
Hybrid Event-Triggered Low-Computation
Adaptive Control for Switched Nonlinear Systems

with Unmeasurable States

Abstract—Aiming at the problem of switched nonlinear
system control with limited communication resources, a dual-
channel output-feedback tracking control method with output
and control event-triggered is designed in this paper. Firstly, the
output signal is sampled by an output-based trigger detector,
which is then integrated into state observers to estimate
unknown states. Subsequently, in conjunction with Barrier
Lyapunov Functions (BLFs) and the observer’s results, the
issue of non-differentiable virtual control laws post-sampling
is solved, while the tracking and state errors are constrained.
Additionally, the control event-triggering mechanism and the
mismatch between switching and triggering intervals are also
considered. The stability of each subsystem and the entire
system under average dwell time is demonstrated by Lyapunov
stability theory, along with boundedness of all signals. Finally,
numerical simulation experiments verify the effectiveness of the
proposed scheme.

Index Terms—Switched nonlinear systems, Output-feedback,
Barrier Lyapunov Function, Low-computation, Hybrid event-
triggered

I. INTRODUCTION

THE switched nonlinear systems consist of multiple sub-
systems and a switching signal that determines which

subsystem is active. Since switched nonlinear systems do
not inherit the stability properties of subsystems, stability
research for non-switched systems is not fully applica-
ble to switched systems. Currently, various methods have
been developed to analyze its stability, such as Common
Lyapunov Function [1], Multiple Lyapunov Function [2],
[3], and Switched Lyapunov Function [4]. In [5], [6], [7],
for switched nonlinear systems with unmeasurable states,
adaptive control schemes with unknown dead-zone, input
saturation and fixed time control were solved respectively.
However, the backstepping method employed in these studies
necessitated the differentiation of virtual control signals at
each step, causing the computational complexity to escalate
rapidly with the order of the systems, ultimately resulting in
overly complex controllers. Therefore, the contributions in
the aforementioned literatures still had some limitations.
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So as to address the issue of complexity explosion, Swa-
roop et al. developed the Dynamic Surface Control (DSC)
in [8], which incorporated dynamic filters to remove the
necessity for repeatedly differentiating virtual control laws.
DSC transforms the calculation of the high-order derivative
of the virtual control laws into a simple algebraic operation of
the filtered signal [9], [10], [11]. However, it is essential to
acknowledge that the implementation of filters also results
in intricate control structures and increases computational
burden. [12] proposed a low-computation control method
through proof by contradiction, in which the complexity ex-
plosion is avoided without utilizing DSC, meanwhile simpli-
fying the structure of controller. Building on this foundation,
this paper will introduce a low-computation adaptive control
method to avoid the complexity explosion.

In practical engineering systems, such as automatic con-
trol [13], aerospace [14], and robotics [15], constraints on
tracking and state errors are essential due to safety and
efficiency considerations. Currently, the methods to constrain
errors mainly include prescribed performance control (PPC)
[16], [17] and Barrier Lyapunov Function (BLF) [18], [19].
Utilizing BLF to constrain tracking and state errors and
further achieving comprehensive constraints on the system
states was proposed in [20]. Inspired by it, [21] addressed
the problem of full-state constraint control for pure-feedback
systems by employing the mean value theorem. Notably,
over-parameterization was avoided by not introducing exces-
sive adjustable parameters. The designed controller, however,
required all system states to be measurable, whereas in
practical engineering, usually only the output signal is mea-
surable. DSC based on state observers for nonlinear systems
with full-state constraints was put forward in [22], refining
the accuracy of control. However, this study only focused
on non-switched systems. [23] considered switched systems
along with average dwell time, but did not take into account
saving communication resources. Unlike the aforementioned
articles, the hybrid event-triggered controller designed in this
paper will not only address computational limitations, but
also conserve communication resources.

The computational and processing capabilities of system
components are limited, as is the shared network bandwidth.
Therefore, it is essential to consider whether signals can be
transmitted only when necessary rather than continuously.
This consequently engendered the concept of triggering [24].
[25] introduced event-triggered control, where control signals
were intermittently transmitted to the actuator based on
the predefined conditions. Subsequently, [26] put forward a
variety of triggering mechanisms that did not require Input-
to-State Stability (ISS), which improves the realizability.
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Additionally, the compensation mechanism was used to deal
with the event-triggered of switched nonlinear systems, effec-
tively avoiding the problem of mismatch between switching
and triggering intervals in [27].

Most current triggering mechanisms focused on the
controller-to-actuator end. While this approach achieves re-
source savings to some extent, the transmission between sen-
sors and the controller still occurs in the form of continuous
signals, which is often unnecessary. However, when employ-
ing event-triggered to transmit state signals, the information
becomes discontinuous, making virtual control signals non-
differentiable, and thus rendering the backstepping inap-
plicable. Therefore, control strategies incorporating event-
triggering mechanisms at the sensor end, i.e. state event-
triggered, are relatively scarce currently. [28] considered both
triggered and non-triggered cases, replacing the triggered
signal with continuous output signal, under the premise
of considering the errors, thus undoubtedly increasing the
computational burden of the sensor. Building on [28], [29]
directly considered output triggered. The first-order differen-
tiability of the virtual control signal is ensured through de-
signing stabilization error, while the computation of higher-
order derivatives is avoided by DSC. However, although
[29] reduced the computational burden on the sensors, it
also introduced a relatively complex controller structure.
Furthermore, the above papers did not consider hybrid event-
triggered control under switched nonlinear systems, nor did
they implement constraints on errors.

