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Abstract—An adaptive tracking control strategy is investigat-
ed for a class of nonlinear uncertain pure-feedback systems with
prescribed performance constraints. Remarkably, the consid-
ered systems allow for unknown constant parameters and non-
affine control input. First, by utilizing backstepping method
along with barrier Lyapunov function (BLF), we introduce
an output tracking control strategy. This method ensures that
the predefined performance is maintained and the output
asymptotically tracks a specified reference signal. Additionally,
adaptive estimate and integrator are applied in this procedure
to overcome the challenges posed by parametric uncertainty
and non-affine input burden. The results indicate that under
the presented adaptive tracking controller, the tracking error
stays within the prescribed performance bounds (PPB), and all
signals in the closed-loop system remain bounded. To conclude,
the effectiveness of the BLF-based tracking control method is
confirmed through simulations.

Index Terms—Uncertain pure-feedback systems; integrator;
adaptive estimate; prescribed performance; barrier Lyapunov
function (BLF)

I. INTRODUCTION

TRACKING control is a key issue in the domain of
nonlinear systems control. For instance, it can be

applied to various scenarios, including motion trajectory
control of flexible joint manipulators [1], and path tracking
control of autonomous underwater vehicles [2], etc. This
problem of asymptotic tracking has a long-standing history
and has been extensively investigated over the last thirty
years, as demonstrated in studies such as [3]-[6] and the
associated references. It is important to note that traditional
approaches mainly focus on the tracking control without
ensuring the specified performance constraints. In practice,
performance constraints are essential for practical systems.
For example, as written in [7], maintaining contact and pre-
venting excessive forces are critical in a robot’s contact task.
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The end effector may sustain damage, and the surrounding
environment could be at risk if contact is lost, leading to
uncontrollable consequences. Therefore, it is undoubtedly
meaningful to consider asymptotic tracking control with
specified performance requirements.

Many interesting results had been generated in this direc-
tion over the past ten years. In particular, Bechlioulis and
Rovithakis in [8] introduced a new output error transforma-
tion that ensured the tracking error remained within PPB.
In [9], an event-triggered control method with predefined
performance constraints was achieved by integrating velocity
transformation into the BLF and introducing an intermediate
variable in the system. To guarantee the tracking error
stayed within PPB, the findings in [10] proposed a control
design method that included a simplified-order extended state
observer, an input-to-state stable supply rate variation tech-
nique, a tan-type BLF. In contrast to these developments, the
literature also presents important findings on pure-feedback
systems, which are considered more applicable in practical
systems than strict-feedback systems. For example, the study
in [11] used fuzzy control methods to approximate unknown
functions and estimate unmeasured states, thereby relaxing
the constraints on partial derivatives in controller design.
Additionally, the research in [12] significantly reduced the
complexity of controller design and achieved the system’s
desired performance by incorporating active disturbance re-
jection control into the controller design process. Work in
[13] tackled the problem of random disturbances by decou-
pling non-parametric components and redesigning controller
with predetermined performance.

Despite the aforementioned achievements in prescribed
performance control, many open problems remain for non-
linear systems characterized by uncertainty, nonlinearity,
and non-affine structure. Based on the authors’ knowledge,
limited results are available that focus on tracking error
with prescribed performance for general nonlinear pure-
feedback systems with parameter uncertainty. The related
works in [14] and [15] proposed adaptive control strategies
for tracking in nonlinear pure-feedback systems, but did
not involve prescribed performance constraints. Building on
existing research, we propose a adaptive tracking controller
for uncertain pure-feedback systems with predefined perfor-
mance. The controller guarantees that the reference trajectory
is asymptotically tracked within PPB. This finding general-
izes the category of nonlinear uncertain systems subject to
the predefined performance constraints and further improves
the existing results such as [8][12][15]-[17].

Compared to the previous results, the innovations can be
outlined in three key points:
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(1) Differing from the strict-feedback systems discussed
in [8]-[10] as well as the pure-feedback systems considered
in [11][12][16][17], this work focuses on the uncertain pure-
feedback systems involving both unknown constant parame-
ters and non-affine form, which further broadens the category
of nonlinear uncertain systems.

(2) By constructing a BLF and applying state transfor-
mation, the challenging tracking control with predefined
performance problem turns into a stabilization problem in
a regional case. Different from the existing control schemes
that use adaptive fuzzy strategies[11][18] and neural network
strategies[19][20], we employ the technique of adaptive
tuning function to address parameter uncertainty, thereby
reducing the complexity of the control algorithm.

