
 

 

Network Traffic Anomaly Detection Based on 
DGBi-SA Model 

 
Abstract—Network traffic anomaly detection plays a crucial 

role in today's network security and performance management. 
In response to the challenges in current network traffic data 
processing, such as insufficient structuring and dynamics, the 
paper proposes a network traffic anomaly detection approach 
based on DGBi-SA model, which integrates Dynamic Graph 
Convolutional Networks (DyGCN), Bi-directional Long Short-
Term Memory (Bi-LSTM), and the Self-Attention mechanism. 
To solve the problem of insufficient structuring, the model 
employs DyGCN to capture network traffic's dynamic graph 
structural characteristics proficiently. Simultaneously, 
combining Bi-LSTM and the Self-Attention mechanism 
enhances the model's ability to capture temporal and spatial 
dependencies. The main objective of the research in the paper is 
to improve the accuracy and detection efficiency of network 
traffic prediction, thereby achieving effective detection and 
timely response to abnormal behaviors in complex network 
environments. Through a sequence of experiments conducted on 
the CICIDS-2017 dataset, the paper verifies that the DGBi-SA 
model can effectively solve the above problems. The 
experimental results indicate that the model outperforms 
existing methods in key performance indicators such as AUC, 
precision, recall, and F1 score, thereby proving that the DGBi-
SA model has important application value and scientific 
significance in network traffic anomaly detection.  

                                                
Index Terms—Network Traffic Anomaly Detection, Dynamic 

Graph Convolutional Network, Bi-directional Long Short-Term 
Memory, the Self-Attention Mechanism 

Ⅰ. INTRODUCTION  

n today's digital age, computer networks have become 
indispensable to people's daily lives, business activities, 

and scientific research. However, with the popularization of 
the Internet and the rapid development of information 
technology, network security is also facing increasingly 
complex and frequent threats. Network anomaly behaviors 
include network attacks, malicious traffic, and unauthorized 
access, which pose serious threats to the data security of the 

individuals, businesses, organizations, and may lead to 
service interruptions, system failures, and financial losses[1]. 
Therefore, effective network anomaly detection technologies 
ensure network security and performance. 

Traditional network traffic anomaly detection methods are 
classified into three categories: supervised learning, 
unsupervised learning, and semi-supervised learning 
anomaly detection[2]. Among them, supervised learning is 
suitable for the case where there is a sufficiently large number 
of labeled samples in the dataset. In contrast, unsupervised 
learning is suitable for completely unlabeled datasets, and 
semi-supervised learning is for the case where only some of 
the samples in the dataset are labeled. In recent years, 
numerous researchers have utilized Support Vector Machines 
(SVMs) for network traffic anomaly detection. Eskin et al.[3] 
applied SVMs to anomaly detection. However, in practice, 
the training process often contains much noise, which can 
lead to poor generalization ability of the model. Subsequently, 
Hu et al. proposed the Robust Support Vector Machine 
(RSVM) algorithm that reduces noise interference, leading to 
improved results. In 2021, Ma et al.[4] employed Kernel 
Support Vector Machines (KSVM) for anomaly detection in 
network traffic. The study was innovative in choosing the 
appropriate kernel function and parameter settings, which 
allowed the model to handle nonlinear and high-dimensional 
data more efficiently. Then, Fosić et al.[5] presented a 
supervised learning method for Netflow network traffic 
anomaly detection. The method analyzes normal and 
anomalous network traffic data distribution and compares 
multiple algorithms to select the best anomaly detection 
solutions. However, although the method achieved some 
results in improving detection efficiency and accuracy, 
supervised learning still relied on a large amount of labeled 
data, and it is extremely difficult to obtain large-scale, high-
quality labeled data in real network environments. 
Furthermore, when the distribution of network traffic data 
changes, the supervised learning model may need to be 
retrained to adapt to these changes, which greatly limits the 
model's adaptability and usefulness. 