In conclusion, motivated by the previous studies, we
propose a low-computation event-triggered control scheme
for switched nonlinear systems. By employing BLFs, an
errors-constrained and tracking control scheme is success-
fully achieved. Different from the existing papers, event-
triggering mechanisms for both output and control input
signals are considered, effectively conserving transmission
resources. The main contribution has the following three
aspects.

(1) Given that only the output signal is measurable in
the design process of the controller, this paper integrates
the output signal after triggering into the state observers,
thereby achieving observation of the unmeasurable states.
Additionally, the introduction of BLF effectively constrains
the errors.

(2) In the design process, not only is the control event-
triggering mechanism used in [12], [26], [27], [30], [31]
considered, but output event-triggering mechanism is also
taken into account. Continuous state estimates obtained
through the state observers are employed to construct system
errors, thereby overcoming the difficulty of state disconti-
nuity leading to the non-existent derivative of the virtual
control signal. Through the introduction of hybrid event-
triggered, the data transmission and communication resource
requirements are significantly reduced and the computational
burden on sensors and controllers is greatly alleviated.

(3) Existing designs which apply output event-triggered,
as discussed in [28] and [29], are limited to non-switched
nonlinear systems, whereas this paper extends the applica-
bility to switched systems. Meanwhile, compared with [28]
and [29], we do not introduce additional filters in the design
process, which simplifies the structure of the controller.
Additionally, by integrating adaptive compensation terms,

unnecessary triggering resulted from switching between dif-
ferent subsystems is eliminated.

II. SYSTEM DESCRIPTIONS AND BASIC KNOWLEDGE

Consider the strict-feedback switched nonlinear systems
as follows: ẋi = fiσ(t) (x̄i) + xi+1 + diσ(t) (t) ,

ẋn = fnσ(t) (x̄n) + uσ(t) + dnσ(t) (t) ,
y = x1,

(1)

where x = [x1, x2, . . . , xn]
T ∈ Rn denotes the state vector,

and only x1 is measurable. uσ(t) ∈ R and y ∈ R represent
the control input and output of the system, respectively. The
function σ(t): R+ → M = {1, 2, . . . ,m} is a switching
signal. When σ(t) = k, the kth subsystem is in a running
state. fik(·), i = 1, 2, . . . , n, k ∈ M are unknown smooth
nonlinear functions. dik are external disturbances.
Assumption 1 [30]. There exists an unknown positive con-
stant f̄ik such that |fik (x̄i)| ≤ f̄ik.
Assumption 2 [32]. The unknown disturbance is bounded,
and satisfies |dik(t)| ≤ d̄ik, where d̄ik is an unknown positive
constant.
Assumption 3. Only the reference signal yd (t), its first
derivative ẏd (t) and second derivative ÿd (t) are bounded
and available.
Remark 1. Assumption 3 relaxes the requirement for prior
knowledge of the systems. In articles such as [2], [7],
[23], [27], the reference signal must be nth-order differ-
entiable. However, in practical applications, obtaining high-
order derivatives of the reference signal is challenging, which
makes this assumption rather stringent. This paper achieves
the same or even more comprehensive control objectives
with less prior knowledge, thereby enhancing applicability
to practical systems.
Definition 1 [12]. For any positive constant ι and χ ∈ R,
the following inequality holds:

0 ≤ |ι| − ι tanh

(
ι

χ

)
≤ 0.2785χ. (2)

Definition 2 [33]. For ∀T ≥ t ≥ 0, let Nσ(t) (T , t) denote
the number of switches of over interval [t, T ) , if there exist
positive constants τa and N0 such that

Nσ(t)(T , t) ≤ N0 +
T − t

τa
(3)

holds, then τa is called average dwell time.

III. EVENT-TRIGGERING MECHANISM

To minimize data transmission and conserve communica-
tion resources, this paper simultaneously considers hybrid
event-triggering mechanisms as follows:

(1) Sensor to controller, i.e. output event-triggered

y̌σ(t)(t) = yσ(t1,J )(t1,J), t ∈ [t1,J , t1,J+1),

t1,J+1 = inf{t > t1,J |
∣∣ey,σ(t)(t)∣∣ ≥ ηy}. (4)

(2) Controller to actuator, i.e. control event-triggered

uσ(t)(t) = wσ(tJ )(tJ), t ∈ [tJ , tJ+1),

tJ+1 = inf{t > tJ |
∣∣ew,σ(t)(t)