(3) The developed controller guarantees that all signals
within the closed-loop system remain bounded as well as
the tracking error tends towards a prescribed compact range
within PPB. Moreover, if the bounding constants are careful-
ly set when ϕ− + ϕ+ = 0, the tracking error can be driven
towards zero, while also enhancing the system’s performance
in steady-state conditions.

II. PROBLEM STATEMENT

We consider the following uncertain pure-feedback sys-
tems ẋi = θTfi(x̄i) + gi(x̄i, xi+1), i = 1, · · · , n− 1

ẋn = θTfn(x̄n) + gn(x̄n, u)
y = x1,

(1)

where x = (x1 · · ·xn) ∈ Rn represents the system state, with
u and y as the control input and output, respectively; θ ∈
Rr is the unknown constant parameter, while f1 · · · , fn and
g1, · · · , gn are known smooth functions. It should be noted
that gn(x̄n, u) involves the control input u, which suggests
it does not necessarily exhibit an affine structure.

Here we provide some assumptions and lemmas on the
considered systems (1).

Assumption 1. There is a positive constant ε, so that∣∣∣∣∂gi(x̄i, xi+1)

∂xi+1

∣∣∣∣ ≥ ε, i = 1, · · · , n, (2)

where xn+1 = u.
Assumption 2. It is assumed that the desired trajectory yd

and its (n+1)-order time derivatives y(i)
d (i = 1, 2, · · · , n+1)

are both bounded as well as known.
Remark 1. The systems (1) investigated in this article

do not have an affine form, which represent a broader
range of nonlinear uncertain systems compared to strict-
feedback systems. In reality, many practical systems can
be represented by a non-affine structure, for example the
Brusselator chemical reactor systems [17], the flight path
angle control systems [21], and the mechanical systems [22],
etc.

Remark 2. It is noted that Assumption 1 guarantees the
systems (1) remain controllable in view of ε > 0. Moreover,
ε serves as a constrained constant and does not affect
the following control design. This assumption is commonly
employed in pure-feedback systems, see, for example, [16]
and [23]. Assumption 2 requires a priori knowledge of the
(n + 1)th-order derivatives y

(n+1)
d , which is essential for

achieving asymptotic tracking control for a desired reference,
as demonstrated in [20] and [24].

Lemma 1[16]. Given a bounded and continuously differ-
entiable function hi (x̄i, xi+1) and a positive constant ε, if∣∣∣∂hi(x̄i,xi+1)

∂xi+1

∣∣∣ ≥ ε, so xi+1 is bounded, for i = 1, · · · , n.
Lemma 2[19]. For any |a| < 1, a ∈ R, the following

inequality is true

log
1

1− a2
≤ a2

1− a2
. (3)

Lemma 3[25]. Let N = Rl×Z ∈ Rl+1 be open sets along
with Z = {ξ ∈ R : |ξ| < 1} ⊂ R. Consider the following
system

η̇ = h (t, η) , (4)

where η = [ω, ξ]
T ∈ N , together with h : R+ × N →

Rl+1 is piecewise continuous in t as well as locally Lipschitz
in η, uniformly with respect to t, on N . Assume there are
functions U : Rl × R+ → R+ along with υ1 : Z → R+,
both continuously differentiable and positive definite within
their respective domains, so that

|ξ| → 1, υ1 (ξ)→∞ (5)

γ1(‖ω‖) ≤ U (ω, t) ≤ γ2(‖ω‖), (6)

where γ1, γ2 are class-K∞ functions. Define υ (η) =
υ1 (ξ) + U (ω, t), as well as ξ (0) ∈ Z. If the following
inequality holds

υ̇ =
∂υ

∂η
h(t, η) ≤ 0, ξ ∈ Z, (7)

in the set ξ ∈ Z, it follows that ξ (t) ∈ Z for all t ∈ [0,∞) .
This article focuses on designing the control input u to

ensure asymptotic tracking of the system output y to the
reference trajectory yd, with the tracking error z1 = y − yd
satisfies the prescribed performance F

F =
{

(t, z1) ∈ Rt≥0 ×R |ϕ−0 (t) < z1 (t) < ϕ+
0 (t)

}
, (8)

where ϕ+
o (t) and ϕ−o (t) are smooth functions that represent

the predetermined performance, and meet the following
requirements:

(1) It is assumed that ϕ+
o (t) and ϕ−o (t), along with their

(n+ 1)th-order derivatives, are bounded;
(2) As t→∞, we have lim

t→∞
ϕ−o (t) = ϕ− and

lim
t→∞

ϕ+
o (t) = ϕ+, where ϕ+ as well as ϕ− are predefined

constants, and moreover, ϕ− < ϕ+.