In order to further improve the performance of network 
traffic anomaly detection, researchers have integrated deep 
learning algorithms, including Convolutional Neural 
Networks (CNNs)[6], Recurrent Neural Networks (RNNs)[7], 
and Deep Auto-encoders[8]. These algorithms showed 
impressive results in various experiments. Compared with 
traditional machine learning algorithms, deep learning 
algorithms have stronger expressive and generalization 
abilities and can more accurately detect anomalous behaviors 
in network traffic. References[9-10] introduce the network 
traffic anomaly detection model that integrates the CNN with 
the spatio-temporal data features and the Bi-directional Long 
Short-Term Memory Network (Bi-LSTM), yielding 
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favorable outcomes. References[11-12] proposed a model 
based on the Self-Attention Mechanism (SAM) for extracting 
the correlation of multiple features of network traffic data. 

However, despite the progress made by existing research, 
the network traffic anomaly detection field still needs to 
overcome many challenges. One of the main challenges is the 
need for more structure and dynamics in processing network 
traffic data, making traditional network anomaly detection 
methods difficult to adapt. Based on these challenges, the 
paper proposes a network traffic anomaly detection method 
based on DGBi-SA model. The model leverages the 
capabilities of DyGCN[13] for handling graph-structured 
data, effectively extracting spatial features from network 
traffic while incorporating time-series dependencies through 
Bi-LSTM[14] to enhance the predictive performance for 
changing traffic. In addition, integrating the Self-Attention 
mechanism[15], the model integrates the screening of key 
information and focuses analysis into the overall detection 
process, realizing comprehensive and accurate network 
traffic anomaly detection. 
 

 Ⅱ. PROPOSED METHOD   

A. Flow Matrix Prediction Model 

In the paper, we defined the network traffic matrix as: 
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Here, tM represents the traffic matrix at the t-th time 
interval, and t

abm  denotes the traffic value of the Origin-

Destination (OD) pair from node a to node b. The prediction 
model aims to estimate the traffic matrix for the next time 
interval, based on historical data: 

  1 1 2 3, , , ,t tM f M M M M    (2) 

Where, ( )•f  is a mapping function that predicts the future 

traffic matrix 1tM   based on the historical flow matrix tM . 
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Fig. 1. The overall architecture of the flow matrix prediction model
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The overall architecture of the flow matrix prediction 
model is shown in Fig.1. The purpose of the paper 
specifically refers to the DGBi-SA model, which integrates 
graph-structured data processing, the capture of dependencies 
in time series data, and the Self-Attention mechanism to 
achieve the comprehensive analysis and prediction of the 
traffic matrix.  

For the historical traffic matrix time series 
1 2 3{ }, , , , tM M M M , we first construct a sequence of graphs 

to derive the traffic matrix graph sequence 1 2 3{ }, , , , tG G G G  

and the sequence of feature matrices 1 2 3{ }, , , , tX X X X . Then, 

the Graph Convolutional Network (GCN) is used for spatial 
feature extraction to capture the representation of the traffic 
matrix at each moment. Next, we use Bi-LSTM to extract 
temporal characteristics, outputting a sequence of temporal 
features 1 2 3{ }, , , , th h h h . 

Next, the Self-Attention calculates the correlation scores 
among all positions in the traffic matrix sequence. These 
scores are used as weights to sum up the representations of all 
positions, forming a new representation for each position. 
Finally, the output from the Self-Attention layer is passed 
through the Softmax activation function to generate the 
predicted matrix 

1tM 
 .  

The model continuously optimizes the model parameters 
by backpropagation and stochastic gradient descent method 
during each round of iteration, and finally, the loss between 
the prediction matrix 

1tM 
   and the true matrix 1tM    is 

minimized. 