∣∣ ≥ ηw + υ1

∣∣∣Ejst
J

∣∣∣}, (5)
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Ejst
J =

{
ωσ(ts1) (ts1)− ωσ(tJ ) (ts1), t ∈ [ts1, t̄J),
0, otherwise,

t̄J =

{
ts2, Nk > 1,
tJ+1, Nk = 1, (6)

where
∣∣ey,σ(t)(t)∣∣ = ∣∣yσ(t)(t)− y̌σ(t)(t)

∣∣ and
∣∣ew,σ(t)(t)

∣∣ =∣∣wσ(t)(t)− u
σ(t)

(t)
∣∣. t1,J and tJ denote the triggering time

instants for sensor output and control signal, respectively.
ts1 and ts2 are the switching time. Ejst

J represents the error
caused by the different control signals between different
subsystems when jth switch occurs within the triggering
interval. t̄J is the number of switches on (tJ , tJ+1). ηy , ηw,
η̄y > ηy , η̄w > ηw, υ1 ≥ 1 are positive designed constants.
According to the above event-triggering mechanisms, when
the measurement errors

∣∣ey,σ(t)(t)∣∣ and
∣∣ew,σ(t)(t)

∣∣ exceed
certain thresholds ηy and ηw, repectively, the output and
control signals are transmitted.
Remark 2. During the design process, multiple subsystems
are made to track the same reference signal, which implies
that the output signal of each subsystem is close to the
same function. As a result, the switching instants have little
effect on the system states and output, in other words, at
these moments, neither the states nor the output undergoes
abrupt changes. Therefore, there is no need to consider that
switching may cause unnecessary triggers.

IV. STATE OBSERVER DESIGN

For estimating the unknown states of the systems, the state
observers are designed as

˙̂xi = Lik(y̌ − ŷ) + x̂i+1,
˙̂xn = Lnk(y̌ − ŷ) + uk,
ŷ = x̂1,

(7)

where x̂i is the estimation of xi, and the estimation error
ei = xi − x̂i, i = 1, 2, · · · , n.

Combined with (1) and (7), one has

ė = Ake+ Lk(y − y̌) + Fk + dk, (8)

where e =


e1
e2
...
en

, Ak =


−L1k

−L2k

... In−1

−Lnk 0 . . . 0

,

Lk =


L1k

L2k

...
Lnk

, Fk =


f1k(x1)
f2k(x̄2)

...
fnk(x̄n)

, dk =


d1k
d2k

...
dnk

.

The designed parameters Lik are selected such that Ak is a
Hurwitz matrix, which means for any given matrix Qk > 0,
there exists a matrix that holds the following equation:

AT
k Pk + PkAk = −Qk. (9)

The Lyapunov function is chosen as

V0k = eTPke. (10)

On the basis of (8) and (9), V̇0k is calculated as follows:

V̇0k = −eTQke+ 2eTPk [Lk(y − y̌) + Fk + dk] . (11)

Referring to Young’s inequality, it can be deduced that

2eTPkLk(y − y̌) ≤ ∥e∥2 + ∥Pk∥2 ∥Lk∥2 η̄y , (12)

2eTPkFk ≤ ∥e∥2 + ∥Pk∥2
n∑

i=1

f
2

ik, (13)

2eTPkdk ≤ ∥e∥2 + ∥Pk∥2
n∑

i=1

d
2

ik. (14)

Substituting (12) - (14) into (11) results in

V̇0k ≤ −(λmin (Qk)− 3) ∥e∥2

+ ∥Pk∥2
(

n∑
i=1

f
2

ik +
n∑

i=1

d
2

ik + ∥Lk∥2 η̄y

)
= −ϱ0k ∥e∥2 +ϖ0k, (15)

where ϱ0k = λmin (Qk) − 3, ϖ0k = ∥Pk∥2
(

n∑
i=1

f
2

ik+

n∑
i=1

d
2

ik + ∥Lk∥2 η̄y
)

.

By Assumptions 1 and 2, it can be derived that b0k > 0.
Additionally, by selecting an appropriate matrix Qk, a0k >
0 can be ensured. This indicates that the observation error
ei gradually decreases over time, thereby guaranteeing the
asymptotic stability of the observer systems.

V. CONTROLLER DESIGN AND STABILITY ANALYSIS

The auxiliary tracking error z1, tracking error φ1 and state
error zi are defined as

z1 = x̂1 − yd, (16)
φ1 = x1 − yd, (17)
zi = x̂i − αi−1,k, (18)

where yd is the reference signal.
It is necessary to establish a clear definition for

ζi =
zi

cos2
(

πz2
i

2k2
i

) , i = 1, · · · , n.