III. ADAPTIVE CONTROL DESIGN

As a result of the pure-feedback structure as well as the
non-affine form of the control input u, we add an auxiliary
integrator as

u̇ = v, (9)

where v denotes an auxiliary control input. The following
system, offering convenience for control design, is introduced ẋi = θTfi(x̄i) + gi(x̄i, xi+1), i = 1, · · · , n− 1

ẋn = θTfn(x̄n) + gn(x̄n, u)
u̇ = v.

(10)

Remark 3. With the addition of an auxiliary integrator,
the systems (1) with non-affine structure is converted to the

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 603-611

 
______________________________________________________________________________________ 



systems (10). In this case, the u can be computed through
(9) and the v in Step n + 1, thus solving the issue of the
control input u is involved in gn(x̄n, u).

Different from the standard backstepping, we perform the
changes of coordinates

z1 = x1 − yd (11)
zi+1 = gi − αi, i = 1, · · · , n− 1 (12)
zn+1 = gn − αn, (13)

where αi represents the virtual control law in Step i.
Remark 4. Since the system state xi+1 is hidden in the

function gi, the standard backstepping method is difficult
to apply in the controller design. To address this design
challenge, this paper adopts the approach of treating the
non-affine function gi as a virtual control variable and
incorporates it into a new backstepping method.

Next, we will design the controller using a recursive
method.

Step 1: We select the following augmented BLF:

V1 =
1

2
ln

1

1− ξ2
+

1

2
θ̃TΓ−1θ̃, (14)

where θ̂ represents the estimate of θ with the error θ̃ = θ− θ̂,
and Γ denotes a positive definite matrix gain, with

ξ =
2z1 − (ϕ+

o + ϕ−o )

ϕ+
o − ϕ−o

, (15)

In terms of (11), (14) and (15), we have

V̇1 =
2
(
θTf1 + z2 + α1 − ẏd

)
ξ

(1− ξ2)
(
ϕ+
o − ϕ−o

) +
2ξϕ̇+

o ϕ
−
o(

ϕ+
o − ϕ−o

)2
−2z1 (ϕ̇+

o − ϕ̇−o ) ξ(
ϕ+
o − ϕ−o

)2 − 2ξϕ̇−o ϕ
+
o(

ϕ+
o − ϕ−o

)2 (16)

+
(
θ̂ − θ

)T

Γ−1 ˙̂
θ.

Then, we design the virtual control law α1 along with the
tuning function τ1 as shown below

α1 = −c1z1 − θ̂Tf1 +
1

2
c1
(
ϕ+
o + ϕ−o

)
+ ϑ (17)

τ1 =
2ξΓf1

(1− ξ2)
(
ϕ+
o − ϕ−o

) , (18)

where c1 > 0 is a design constant and ϑ = ẏd +
z1(ϕ̇+

o −ϕ̇
−
o )−ϕ̇+

o ϕ
−
o +ϕ̇−o ϕ

+
o

ϕ+
o −ϕ−o

.
By combining (17) and (18), we know

V̇1 = −c1
ξ2

1− ξ2
+

2ξz2

(1− ξ2)
(
ϕ+
o − ϕ−o

) (19)

+
(
θ̂ − θ

)T

Γ−1
(

˙̂
θ − τ1

)
.

Step 2: Consider ζ = (yd, ϕ
+
o , ϕ

−
o )

T, and it is known from
Assumption 2 that its (n+1)-order time derivatives ζ(i) (for
i = 1, 2, · · · , n+ 1) are bounded as well as known.

Take a candidate Lyapunov function

V2 = V1 +
1

2
z2

2 , (20)

also from (12), (19) and (20), we have

V̇2 = −c1
ξ2

1− ξ2
+

2ξz2

(1− ξ2)
(
ϕ+
o − ϕ−o

)
+z2

{
∂g1

∂x2

(
θTf2 + z3 + α2

)
− ∂α1

∂θ̂

˙̂
θ

−
(
∂α1

∂x1
− ∂g1

∂x1

)(
θTf1 + g1

)
(21)

−
1∑
j=0

∂α1

∂ζ(j)
ζ(j+1)

}
+
(
θ̂ − θ

)T
Γ−1

(
˙̂
θ − τ1

)
.