B. Constructing Graph Sequence 

The flow matrix modeling is transformed into the graph 
structure in the paper. Fig.2 illustrates the traffic matrix for 
different time slices to build the graph sequence. In the 
structure, the network nodes are used as the nodes in the graph, 
and the OD flows between two nodes are used as edges 
between two nodes in the graph. Each edge's weight 
represents the OD flow's size between the two nodes. 

The left matrix tM  represents the network flow matrix at 
the one-time slice, with each node in the right graph 
representing a backbone network node. It can be seen from 

the figure that the traffic matrix tM  is an N N   matrix, 
where N nodes are in the network, and N nodes are also in the 
graph structure. The element t

abm  in the matrix represents 

the traffic size from the source node a to the destination node 
b. Therefore, an edge between node a and node b exists in the 
graph data, with a weight t

abm  directed from node a to b. 

The relationship expressed by the traffic matrix is 
mathematically represented as: 

    , , 1,2,3, ,t t tG v t T   (3) 

Here, v represents the set of all nodes in the graph and   
denotes the set of all edges. The count of network nodes 
remains constant across different time slices within the same 
network. Therefore, traffic matrix prediction can be further 
abstracted as the link prediction problem, where the objective 
is to predict the set of edges in the graph for the next time 
slice based on the historical edge set. This involves learning 
structure over time to accurately forecast future links. 

It can also be regarded as the problem of predicting the 
edge weights in the graph, that is, predicting the weights of 

all edges in the graph 1 tG   at the forthcoming moment   
based on the historical graph sequence of the graph

1 2 3{ }, , , , tG G G G . 
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Fig. 2. Flow matrix pre-time series converted to graph time series 

schematic 
 

After extracting the node features for each time slice, the 

generated node features form the feature matrix tX N dR 
of the node-set, where d denotes the number of node features. 
Each time slice extracts the network node features similarly, 
forming a graph time series 1 2 3{ }, , , , tG G G G  for each graph 

in the sequence of node feature matrices 1 2 3{ }, , , , tX X X X . 

C. Spatial Feature Modeling Based on GCN 

GCN extracts features through neighborhood aggregation 
and the utilization of graph topological structures, enabling it 
to adapt to graphs of varying sizes and complexities. In the 
paper, we take advantage of GCN's graph structure extraction 
to learn the structure information under each time slice. GCN 
extends the idea of convolution to graphs by aggregating  
neighbor information through the defined spectral graph 
convolution. 

Given a directed graph ( , , )G v X , where v,  and X are 

the set of nodes, the set of edges, and all the node features 
that form the node feature matrix in the graph, respectively. 
Approximation of convolution operations using Chebyshev 
polynomials is an effective optimization method for GCN.         
The approach allows GCN to approximate the spectral 
convolution of a graph without directly computing the feature 
decomposition of the graph, thus enabling more efficient 
operation on large graphs and reducing computational 
complexity. The Chebyshev polynomial is calculated as 
follows: 

    
0

ˆ*
K

k k
k

f G X T L X 


  (4) 

Here, f  represents the convolution kernel; KR  is a 

polynomial vector of degree K; )ˆ(kT L  is the K-th order 

polynomial of the Chebyshev polynomials in the graphical 
Laplacian in the normalized form ˆ 2 / max NL L I    , where 

max   is the largest eigenvalue of L, and NI   is the N-

dimensional identity matrix. Define  0 1T X  ,  1T X X ,

  1k 1 2 ( ) ( )k kT X XT X T X   . 

Solve the above equations by using an approximate 
expansion, from which the information of the neighboring 
nodes up to the K-th order can be extracted.  

The process allows for the aggregation of information from 
a node's neighbors at various levels of proximity, capturing 
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both direct and indirect relationships within the network. This 
enhances the model’s ability to capture complex 
dependencies. 