By considering the output event-triggered, the virtual
control law α1k and αik, i = 2, · · · , n are given as

α1k = −c1k
k21
πζ1

tan(
πz21
2k21

)− L1kη̄y tanh(
ζ1L1kη̄y

µ
) + ẏd,

(19)

αik = −cik
k2i
πζi

tan(
πz2i
2k2i

)− ζi−1zi
ζi

−Likη̄y tanh(
ζiLikη̄y

µ
), (20)

where c1k and cik are positive constants.
Simultaneously, in the final step of backstepping, control

event-triggered is implemented, where the continuous adap-
tive control signal wk is expressed as

wk = −cnk
k2n
πζn

tan(
πz2n
2k2n

)− ζn−1zn
ζn

−Lnkη̄y tanh(
ζnLnkη̄y

µ
)− Lnkη̄w tanh(

ζnLnkη̄w
µ

)

−Lnkυ1E
jst
J tanh(

ζnE
jst
J

µ
), (21)

where µ is a positive constant.
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In addition, for zi(0), it satisfies |zi(0)| < ki, which is a
standard assumption for dealing with constraint problems.
Remark 3. The purpose of defining the auxiliary tracking
error z1 is to ensure that the virtual control signal αik is
differentiable, thereby achieving output event-triggered. In
the previous section, we have demonstrated that there exists
an observational error e1 between x1 and x̂1, which can be
continuously minimized by selecting appropriate parameters.
Moreover, through observation, the error e1 is identified
between the auxiliary tracking error z1 and tracking error
φ1. Consequently, we can indirectly achieve tracking control
and output event-triggered through auxiliary tracking error
while ensuring the stability of the closed-loop systems.
Lemma 1. For each i ∈ {1, 2, · · · , n}, supposed that ˙̂xi

and zi(t) are bounded, then α̇ik also remains bounded.
Proof. Taking the derivatives on both sides of (19) yields

α̇1k = c1k
k21
π

ζ̇1
ζ21

tan(
πz21
2k21

)− c1kż1 + ÿd

−ζ̇1L1kη̄y

[
1−

[
tanh

(
ζ1L1kη̄y

µ

)]2]
. (22)

Derivative of both sides of (20), we have

α̇ik = cik
k2i
π

ζ̇i
ζ2i

tan(
πz2i
2k2i

)− cikżi

+
ζ̇iζi−1zi

ζ2i
− ζ̇i−1zi

ζi
− ζi−1żi

ζi

−ζ̇iLikη̄y

[
1−

[
tanh

(
ζiLikη̄y

µ

)]2]
, (23)

where ζ̇i = żi[1 +
2πz2

i

k2
i

tan(
πz2

i

2k2
i
)] cos−2(

πz2
i

2k2
i
).

First, for α̇1k, on the basic of (16) and Assumption 3, we
obtain ż1 = ˙̂x1− ẏd and ż1 ∈ L∞. According to z1 ∈ L∞, it
can be obtained that ζ1 ∈ L∞ and ζ̇1 ∈ L∞. Thus α̇1k ∈ L∞
is deduced.

Second, for α̇2k, differentiating (18) gets ż2 = ˙̂x2−α̇1k.
With the bound of α̇1k, ż2 ∈ L∞ can be achieved. Similar to
the above analysis, one has ζ2 and ζ̇2 ∈ L∞. So α̇2k ∈ L∞
can be obtained.

Finally, for i = 1, 2, · · · , n, α̇ik ∈ L∞ can be acquired
recursively. Lemma 1 is proved.
Theorem 1. Suppose that the uncertain strict-feedback
switched nonlinear systems (1), under given initial condition,
satisfy Assumptions 1-3. If the switching signal σ (t) satisfies
τa > ln β

ϱ , the designed observer and controller can ensure
that

(1) All variables of the closed-loop system are bounded.
(2) The tracking error and state errors can converge within

a small neighborhood as |zi(t)| < |ki|.
(3) There exists a positive constant between consecutive

triggers, thereby avoiding the Zeno-behavior [34].
Proof. The proof of Theorem 1 will be presented in four
parts.

The boundedness of the tracking error and state errors
will be demonstrated initially. A contradiction is sought by
assuming the existence of zq such that |zq(tq)| ≥ kq at time
tq . In accordance with the initial conditions and continuity
of zi(t), it can be obtained that for t < tm, tm = min{tq},

−ki < zi(t) < ki, i ∈ {1, 2, · · · , n}. (24)

Thereby, there exists zq such that

lim
t→t−m

|zq(t)| = kq , q ∈ {1, 2, · · · , n}. (25)

Subsequent analysis will demonstrate that the aforemen-
tioned situation does not exist.

Part (a): The tracking performance and error constraints
of the systems will be demonstrated by backstepping and
tangent BLFs. At the same time, output event-triggered will
also be taken into account during the design process

Step 1: In view of (1) and (16), one has

ż1 = z2 + α1k + L1ke1 + L1k(y̌ − y)− ẏd. (26)

The BLF on t ∈ [0, tm) is designed as follows:

V1k = V0k +
k21
π

tan(
πz21
2k21

). (27)

Differentiating both sides of (27) results in

V̇1k = V̇0k + ζ1[z2 + α1k + L1ke1

+L1k(y̌ − y)− ẏd]. (28)

With Young’s inequality, it results in

ζ1L1ke1 ≤ ζ21 +
1

4
L2
1k ∥e∥

2 .