Then α2 and τ2 are defined, as described below

α2 =
1
∂g1
∂x2

{
− 2ξ

(1− ξ2)
(
ϕ+
o − ϕ−o

) − c2z2

+
1∑
j=0

∂α1

∂ζ(j)
ζ(j+1) +

∂α1

∂θ̂
τ2 (22)

−θ̂T

(
∂g1

∂x2
f2 −

(∂α1

∂x1
− ∂g1

∂x1

)
f1

)
+

(
∂α1

∂x1
− ∂g1

∂x1

)
g1

}

τ2 = τ1 + z2Γ

(
∂g1

∂x2
f2 −

(∂α1

∂x1
− ∂g1

∂x1

)
f1

)
, (23)

with c2 > 0 a design constant.
Then, by directly applying (22) and (23) in (21), we can

acquire

V̇2 = −c1
ξ2

1− ξ2
− c2z2

2 +
∂g1

∂x2
z2z3

+

((
θ̂ − θ

)T

Γ−1 − z2
∂α1

∂θ̂

)(
˙̂
θ − τ2

)
. (24)

Step i (3 ≤ i ≤ n): Assuming that αi−1 and τi−1 are
designed, with zi−1 = gi − αi−1. From (24), we get

V̇i−1 =
((
θ̂ − θ

)T
Γ−1 −

i−2∑
j=1

zj+1
∂αj

∂θ̂

)(
˙̂
θ − τi−1

)
+
∂gi−2

∂xi−1
zi−1zi − c1

ξ2

1− ξ2
−

i−1∑
j=2

cjz
2
j . (25)

Then, we will demonstrate that the property (25) also
applies in Step i as well. For this purpose, Vi is chosen
as follows

Vi = Vi−1 +
1

2
z2
i . (26)

In view of (12), (25) and (26), V̇i is possible to obtain as

V̇i = −c1
ξ2

1− ξ2
−

i−1∑
j=2

cjz
2
j + zi

{
∂gi−2

∂xi−1
zi−1

+
∂gi−1

∂xi

(
θTfi + zi+1 + αi

)
− ∂αi−1

∂θ̂

˙̂
θ

+
i−1∑
j=1

(
∂gi−1

∂xj
− ∂αi−1

∂xj

)(
θTfj + gj

)
−
i−1∑
j=0

∂αi−1

∂ζ(j)
ζ(j+1)

}
+
(

˙̂
θ − τi−1

)
(27)
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·
((
θ̂ − θ

)T
Γ−1 −

i−2∑
j=1

zj+1
∂αj

∂θ̂

)
.

Then, αi and τi can be given as follows

αi =
1

∂gi−1

∂xi

{
i−1∑
j=1

(
∂αi−1

∂xj
− ∂gi−1

∂xj

)
gj +

∂αi−1

∂θ̂
τi

+

( i−2∑
j=1

zj+1
∂αj

∂θ̂
Γ− θ̂T

)(
∂gi−1

∂xi
fi

−
i−1∑
j=1

(
∂αi−1

∂xj
− ∂gi−1

∂xj

)
fj

)
− cizi (28)

− ∂gi−2

∂xi−1
zi−1 +

i−1∑
j=0

∂αi−1

∂ζ(j)
ζ(j+1)

}

τi = τi−1 + Γzi

{
∂gi−1

∂xi
fi

−
i−1∑
j=1

(
∂αi−1

∂xj
− ∂gi−1

∂xj

)
fj

}
, (29)

where ci’s are positive design constants.
Consequently, we can conclude from (27), (28), and (29)

that

V̇i =
((
θ̂ − θ

)T
Γ−1 −

i−1∑
j=1

zj+1
∂αj

∂θ̂

)(
˙̂
θ − τi

)
−c1

ξ2

1− ξ2
−

i∑
j=2

cjz
2
j +

∂gi−1

∂xi
zizi+1. (30)

Step n+1: At this stage, we are ready to design the actual
control and the adaptive law. For this purpose, a candidate
Lyapunov function is chosen in the following manner

Vn+1 = Vn +
1

2
z2
n+1. (31)