Additionally, the GCN operates through an activation 
function to introduce non-linearity. In the paper, the ReLU 
(Rectified Linear Unit) activation function is employed, 
which is commonly used due to its effectiveness in preventing 
vanishing gradients and promoting faster convergence during 
training. Fig.3 shows the GCN message passing process. 
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Fig. 3. GCN message passing process 

 

According to the above formula, assuming 1k  and 
2max  , then the formula for the first-order graph 

convolution operation can be expressed as: 

 
1 1

( ) ( )2 2( ) ˆ l l
GX f G X D AD X W 

  
   
 
 

 (5) 

Here, 
1 1

2 2ˆ
NA I D AD

 
  , where D and A represent the 

degree and adjacency matrices of the graph, respectively; W 
are the model parameters; and   is the activation function. 

Fig.3 illustrates the process of the first-order message 
passing in GCN when k=1. Node X5 represents the central 
node, with the other nodes representing its neighboring nodes. 
The first-order GCN aggregates neighbor features through the 
relationships between the central node and its neighboring 
nodes, thereby obtaining the spatial features of the central 
node. 

In summary, first-order graph convolution can effectively 
obtain the first-order neighbor spatial features. Therefore, 
graph convolution is used to process the traffic matrix graph 
time series in the paper so that each node's representation 
contains the spatial information of its first-order neighbors. 
The method aggregates OD flows with the same source and 
destination nodes to extract spatial correlation features 
between them.  

Finally, spatial representation for each traffic matrix is 
generated using spatial relationships. 

D. Temporal Feature Modeling Based on Bi-LSTM 

This section will model and analyze the temporal 
dependence properties between time series, mainly by 
inputting the vector of high-dimensional flow matrix 
representations into a recurrent neural network to explore the 
temporal correlation between the flow matrices. 

The Long-short-term memory (LSTM) networks[16]are a 
type of RNN that combines short-term and long-term 

memories through a gate control mechanism to solve the 
gradient vanishing problem and enable the modeling of long 
sequence dependencies. 

The propagation equation is expressed as follows[17]: 

  1t ix t ih t ii W x W h b     (6) 

  1t ix t ih t ii W x W h b     (7) 

  1t ox t oh t oo W x W h b     (8) 

 1( )t gx t gh t gg tanh W x W h b    (9) 

 1* *t t t t tc f c i g   (10) 

 )* tanh(t t th o c  (11) 

In the above equation, xt is the t-th element in the input 
sequence, ht is the hidden state at time step t, and ct is the cell 
state at the t-th time step. it, ft and ot are the activation values 
of the input gate, the forget gate, and the output gate, 
respectively.  

And gt is the current candidate memory value. W and b are 
trainable parameters in the LSTM model, which are tuned to 
minimize the prediction error during the training process. W 
determines the impact of different input features on the model 
output, while b provides additional flexibility to the model. 

 and ( )•tanh are the activation functions used to 

introduce nonlinear transformations into the computation of 
the model. And   usually refers to the Sigmoid function, 
which compresses the input between 0 and 1, and it is used to 
control the degree of door opening. 

Whereas, ( )•tanh  is the hyperbolic tangent function which 

compresses the input between -1 and 1, and it is used to 
generate updates of cell states and candidate memory values. 

The structure of the LSTM unit is shown in Fig.4, which 
includes three gates: the forget gate, the input gate, and the 
output gate.  
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Fig. 4. An LSTM cell 

 
Among them, the forget gate plays a crucial role in 

deciding which hidden information should be forgotten or 
discarded. It uses the Sigmoid activation function to 
determine which details need to be deleted from memory, 
ensuring that only relevant information is retained.  

The input gate, on the other hand, can selectively add the 
input information of the current moment to the memory state, 
updating the cell state with new data. The gate regulates how 
much new information enters the memory by controlling the 
flow of input signals. 
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Finally, the output gate is responsible for generating a new 
hidden state and the output of the time step. It combines the 
inputs and the memory to determine the output, ensuring that 
the model retains important features while passing forward 
the necessary information for future time steps. The allows 
the model to focus adaptively on relevant data. Moreover, the 
output gate helps the model maintain a balance between 
short-term memory and long-term context, crucial for 
sequential data tasks.  