Thereby, (28) can be rewritten as

V̇1k ≤ V̇0k − c1k
k21
π

tan(
πz21
2k21

) + ζ1z2

−ζ1L1kη̄y tanh(
ζ1L1kη̄y

µ
) + |ζ1L1kη̄y|+ ζ21

+
1

4
L2
1k ∥e∥

2

= V̇0k − c1k
k21
π

tan(
πz21
2k21

) + ζ1z2 + 0.2785µ+ ζ21

+
1

4
L2
1k ∥e∥

2 . (29)

Step i (i = 2, · · · , n− 1): Based on (7) and (18), one has

żi = zi+1 + αik + Like1 + Lik(y̌ − y)− α̇i−1,k.(30)

Construct the BLF as follows:

Vik = Vi−1,k +
k2i
π

tan(
πz2i
2k2i

). (31)

Differentiating Vik yields

V̇ik = V̇1k + ζi[zi+1 + αik + Like1

+Lik(y̌ − y)− α̇i−1,k]. (32)

Through Lemma 1, we have α̇ik ∈ L∞. To simplify
the computational process, the partially bounded signals are
defined as

hik = Like1 − α̇i−1,k ≤ h̄ik,

where h̄ik is a positive constant.
With reference to the Young’s inequality, one can derive

ζihik ≤ ζ2i +
1

4
h̄2
ik.
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Then, it follows from (20) and (32) that

V̇ik ≤ V̇1k − cik
k2i
π

tan(
πz2i
2k2i

) + ζizi+1

−ζ2Likη̄y tanh(
ζiLikη̄y

µ
) + |ζiLikη̄y|+ ζ2i +

1

4
h̄2
ik

= V̇0k −
i∑

j=1

cjk
k2j
π

tan(
πz2j
2k2j

) +
i∑

j=1

ζ2j +
1

4
L2
1k ∥e∥

2

+
1

4

i∑
j=2

h̄2
jk + ζizi+1 + 0.2785iµ. (33)

Step n: On account of (7) and (18), one has

żn = uk + Lnke1 + Lnk(y̌ − y)− α̇n−1,k. (34)

The BLF used for the nth subsystem can be expressed as

Vnk = Vn−1,k +
k2n
π

tan(
πz2n
2k2n

). (35)

Then V̇nk can be written as follows:

V̇nk = V̇n−1,k + ζn[uk + Lnke1

+Lnk(y̌ − y)− α̇n−1,k] (36)

Define hnk = Lnke1− α̇n−1,k ≤ h̄nk, and combined with
Young’s inequality again, one has

ζnhnk ≤ ζ2n +
1

4
h̄2
nk. (37)

Substituting (37) into (36) yields

V̇nk ≤ V̇n−1,k + ζn (uk + |Lnkη̄y|) + ζ2n +
1

4
h̄2
nk, (38)

which will be employed in the following part for the design
of the event-triggered controller.

Part (b): Hybrid event-triggered adaptive controller based
on control signals will be designed.

Considering that the switching instant of different subsys-
tems in switched systems can cause sudden change in the
control signal, which in turn may lead to unnecessary trig-
gers, it is necessary to discuss the relationship between the
triggering interval and switching instant during the controller
design process. Therefore, it mainly includes the following
three cases:

(1) the switch does not occur in the triggering interval [tJ ,
tJ+1);

(2) the switch appears in the triggering interval [tJ , tJ+1),
including single switch and multiple switches, i.e. tJ < ts1 <
· · · < tsj < tJ+1, j = 1, 2, · · · , m;

(3) the switch occurs in the triggering instant, i.e. tJ <
ts1 < · · · < tsj = tJ+1.

By combining with (6), the aforementioned three scenarios
can be resolved by separately considering whether Ejst

J = 0.
Case 1: if Ejst

J = 0, by incorporating (5) and (21) into

(38), we can conclude

V̇nk,1 ≤ V̇n−1,k + ζn (uk − wk + wk + Lnkη̄y)

+ζ2n +
1

4
h̄2
nk

≤ V̇n−1,k + ζn (|η̄w|+ wk + |Lnkη̄y|) + ζ2n

+
1

4
h̄2
nk

= V̇n−1,k − cnk
k2n
π

tan(
πz2n
2k2n

)− ζn−1zn

−ζnLnkη̄y tanh(
ζnLnkη̄y

µ
) + |ζnη̄w|

−ζnLnkη̄w tanh(
ζnLnkη̄w

µ
) + |ζnLnkη̄y|

+ζ2n +
1

4
h̄2
nk

≤ V̇0k −
n∑

j=1

cjk
k2j
π

tan(
πz2j
2k2j

) +
n∑

j=1

ζ2j

+
1

4
L2
1k ∥e∥

2
+

1

4

n∑
j=2

h̄2
nk

+0.2785(n+ 1)µ. (39)

Case 2: if Ejst
J = wσ(ts1)(ts1) − wσ(tJ )(ts1), one can

deduce

V̇nk,2 ≤ V̇n−1,k + ζn

(
|η̄w|+ υ1

∣∣∣Ejst
J

∣∣∣+ wk

+ |Lnkη̄y|) + ζ2n +
1

4
h̄2
nk

= V̇n−1,k − cnk
k2n
π

tan(
πz2n
2k2n

)− ζn−1zn

−ζnLnkη̄y tanh(
ζnLnkη̄y

µ
) + |ζnη̄w|

−ζnLnkη̄w tanh(
ζnLnkη̄w

µ
)