From (13) and (31), we obtain

V̇n+1 = −c1
ξ2

1− ξ2
−

n∑
j=2

cjz
2
j + zn+1

{
∂gn−1

∂xn
zn

+
n∑
j=1

(
∂gn
∂xj
− ∂αn
∂xj

)
gj −

∂αn

∂θ̂

˙̂
θ

+
∂gn
∂u

v +

n∑
j=1

(
∂gn
∂xj
− ∂αn
∂xj

)
θTfj (32)

−
n∑
j=0

∂αn
∂ζ(j)

ζ(j+1)

}
+
(

˙̂
θ − τn

)
·
((

θ̂ − θ
)T

Γ−1 −
n−1∑
j=1

zj+1
∂αj

∂θ̂

)
.

Define the auxiliary control law v and the adaptive law ˙̂
θ

in the following way

v =
1
∂gn
∂u

{
− cn+1zn+1 −

∂gn−1

∂xn
zn

+
∂αn

∂θ̂
τn+1 +

(
θ̂T −

n−1∑
j=1

zj+1
∂αj

∂θ̂
Γ

)
(33)

·
n∑
j=1

(
∂αn
∂xj

− ∂gn
∂xj

)
fj +

n∑
j=0

∂αn
∂ζ(j)

ζ(j+1)

−
n∑
j=1

(
∂gn
∂xj
− ∂αn
∂xj

)
gj

}
˙̂
θ = τn+1 (34)

= τn + Γzn+1

n∑
j=1

(
∂αn
∂xj

− ∂gn
∂xj

)
fj ,

with cn+1 > 0 a design constant.
For any specified initial value of the control u(0), substi-

tuting (33) into (9) gives the real control input u.
Combing (33) as well as (34), yields

V̇n+1 = −c1
ξ2

1− ξ2
−
n+1∑
j=2

cjz
2
j . (35)

Here we provide one theorem on the considered systems
(1).

Theorem 1. If the systems (1) satisfy Assumptions 1-2,
the presented controller, which includes the auxiliary control
law (33) with (9) and the adaptive law (34) will guarantee
that the following properties are observed in the closed-loop
system:

1) All signals in the closed-loop system remain bounded.
2) The tracking error z1 = y − yd tends towards a

prescribed compact set within two predefined performance
boundary constraints, furthermore

lim
t→∞

z1 (t) =
ϕ− + ϕ+

2
. (36)

Proof: To start, we will demonstrate that the closed-
loop solution is well-defined and remains bounded over the
interval [0,∞). Next, we will show that the tracking error
tends towards a given compact set while staying within the
established performance bounds.

Firstly, the right-hand sides of the closed-loop system
are locally Lipschitz around the initial conditions, which
guarantees the existence of a unique solution over a small
interval [0, tf ). Suppose that the result is given on a right-
maximal interval [0, Tf ) where 0 < Tf ≤ ∞. We will
confirm that Tf = ∞. As a result, we know from (35) that
Vn+1 is a non-increasing function on [0, Tf ) when ϕ−0 (0)
< z1 (0) < ϕ+

0 (0) and |ξ (0)| < 1 in (8). Then, we can
conclude that Vn+1, ξ(t), zi(t) (for i = 1, 2, · · · , n + 1),
as well as θ̃(t) remain bounded over [0, Tf ), and moreover
|ξ (t)| < 1, t ∈ [0, Tf ). Considering θ is a constant vector
and θ̃(t) = θ − θ̂(t), we further get that θ̂(t) also remains
bounded over [0, Tf ).

The boundedness of z1 together with Assumption 2 and
the transformation z1 = x1 − yd implies that x1 remains
bounded over [0, Tf ). Given the boundedness of (z1, ξ, θ̂)
and (17), we can conclude that α1 is bounded on [0, Tf ) and
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the boundedness of z2 further means that g1 remains bounded
due to z2 = g1 − α1. Then, it is known from Assumption
1 and Lemma 1 that x2 remains bounded. Since z2, g1 and
ξ remain bounded over [0, Tf ), we get that α2 is bounded
over [0, Tf ). Further, the boundedness of z3 = g2 − α2

means that g2 remains bounded, which yields that x3 also
remains bounded over [0, Tf ). Similarly, it can be shown that
x4, · · · , xn, α3, · · · , αn, u, v are all bounded over [0, Tf ) in
terms of u = xn+1. Therefore, there is no finite escape on
[0, Tf ) and hence, Tf = ∞. Up to this point, all signals
of the closed-loop system remain bounded over [0,∞) thus
completing property 1).