Bi-LSTM[18] is an enhanced version of the traditional 
LSTM model. Its structure consists of LSTM units in two 
directions: one that processes the input sequence in 
chronological order, called the forward LSTM, and another 
that processes the input sequence in reverse chronological 
order, called the reverse LSTM[20]. The bidirectional 
structure allows Bi-LSTM to capture both past and future 
dependencies in the data, improving its ability to model 
complex temporal relationships.  

The bi-directional feature extraction process of Bi-LSTM 
is shown in Fig.5. 
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As shown in the figure, the outputs of these two directions 
are concatenated or merged to produce the final output. The 
advantage of this structure is that the forward LSTM captures 
pre-temporal features. In contrast, the reverse LSTM captures 
post-temporal features, and combining the two provides a 
more comprehensive feature-capturing capability for network 
anomaly detection.  

For example, certain anomalous behavior may manifest as 
an abnormal packet increase in the first few moments of the 
flow and as a disconnection in the subsequent moments. 
Combining the timing information from these two directions 
allows Bi-LSTM to capture this back-and-forth dependency 
more effectively. 

As shown in the above figure: Assuming that the input 
sequence is 1 2 3 }, , ,={ , tX X X X X , the forward LSTM unit 

receives the input sequence from the forward direction and 
outputs the hidden state ht step by step.  

In contrast, the reverse LSTM unit processes the input 
sequence from the backward direction and outputs the hidden 
state ht. At each time step t, the final output of Bi-LSTM is 
splicing the output of forward LSTM with the output of 
reverse LSTM, as shown in Eq.(12):  

 ,t t th h h   
 

 (12) 

Here, th is the output of the spliced, th


  and th


  denote 

the output of the forward and reverse LSTM, respectively. 
This bi-directional splicing enables the model to capture both 
forward and backward information.  

The calculation of th


  and th


  can be expressed by the 

following equation: 

  * tanht t th o c
    (13) 

  * tanht t th o c
    (14) 

Here, to


 and to
  are the forward and reverse outputs of 

time t, respectively. tc


 and tc
  are the forward and reverse 

hidden unit cell states at the moment t. 

E. Feature Correlation Detection 

Self-Attention[20] is a mechanism for capturing the 
dependencies among different positions within the sequence. 

First, the correlation scores of each position in the input 
sequence with all other positions are computed, which reflect 
the relevance between different elements in the sequence. 
Then, weighting and summing the representations of all 
positions using these scores as weights allows the model to 
focus on the most relevant parts of the sequence. 

As shown below, Fig.6 illustrates the specific process of 
calculating the attention value. 
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Here, qi represents the query vector associated with the i-th 

input. Meanwhile, kj and vj represent the key vector and value 
vector of the j-th input, respectively. Consequently, the 
attention value is determined by evaluating the relationship 
between the i-th input and each of the 1st, 2nd, ..., and the j-
th inputs, thereby emphasizing the correlation among all 
inputs. The specific calculation is divided into three steps. 

Firstly, the correlation score between each pair of elements 
is calculated by the Scaled Dot-Product score function, which 
is generally scaled by dividing by 

kd  (the dimension of k); 

the calculation is as follows: 

  ,
i j

i j
k

q k
S q k

d


  (15) 

Then, the scores are normalized by using the Softmax 
function to obtain the attention weights, which are given by 
the following equation: 

     
  

1

exp ,
,

exp ,

i j

i j n

i j
j

S q k
A q k

S q k





 (16) 
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Finally, the value vectors are weighted and summed using 
the attention weights to obtain the output representation, 
which can be articulated as follows: 

    
1

, ,
n

i i j jj
A q V A q k v


   (17) 

In this way, for each element xi, the Self-Attention 
mechanism computes the weighted representation, 
considering information from all other positions in the 
sequence, creating long-distance dependencies among 
different positions. 