−ζnυ1E
jst
J tanh(

ζnE
jst
J

µ
) + υ1

∣∣∣ζnEjst
J

∣∣∣
+ |ζnLnkη̄y|+ ζ2n +

1

4
h̄2
nk

≤ V̇0k −
n∑

j=1

cjk
k2j
π

tan(
πz2j
2k2j

) +
n∑

j=1

ζ2j

+
1

4
L2
1k ∥e∥

2
+

1

4

n∑
j=2

h̄2
nk

+0.2785(n+ υ1 + 1)µ. (40)

Considering (39) and (40), one has

V̇nk,1 ≤ V̇nk,2 ≤ −ϱkVnk +ϖk, (41)

where ϱk = min
{

ϱ0k

λmax(Pk)
, cjk

}
, ϖk =

n∑
j=1

ζ2j +
1
4L

2
1k ∥e∥

2

+ 1
4

n∑
j=2

h̄2
nk + 0.2785(n+ 1)µ+ϖ0k.

Multiplying both sides of (41) by eϱkt and integrating get

Vnk ≤ (Vn(0)−
ϖk

ϱk
)e−ϱkt +

ϖk

ϱk
. (42)

Therefore, the following inequality holds

Vi(t) ≤ Vn(t) ≤ (Vn(0)−
ϖk

ϱk
)e−ϱkt +

ϖk

ϱk
.
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Further, combining with (27), (31), and (35), it can be
obtained that

|zi| ≤ |ki|

√
2

π
arctan

π

k2i

[
(Vn(0)−

ϖk

ϱk
)e−ϱkt +

ϖk

ϱk

]
< |ki| . (43)

(43) indicates that the functions z1, · · · , zn remain
bounded within the interval [0, tm), which contradicts (25).
Thus, for any error zi and t < tm, |zi| does not approach
to the constrained boundary |ki|. Consequently, the proposed
hypothesis (25) is invalid, and as a result, (24) holds consis-
tently.
Remark 4. Through the above analysis, it can be concluded
that the different subsystems of the switched systems are
stable. However, the stability of each subsystem does not
directly guarantee the global stability of the entire switched
system, because the switching frequency and switching time
can affect the overall behavior of the systems. Therefore,
with the introduction of the average dwell time to control the
switching frequency, the Lyapunov function can be reduced
or maintained within a bounded range, which is crucial for
ensuring the global stability of the system. Consequently,
designing a suitable Lyapunov function for the whole system
and conducting detailed analysis are imperative to ensure
overall stability even during switches.

Part (c): The following proof will display that the overall
system is stable.

Define the Lyapunov function as Vk = Vnk, according to
(41), one has V̇k ≤ −ϱVk+ϖ, where ϱ = mink∈M{ϱk}, ϖ =
maxk∈M{ϖk}. Define the function W (t) = eϱtVσ(t)(t),
which is piecewise differentiable along solutions of the
systems. Within each interval [tl, tl+1), we have

Ẇ (t) = ϱeϱtVσ(t)(t) + eϱtV̇σ(t)(t) ≤ ϖeϱt. (44)

For ∀k, l ∈ M, Vk(t) ≤ βVl(t) and β ≥ 1 one has

W (tl+1) ≤ βeϱtl+1Vσ(tl)(x(tl+1)) = βW (t−l+1)

≤ β

[
W (tl) +

∫ tl+1

tl

ϖeϱtdt

]
. (45)

By selecting an arbitrary t̄ > t0 = 0 and iterating (45)
from l = 0 to l = Nσ(t̄, 0)− 1, it can be obtained that

W (t̄−) ≤ W (tNσ(t̄,0)) +

∫ t̄

tNσ(t̄,0)

ϖeϱtdt

≤ βNσ(t̄,0)

W (0) +

Nσ(t̄,0)−1∑
l=0

β−l

∫ tl+1

tl

ϖeϱtdt

+β−Nσ(t̄,0)ϖeϱtdt
]

. (46)

Since τa > ln β
ϱ , for any δ ∈ (0, ϱ − ln β

τa
), one has τa >

ln β
ϱ−δ .