Secondly, according to Lemma 2, we further know that
V̇n+1 in (35) further turns into

V̇n+1 ≤ −c1 log
1

1− ξ2
−
n+1∑
j=2

cjz
2
j . (37)

According to the LaSalle-Yoshizawa theorem in [4], we can
derive that

lim
t→∞

log
1

1− ξ2(t)
= 0, (38)

then
lim
t→∞

ξ (t) = 0. (39)

Given that |ξ(t)| < 1 for t ≥ 0, we know

ϕ−0 (t) < z1(t) < ϕ+
0 (t), t ≥ 0. (40)

This shows that the tracking error z1 = y − yd tends
towards a prescribed compact set within the predefined
performance constraints for all t ≥ 0. Moreover, in terms
of the transformation in (15) and lim

t→∞
ξ (t) = 0 in (39), we

can also infer that

lim
t→∞

z1 (t) =
ϕ− + ϕ+

2
. (41)

This demonstrates that the property 2) holds, and the proof
is hence completed.

Remark 5. The predetermined performance constraint
ϕ−0 < z1 < ϕ+

0 can be written as ϕ−0 + yd < y < ϕ+
o + yd,

that is, the predetermined performance constraint problem of
systems (1) can be transformed into a time-varying output
constraint problem of systems (1). Compared to literature
[11], this paper chooses a simple BLF V1, which directly
guarantees the predetermined performance constraint and
simplifies the designed controller. Meanwhile, in the Step
1 of the virtual control design, this paper avoids using
inequality scaling, thereby reducing the conservativeness of
the resulting control algorithm.

Remark 6. In this study, the tracking error could tend to-
wards zero under the additional condition that the predefined
bounding constants satisfy ϕ− + ϕ+ = 0. In this case, the
asymptotic output tracking control for time-varying desired
references can also be realized with predefined performance
such as [25]. This finding is verified in the subsequent
simulation examples.

Remark 7. The tracking control is examined for a
category of nonlinear uncertain pure-feedback systems with
prescribed performance. It is shown that the static uncertainty
such as the unknown parameters can be well handled in the
control synthesis. However, some kinds of more complicated

dynamic uncertainties, such as the (input) unmodeled dynam-
ics are not considered in this article. This result has not been
reported in the existing literature, and it remains an open
issue yet to be resolved.

IV. SIMULATION EXAMPLES

This section presents three examples to demonstrate the
success of the proposed control scheme in this paper.

Example 1: We analyze the subsequent nonlinear system,
which describes the controlled oscillator circuit system [26]
(as shown in Fig. 1), in the form presented below:

v̈1 + εh
′
(v1) v̇1 + v1 = u, (42)

where u represents the controller, v1 denotes the voltage
across the resistive element, h

′
(v1) characterizes the behav-

ior of the resistive element, and ε is a constant parameter.
In this case, we consider x1 = v1, x2 = v̇1, and h (v1) =
−v1 + 1

3v
3
1 like in [26]. Then, the system (42) turns into ẋ1 = x2

ẋ2 = ε
(
1 + x2

1

)
x2 + u− x1

y = x1,
(43)

which falls into the considered systems (1) with f1 = 0,
f2 =

(
1 + x2

1

)
x2, g1 = x2, g2 = u − x1 and ε = 1. Then,

we formulate the control input

v = −c3z3 − z2 +
(∂α2

∂x1
+ 1
)
g1 +

∂α2

∂x2
g2

+
∂α2

∂θ̂2

˙̂
θ2 +

2∑
j=0

∂α2

∂ζ(j)
ζ(j+1) + θ̂2

∂α2

∂x2
f2 (44)

u̇ = v, (45)

and the adaptive updating law

˙̂
θ2 = z2f2 − z3

∂α2

∂x2
f2, (46)

with yd(t) = 0.3 cos t+0.5 sin(0.6t), ϕ+
0 (t) = e−0.4t+0.05,

ϕ−0 (t) = −
(
e−0.4t + 0.05

)
, α1 = −c1z1 + ẏd +

z1ϕ̇
+
o

ϕ+
o

, z2 =

g1 − α1, z3 = g2 − α2, ζ = (yd, ϕ
+
o , ϕ

−
o )

T, ξ = z1
ϕ+

o
, and

α2 = −c2z2− ξ

(1−ξ2)ϕ+
o

+ ∂α1

∂x1
g1 + ∂α1

∂ζ ζ̇+ ∂α1

∂ζ(1)
ζ(2)− θ̂2f2.