 
III. EXPERIMENTAL RESULTS AND ANALYSIS  

A. Dataset 

The CICIDS-2017 dataset was created by the Canadian 
Institute for Cybersecurity Research[21]. The dataset 
contains 283,0743 traffic records, with 70% allocated for the 
training set, 15% for the validation set, and 15% for the 
testing set. Each traffic record consisted of 78 features. The 
data collection period started on July 3 and ended on July 7, 
2017, spanning 5 days. The first day's traffic contained only 
normal traffic. In contrast, over the next four days, a variety 
of malicious traffic was collected, including File Transfer 
Protocol (FTP), Secure Shell (SSH), Distributed Denial of 
Service (DDoS) attacks, Heartbleed vulnerabilities, Web 
attacks, infiltration, and botnets.  

Compared with most other traffic datasets (such as the 
classic KDDCUP99, NSLKDD, etc.), the CICIDS-2017 
dataset has more varied traffic types and a larger scale, which 
better reflects the real network environment and thus 
becomes one of the most used datasets in the field of anomaly 
traffic detection[22].The following table describes the main 
features of the CICIDS-2017 dataset, as shown in Table Ⅰ. 

 
TABLE Ⅰ 

INTRODUCTION TO THE CICIDS-2017 DATASET 

Node 
Number 

/units 

Edge 
Number 
/ units 

Graph 
Number/ 

units 

Attack 
types 
/types 

Flow Feature 
Dimensions/ 
dimensions 

19211 2824000 2824 14 78 

 

The following preprocessing steps are required before 
inputting the traffic data into the model: 

1) Constructing Graph Data Structure 
For each traffic record in a CSV file, an edge list is first 

constructed based on the source IP, destination IP, and labels. 
Next, the IP addresses are encoded using LabelEncoder to 
convert them into corresponding node ID, and based on these 
encodings the characteristics of the nodes are generated, such 
as the number of packets or bytes transmitted and other traffic 
statistics. 

2) Adjacency Matrix Construction and Normalization 
For each communication graph, the adjacency matrices of 

source IPs to flows, the adjacency matrices of destination IPs 
to flows, and the adjacency matrices between IP nodes are 
constructed, respectively. Subsequently, these adjacency 
matrices are normalized, and commonly used methods 
include random walk normalization and symmetric 
normalization. 

3) Graph Segmentation and Labeling 
Each communication graph's edge list, feature list, and 

label list are sorted for subsequent processing. In temporal 
order, every 1000 flow records form a communication graph 
G, creating a sequence of graphs that represent the network's 
behavior over time. 

4) Communication graph labeling 
Set labels for each communication graph. If malicious 

traffic is detected, set its label to 1; conversely, if it is normal 
traffic, set it to 0. The labeling process is crucial for 
supervised learning, as it provides the necessary ground truth 
for training the model. 

B. Experimental Parameter Design 

While performing the dynamic graph anomaly detection 
task, the model learns the normal pattern using normal data, 
and then identifies points on the new data that significantly 
depart from the learned normal pattern, which are judged as 
anomalies.  

Therefore, the data in the training set should be normal and 
time-continuous. For the CICIDS-2017 dataset, the training 
set was constructed from data generated on Monday, and the 
test set consisted of data from Tuesday through Friday. The 
results of the division of the dataset are shown in Table II. 

 
TABLE Ⅱ 

 PARTITIONING OF THE CICIDS-2017 DATASET 

Training set/ 
records 

Validation Set/ 
records 

Testing set/ records 

1976 423 423 

 
In order to evaluate the performance of the model, the 

paper draws ROC curves consisting of True Positive Rate 
(TPR) and False Positive Rate (FPR) at the different 
thresholds. TPR refers to the proportion of actual positive 
cases that the model correctly identifies as positive, meaning 
the true positives are divided by the total number of actual 
positives. In contrast, FPR refers to the proportion of actual 
negative cases the model incorrectly identifies as positive, 
meaning the false positives are divided by the total number of 
actual negatives. The area under the ROC curve (the AUC 
value) is a key measure of the model's predictive performance, 
where a higher AUC value indicates better model 
performance.  