Based on Definition 2, it can be argued that

Nσ(t̄, t) ≤ N0 +
(ϱ− δ)(t̄− t)

lnβ
,

Nσ(t̄, 0)− l ≤ 1 +Nσ (t̄, tl+1) ,
βNσ(t̄,0)−l ≤ β1+N0e(ϱ−δ)(t̄−tl+1). (47)

Because of δ < ϱ, it follows that∫ tl+1

tl

ϖeϱtdt ≤ e(ϱ−δ)tl+1

∫ tl+1

tl

ϖeϱtdt. (48)

Substituting (47) and (48) into (46) yields

W
(
t̄−
)
≤ βNσ(t̄,0)W (0) + β1+N0e(ϱ−δ)t̄

∫ t̄

0

ϖeϱtdt. (49)

It is easy to deduce that there exist two κ functions κ (|x|)
and κ̄ (|x|) such that κ (|x|) ≤ Vk(x) ≤ κ̄ (|x|) establish.
Then it yields that

κ(∥x(t̄)∥) ≤ Vσ(t̄−)

(
x
(
t̄−
))

≤ eN0 ln βe(
ln β
τa

−ϱ)t̄κ̄(∥x(0)∥)
+β1+N0

ϖ

δ

(
1− e−δt̄

)
≤ eN0 ln βe(

ln β
τa

−ϱ)t̄κ̄(∥x(0)∥)
+β1+N0

ϖ

δ
. (50)

Therefore, given δ > 0 and (50), it can be concluded that
if the switching signals σ(t) satisfies τa > ln β

ϱ , the whole
system remains stable.

Combining with (35) and (50), the error can be obtained
that

lim
t→∞

k2i
π

tan(
πz2i
2k2i

) ≤ eN0 ln βe(
ln β
τa

−ϱ)t̄κ̄(∥x(0)∥)

+β1+N0
ϖ

δ
.

Thereby, we can obtain

|zi| ≤ |ki|

√
2

π
arctan(

π

k2i
β1+N0

ϖ

δ
). (51)

It can be inferred that all signals of the closed-loop
systems are bounded at all times according to (51), satisfying
the condition of semi-global uniform ultimate boundedness,
which means that the whole system is stable under certain
switching conditions.

Part (d): Given the inherent complexity of the event-
triggering mechanism in switched nonlinear systems, various
scenarios will be addressed separately to prevent Zeno-
behavior.

Because we have adopted a dual-channel hybrid event-
triggering mechanisms, it is necessary to analyze the output
event-triggered from sensor to controller and the control
event-triggered from controller to actuator separately to de-
termine whether Zeno-behavior can be avoided.

A. Zeno-free of output event-triggered

In order to prove that there exists a constant T1 > 0 such
that {t1,J+1− t1,J} ≥ T1, ∀J ∈ Z+, we recall the definition
of ey,σ(t) (t): ey,σ(t)(t) = yσ(t)(t)−y̌σ(t)(t). Then, we obtain

d

dt

∣∣ey,σ(t) (t)∣∣ =
d

dt
(ey,σ(t) (t) ∗ ey,σ(t) (t))

1
2

= sign(ey,σ(t) (t))ẏσ(t) (t)

≤
∣∣ẏσ(t) (t)∣∣ . (52)

Since ẏσ(t) (t) is bounded, hence, there must exist a
constant sy,E > 0 such that

∣∣ẏσ(t) (t)∣∣ < sy,E . So it yields

ėy,σ(t) (t) =
ηy

tJ+1 − tJ
≤ sy,E ,

tJ+1 − tJ ≥ ηy
sy,E

= T1. (53)

The Zeno-behavior is therefore avoided successful.
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B. Zeno-free of control event-triggered

Considering that the switching moment between different
subsystems of the switched systems may affect the control
signal, and then affect the triggering mechanism, three situ-
ations need to be analyzed.

Case 1: When there is no switch in the triggering interval
[tJ , tJ+1) or the switch takes place exactly at the triggering
instant, then for t = tJ+1 the measurement error

∣∣eσ(t) (t)∣∣ ≥
ηw. Therefore, it can be derived that

d

dt

∣∣ew,σ(t) (t)
∣∣ =

d

dt
(ew,σ(t) (t) ∗ ew,σ(t) (t))

1
2

= sign(ew,σ(t) (t))ėw,σ(t) (t)

≤
∣∣ėw,σ(t) (t)

∣∣= ∣∣ω̇σ(t) (t)
∣∣

≤
∣∣∣∣ ddt

[
−cnk

k2n
πζn

tan(
πz2n
2k2n

)

−ζn−1zn
ζn

− Lnkη̄y tanh(
ζnLnkη̄y

µ
)

−Lnkη̄w tanh(
ζnLnkη̄w

µ
)

]∣∣∣∣ . (54)

The boundedness of all signals has been proved in the
previous parts, hence, there must exist a positive constant
sw,E satisfying

∣∣ω̇σ(t) (t)
∣∣ ≤ sw,E .

ėw,σ(t) (t) =
ηw

tJ+1 − tJ
≤ sw,E ,

tJ+1 − tJ ≥ ηw
sw,E

= T2. (55)

Case 2: When the subsystem is switched (one switch)
within the triggering interval time [tJ , tJ+1), i.e. ts1 ∈ [tJ ,
tJ+1). The whole interval is divided into three cells for
analysis:

(1) Within the time interval [tJ , ts1), the analysis is the
same as in Case 1.