The design parameters of system (43) are selected as
[θ2, c1, c2, c3]T = [1, 1, 1, 1]T. The initials of system (43)
are set as [x1(0), x2(0), θ̂2(0), u(0)]T = [0.2, 0.2, 0.3, 0.2]T.
Specifically, Fig. 2 illustrates that the system output accu-
rately tracks the desired reference signal. As shown in Figs.
3-4, the control input and the adaptive estimate θ̂2 remain
bounded. Fig. 5 illustrates the tracking error of the system
output, and it is evident that the tracking error stays within
the PPB at all times.

Example 2: Next, we examine a single-link manipulator
[27], illustrated in Fig. 6, whose dynamics are described as

Iq̈ (t) +Bq̇ (t) +Mgl sin (q (t)) = u (t) , (47)

where q (t) stands for the link angles, g = 9.81N/s2 is the
gravitational constant, u (t) denotes the controller, and the
meanings of the remaining symbols can be found in [27].
For simplicity, we set B = 2kg ·m/s, l = 1m, I = 1kg ·m2

and M = 1kg.
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Fig. 1. Controlled oscillator circuit
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Fig. 2. The system output and tracking signal of closed-loop system (43)–
(46)
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Fig. 3. The control input u of closed-loop system (43)–(46)

Let x1 = q (t) and x2 = q̇ (t). Then, according to (47),
the dynamics are ẋ1 = x2

ẋ2 = − 1
I (Bx2 +Mgl sin (x1)) + 1

I u
y = x1,

(48)

which falls into the considered systems (1) with f1 = 0,
f2 = − (2x2 + 9.81 sin (x1)), g1 = x2 and g2 = u. Then we
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Fig. 4. The adaptive estimate θ̂2 of closed-loop system (43)–(46)
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Fig. 5. The output tracking error with predetermined performance of
closed-loop system (43)–(46)

formulate the control input

v = −c3z3 − z2 +
∂α2

∂x1
g1 +

∂α2

∂x2
g2

+
∂α2

∂θ̂2

˙̂
θ2 +

2∑
j=0

∂α2

∂ζ(j)
ζ(j+1) + θ̂2

∂α2

∂x2
f2 (49)

u̇ = v, (50)

and the adaptive updating law

˙̂
θ2 = z2f2 − z3

∂α2

∂x2
f2, (51)

with yd(t) = 0.5 cos(0.6t) + 0.5 sin t, ϕ+
0 (t) = e−t + 0.1,

ϕ−0 (t) = − (e−t + 0.1), α1 = −c1z1 + ẏd +
z1ϕ̇

+
o

ϕ+
o

, z2 =

g1 − α1, z3 = g2 − α2, ζ = (yd, ϕ
+
o , ϕ

−
o )

T, ξ = z1
ϕ+

o
, and

α2 = −c2z2− ξ

(1−ξ2)ϕ+
o

+ ∂α1

∂x1
g1 + ∂α1

∂ζ ζ̇+ ∂α1

∂ζ(1)
ζ(2)− θ̂2f2.

The controller design parameters of system (48) are
chosen as [θ2, c1, c2, c3]T = [−1, 1, 1, 1]T. The initials
of system (48) are set as [x1(0), x2(0), θ̂2(0), u(0)]T =
[0.1, 0.5, 0.3, 0.5]T. It is evident from Figs 7-10 that when
using the BLF-based controller, the system output tracking
error remains within the PPB.
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Fig. 6. Single-link manipulator
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Fig. 7. The system output and tracking signal of closed-loop system (48)–
(51)
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Fig. 8. The control input u of closed-loop system (48)–(51)

Example 3: In this case, we present the following
numerical example

ẋ1 = θ1x1 + x2 + x3
2

ẋ2 = θ2x1x2 + u+ u3

7
y = x1,

(52)

where θ = [θ1, θ2]
T is the unknown constant parameter
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Fig. 9. The adaptive estimate θ̂2 of closed-loop system (48)–(51)
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Fig. 10. The output tracking error with predetermined performance of
closed-loop system (48)–(51)

vector. This system (52) falls into the considered pure-
feedback structure with f1 = x1, f2 = x1x2, g1 = x2 + x3