The shape of the ROC can help analyze the performance of 
the model under different thresholds, especially when dealing 
with unbalanced datasets. It can clearly demonstrate the effect 
of the model. 

Additionally, the paper calculates the threshold on the 
ROC curve that maximizes the difference between TPR and 
FPR to determine the optimal cut point and evaluate the 
precision, recall, and F1 score corresponding to that point.  
Together, these metrics provide a comprehensive view of the 
model's performance evaluation. 

Firstly, during the model training process, in order to 
obtain sufficient training samples while maintaining the order 
of the time series data, to better learn the characteristics of the 
data, and to enhance the generalization ability of the model, 
the paper adopts the sliding window with a size of 5 and a 
step size of 1 to segment the graphical dataset. Specifically, 
the sliding window is shifted to one unit on the right at a time 
to generate continuous time series samples. The approach 
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ensures that each sample contains sufficient contextual 
information, enhancing the model's understanding of time 
series data. 

Secondly, the learning rate is an important hyperparameter 
of the optimization algorithm, which directly affects the 
learning speed and stability of the model during the training 
process. A higher learning rate may cause the model to 
converge quickly during training, but it may likely skip the 
global optimal solution. In contrast, the lower learning rate 
can make the model more stable towards the global optimal 
solution but with a slower convergence speed. After many 
experiments and tuning, this paper determines that a learning 
rate of 0.0001 can well balance the stability of the model and 
the quality of convergence. In addition, the learning rate is 
also automatically adjusted using the Adam optimizer, which 
can effectively accelerate the training process and improve 
the model performance. 

Next, Layer Normalization was implemented in the DGBi-
SA model, which is designed to stabilize changes in the 
internal activation distribution during training.  

In addition, the choice of dimension for node embedding is 
crucial; too small a dimension may lead to information loss, 
while too large a dimension may increase the computational 
complexity and risk of overfitting. Ultimately, based on the 
previous experiments' multiple attempts and evaluations, 
when the node embedding dimension is set to 64, it can 
achieve excellent information characterization under an 
acceptable computational load. 

Finally, the paper chose 50 iterations of training to ensure 
that the algorithm can converge and avoid overfitting. The 
setting maximizes the model performance within a reasonable 
training time, while the training process is controlled by 
monitoring it through methods such as cross-validation to 
ensure the model's ability to generalize on the test data. 

C. Anomaly Detection Performance 

In order to validate the performance of the DGBi-SA 
model, the research conducted ablation experiments designed 
to clarify the extent to which the Self-Attention mechanism 
and the Bi-LSTM layer contribute to the overall performance 
of the model. By excluding these two key components one by 
one, we analyzed the performance of the model under 
different constructions. The ablation method can clearly 
demonstrate the impact of each component on the model 
performance and justify further optimization of the model. In 
the experiment, the paper set the anomaly score 
corresponding to the optimal cut point on the ROC curve as 
the anomaly detection threshold to ensure optimal sensitivity 
and specificity are considered when evaluating the model 
performance.  

The results of the experimental data are shown in Table Ⅲ. 
 

