kongkham, B. Beenarani, and
P. Nirmala, “Investigating the Effectiveness of Recurrent Neural
Networks for Network Anomaly Detection,” In 2024 International
Conference on Intelligent and Innovative Technologies in Computing,
Electrical and Electronics (IITCEE), Bangalore, pp1-5, 2024.

[8] V. Dutta, M. Pawlicki, R. Kozik, and M. Choraś, “Unsupervised
Network Traffic Anomaly Detection with Deep Autoencoders,”
Logic Journal of the IGPL, vol.30, pp912-925, 2022.

[9] Y. X. Geng, L. Wang, Z. Y. Wang and Y. G. Wang, “Central
Attention Mechanism for Convolutional Neural Networks,” IAENG
International Journal of Computer Science, vol.51, no.10, pp1642-
1648, 2024.

[10] Y.C. Wang, Y.C. Houng, H.X. Chen, and S.M. Tseng, “Network
Anomaly Intrusion Detection based on Deep Learning Approach,”
Sensors, vol.23, no.4, pp2171-2191, 2023.

[11] S. Cai, H. Xu, M. Liu, Z. Chen, and G. Zhang, “A Malicious Network
Traffic Detection Model based on Bidirectional Temporal
Convolutional Network with Multi-head Self-Attention Mechanism,”
Computers & Security, vol.136, pp103580, 2024.

[12] Y. Y. Ding, and L. Wang, “Research on the Application of Improved
Attention Mechanism in Image Classification and Object Detection,”
IAENG International Journal of Computer Science, vol.50, no.4,
pp1174-1182, 2023.

[13] Z. Cui, Z. Li, S. Wu, X. Zhang, Q. Liu, L. Wang, and M. Ai, “DyGCN:
Efficient Dynamic Graph Embedding With Graph Convolutional
Network,” IEEE Transactions on Neural Networks and Learning
Systems, vol.35, no.4, pp4635-4646, 2024.

[14] Lin Wang, Hudie Dong, and Gang Chen, “New Lyapunov-type
Inequalities for Fractional Differential Equations with Bi-ordinal Psi-
Hilfer Fractional Derivative Involving Multi-point Boundary
Conditions,” Engineering Letters, vol.31, no.2, pp648-655, 2023.

[15] W. Hu, L. Cao, Q. Ruan, and Q. Wu, “Research on Anomaly Network
Detection based on Self-Attention Mechanism,” Sensors, vol.23,
no.11, pp5059, 2023.

[16] L. Li, Y. Yang, Z. Yuan, and Z. Chen, “A Spatial-Temporal Approach
for Traffic Status Analysis and Prediction based on Bi-LSTM
Structure,” Modern Physics Letters B, vol.35, no.31, pp2150481,
2021.

[17] Bo Zhang, Xinfeng Yang, Yongqing Zhang, and Dongzhi Li, “Short-
Term Inbound Passenger Flow Prediction of Urban Rail Transit Based
on RF-BiLSTM,” Engineering Letters, vol.31, no.2, pp665-673, 2023.

[18] H. Ye, B. Cao, Z. Peng, T. Chen, Y. Wen, and J. Liu, “Web Services
Classification Based on Wide & Bi-LSTM Model,” IEEE Access,
vol.7, pp43697-43706, 2019.

[19] Li Dongping, Yang Yingchun, Shen Shikai, He Jun, Shen Haoru, Yue
Qiang, Hong Sunyan, and Deng Fei, “Research on Deep Learning
Model of Multimodal Heterogeneous Data Based on LSTM,” IAENG
International Journal of Computer Science, vol. 49, no.4, pp1016-
1022, 2022.

[20] A. A. Liu, H. S. Tian, N. Xu, W. Z. Nie, Y. D. Zhang, and M.
Kankanhalli, “Toward Region-Aware Attention Learning for Scene
Graph Generation,” IEEE Transactions on Neural Networks and
Learning Systems, vol.33, no.12, pp7655-7666, 2022.

[21] R. Dube, “Faulty use of the CIC-IDS 2017 Dataset in Information
Security Research,” Journal of Computer Virology and Hacking
Techniques, vol.20, no.1, pp203-211, 2024.

[22] Hamza KAMAL IDRISSI, and Ali KARTIT, “Network Intrusion
Detection using Combined Deep Learning Models: Literature Survey
and Future Research Directions,” IAENG International Journal of
Computer Science, vol.51, no.8, pp998-1010, 2024.

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 612-619

__