2,
and g2 = u+ u3

7 . Then we formulate the control input

v =
1
∂g2
∂u

{
− c3z3 +

2∑
j=1

(∂α2

∂xj
− ∂g2

∂xj

)
gj

− ∂g1

∂x2
z2 +

∂α2

∂θ̂1

˙̂
θ1 − z2

∂α1

∂θ̂1

(∂α2

∂x1
− ∂g2

∂x1

)
+θ̂1

(∂α2

∂x1
− ∂g2

∂x1

)
f1 +

∂α2

∂θ̂2

˙̂
θ2

+θ̂2

(∂α2

∂x2
− ∂g2

∂x2

)
f2 +

2∑
j=0

∂α2

∂ζ(j)
ζ(j+1)

}
(53)

u̇ = v, (54)

and the adaptive updating laws

˙̂
θ1 =

2ξx1

(1− ξ2)
(
ϕ+
o − ϕ−o

) − z2

(∂α1

∂x1
− ∂g1

∂x1

)
x1

−z3

(∂α2

∂x1
− ∂g2

∂x1

)
x1 (55)

˙̂
θ2 = z2

∂g1

∂x2
f2 − z3

(∂α2

∂x2
− ∂g2

∂x2

)
f2, (56)
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Fig. 11. The system output and tracking signal of closed-loop system
(52)–(56)
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Fig. 12. The control input u of closed-loop system (52)–(56)

with yd(t) = 0.1 (sin t+ 0.3 sin (3t)), ϕ+
0 (t) = e−1.2t +

0.05, ϕ−0 (t) = −
(
e−1.2t + 0.05

)
, α1 = −θ̂1x1 − c1z1 +

1
2c1 (ϕ+

o + ϕ−o ) + ẏd +
z1(ϕ̇+

o −ϕ̇
−
o )

ϕ+
o −ϕ−o

, ξ = z1
ϕ+

o
, α2 =

1
∂g1
∂x2

{
− c2z2 − 2ξ

(1−ξ2)(ϕ+
o −ϕ−o )

+
(
∂α1

∂x1
− ∂g1

∂x1

)
g1 + ∂α1

∂ζ ζ̇ +

∂α1

∂ζ(1)
ζ(2) − θ̂2

∂g1
∂x2

f2 + θ̂1

(
∂α1

∂x1
− ∂g1

∂x1

)
x1 + ∂α1

∂θ̂1
τ21

}
, and

τ21 = 2ξx1

(1−ξ2)(ϕ+
o −ϕ−o )

− z2

(
∂α1

∂x1
− ∂g1

∂x1

)
x1.

For simulation purposes, the controller de-
sign parameters of system (52) are taken as
[θ1, θ2, c1, c2, c3]T = [−1, 1, 1, 1, 1]T. The initials of
system (52) are set as [x1(0), x2(0), θ̂1(0), θ̂2(0), u(0)]T =
[0.2, 0.07, 0.4, 0.4, 0.4]T. Fig. 11 demonstrates that the
output can asymptotically follow the desired trajectory.
The control input and the adaptive estimates (θ̂1, θ̂2) are
presented in Fig. 12 and Fig. 13, in that order. As seen
in Fig. 14, the tracking error tends towards zero, which is
attributed to the condition ϕ− + ϕ+ = 0, ensuring that the
PPB are never violated throughout.
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Fig. 13. The adaptive estimates θ̂1, θ̂2 of closed-loop system (52)–(56)
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Fig. 14. The output tracking error with predetermined performance of
closed-loop system (52)–(56)

V. CONCLUSION

A method for output tracking control is presented for a cat-
egory of nonlinear systems in pure-feedback structure, which
involves a non-affine control input and constant parameter
uncertainty in this paper. Furthermore, using BLF technique
and the integrator, we design an adaptive controller with
prescribed performance via backstepping. Simultaneously,
this controller ensures that the system output asymptotically
tracks a given reference signal, while also guaranteeing
that all signals in the closed-loop system remain bounded
and the tracking error satisfies the predefined performance
constraints. A potential direction for future research is to
expand the findings of this paper to pure-feedback systems
with time-varying parameters.
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[4] R. A. Freeman, P. V. Kokotović, “Tracking controllers for systems
linear in the unmeasured states,” Automatica, vol. 32, no. 5, pp. 735–
746, 1996.
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