TABLE Ⅲ 
 ANOMALY DETECTION RESULTS 

Model AUC(%) Precision(%) Recall(%) F1(%) 
DGBi-SA 0.83 0.95 0.80 0.87 

DyGCN+Bi-
LSTM 

0.76 0.86 0.66 0.77 

DyGCN+Self-
Attention 

0.74 0.82 0.55 0.61 

 
Table III shows that the DGBi-SA model performs well in 

terms of AUC, precision, recall, and F1 score, which proves 
its effectiveness and reliability in anomaly detection tasks. 
These results provide an important reference for further 
research and application. The superior performance of the 
DGBi-SA model indicates its ability to accurately detect 
anomalies, even in complex and dynamic network 
environments. By achieving high precision and recall, it 
demonstrates a balanced ability to correctly identify both 
normal and anomalous behaviors, reducing the likelihood of 
false positives and false negatives. Furthermore, the 
impressive F1 score highlights the model's robustness in 
handling imbalanced datasets, where the distribution of 
normal and anomalous instances may be skewed. These 
findings suggest that the DGBi-SA model is a promising 
candidate for real-world anomaly detection applications, 
offering a reliable solution for improving network security 
and operational efficiency.  

The results of the ROC curves for each model in Fig.7 
illustrate their performance and capabilities. 

 

 
Fig. 7. The ROC curve of CICIDS-2017 

 

The above experiments show that the DGBi-SA model 
performs significantly better than the rest of the configuration 
models. Specifically, it maintains the optimal balance 
between TPR and FPR and has better generalization ability 
and robustness. 

The DGBi-SA model incorporates graph representation 
techniques and sequence analysis methods. The model 
employs DyGCN to capture data structure features and Bi-
LSTM to deepen the understanding of time series 
dependencies. Meanwhile, the introduction of the Self-
Attention mechanism further improves the efficiency of 
recognizing key data points related to anomaly detection. The 
combination enables the model to capture the traffic data's 
spatial correlation and temporal evolution. Experimental 
results show that the model performs well in AUC, precision, 
recall, and F1 scores, demonstrating a good balance of 
accuracy and recall, effectively reducing false alarms and 
improving the ability to capture real anomalies. 

The DyGCN+Bi-LSTM model combines the ability of 
dynamic graph convolutional networks to aggregate 
information about neighboring nodes with the power of Bi-
LSTM to capture time series dependencies. The combination 
improves the model's sensitivity to network mobility and 
temporal continuity, thus enhancing its overall performance. 
Nevertheless, there is still a gap in the overall performance of 
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the model in terms of various metrics compared to the DGBi-
SA model. 

The DyGCN+Self-Attention model combines the DyGCN 
and the Self-Attention mechanisms, which are designed to 
enhance the ability to capture critical information. DyGCN 
effectively aggregates information from neighboring nodes to 
enhance the understanding of the network structure. At the 
same time, the Self-Attention mechanisms enable the model 
to be more flexible in focusing on important parts of the 
traffic data related to anomaly detection when processing 
sequence data. The combination enhances the model's 
sensitivity to dynamic network environments.  

However, the experimental results indicate that relying 
solely on the combinations is insufficient for optimal 
anomaly detection. Additional methods or model refinements 
are needed to fully capture the complex patterns in the data. 

 
IV. CONCLUSION 

In the realm of contemporary cybersecurity and 
performance management, the effective detection of network 
traffic anomalies is of paramount importance. To overcome 
the current challenges in processing traffic data, such as the 
dynamic nature of data processing and the lack of structured 
information, the paper proposes a model based on DGBi-SA 
to cope with these complexities. The model effectively 
captures and analyzes the dynamic graph structural 
information and time-series network traffic features, 
significantly improving the monitoring and response speed of 
abnormal behavior in network environments. 

The experimental results on the CICIDS-2017 dataset 
show that the DGBi-SA model demonstrates higher 
efficiency and precision in processing network traffic data 
and has obvious advantages in key performance metrics such 
as AUC value, precision rate, recall rate, and F1 score. 

The achievements not only show the potential of the model 
in the current application of network traffic anomaly 
detection but also provide strong guidelines and a research 
foundation for future research directions. Through the 
research, we further deepen the theoretical architecture of 
network anomaly detection technology and provide practical 
and effective technical support for maintaining network 
security. 
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