(2) Within the time interval [t−s1, t+s1], one has∣∣wσ(tJ )(tJ)− wσ(tJ )(ts1)
∣∣ < ηw + ν1

∣∣∣ Ejst
J

∣∣∣, and∣∣ew,σ(ts1) (ts1)
∣∣ =

∣∣ωσ(tJ ) ( tJ)− ωσ(ts1) (ts1)
∣∣

≤
∣∣ωσ(tJ ) (tJ)− ωσ(tJ ) (ts1)

∣∣
+
∣∣ωσ(tJ ) (ts1)− ωσ(ts1) (ts1)

∣∣
< ηw + ν1

∣∣∣Ejst
J

∣∣∣ ,
which implies that the triggering condition is not satisfied at
ts1.

(3) Within the time interval (ts1, tJ+1), we have

d

dt

∣∣ew,σ(t) (t)
∣∣ ≤

∣∣ėw,σ(t) (t)
∣∣= ∣∣ω̇σ(t) (t)

∣∣ ,
ėw,σ(t) (t) =

ηw + ν1

∣∣∣Ejst
J

∣∣∣
tJ+1 − tJ

≤ s∗w,E .

Consequently, it can be inferred that ts1−tJ ≥ ηw

sw,E
= T2

and tJ+1 − ts1 ≥
ηw+ν1

∣∣∣Ejst
J

∣∣∣
s∗w,E

≥ ηw

s∗w,E
= T ∗

2 .
The combination of these two expressions yields

tJ+1 − tJ ≥ ηw
max{sw,E, s∗w,E}

= min{T2, T ∗
2 }. (56)

Case 3: Multiple switches occur during the triggering
interval [tJ , tJ+1). And we have

tJ+1 − tJ ≥ Nτa.

Above all, the analysis of Cases 1-3 demonstrates that for
any bounded condition, the control event-triggering mecha-
nism (5) and (6) has a positive minimum triggering time t∗,
and

t∗ = min {min{T2, T ∗
2 }, τa} . (57)

So far, Zeno-behavior has been successfully avoided.
Remark 5. The low-computation mentioned in this paper is
mainly reflected in two aspects:

(1) In contrast to [28], this paper does not choose to trigger
the virtual control signal simultaneously with the output
signal. Instead, we obtain a continuous estimate of the system
states by constructing suitable state observers and selecting
the error z1 = x̂1 − yd rather than z1 = x1 − yd. The virtual
control law is then constructed using the continuous signal
zi, i = 1, 2, · · · , n to be derivable. Therefore, the computing
burden of the sensor is reduced.

(2) However, the higher-order derivative of virtual control
signal does not exist when applying the same backstepping
as in [2], [26], [27]. Therefore, in this paper, a new low-
computation method is employed, in which the boundedness
of the virtual control law is assessed and scaled, so as to
avoid the presence of higher-order derivative and complete
the stability analysis of the systems. Additionally, unlike
[23], [29], the avoidance of higher-order derivative is not
achieved through DSC, nor are additional filters introduced
in this paper, resulting in a relatively simpler control sig-
nal, thereby reducing the computational burden and design
complexity.

As a result, the discontinuity of the signal caused by output
event-triggered is successfully overcome in this paper, and
the computational and transmission burdens are reduced.

VI. SIMULATION

A second-order switched nonlinear system is considered
as follows:  ẋ1 = f1k(x1) + x2 + d1k,

ẋ2 = f2k(x̄2) + uk + d2k,
y = x1.

(58)

When k = 1, f1,1 = 0.1 sin(x2
1), f2,1 = 0.2 sin(x1x2),

d1,1 = 0.02 cos(t), d2,1 = 0.01 sin(t). When k = 2,
f2,1 = 0.15x1, f2,1 = 0.1x1x2, d2,1 = 0.05 sin(t),
d2,2 = 0.02 cos(t). The reference signal yd is given as
yd = 0.25 sin(t).

The initial conditions selected in the simulation are [x1(0),
x2(0)]

T = [0.05, 0]T, [x̂1(0), x̂2(0)]
T = [0.05, 0.05]T. The

parameters are selected as L11 = 1, L12 = 2, L21 = 7,
L22 = 5, c11 = 10, c12 = 15, c21 = 1, c22 = 2, k1 = 0.08,
k2 = 0.1, ηy = 0.08, η̄y = 0.1, ηw = 0.5, η̄w = 0.6, µ = 2,
υ1 = 1.2. The average dwell time is chosen as τa = 7.5.

The simulation time is set to 80s. Figs. 1-8 illustrate
the simulation results of the designed control strategy. The
continuous output signal y(t) and the output event-triggered
signal y̌(t) are presented in Fig. 4. More specifically, the
number of event-triggered is 228. The continuous control
input signal ω(t) and the event-triggered control signal u(t),
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Fig. 1. The output signal y and the reference signal yd.

TABLE I
THE COMPARISON RESULTS ON THE NUMBER OF TRIGGERING-EVENTS.

Different strategies Output event-triggered Control event-triggered

The proposed method 228 213

The method in [27] 4000 82

The method with DSC 248 175

The method in [29] 250 548

The method with time-triggered 4000 4000

which is triggered 213 times, are shown in Fig. 5. The
moments when the sensor output and control signals are
triggered for 20s are displayed in Fig. 6.

Additionally, to further elucidate the distinctions among
the existing methods, comparative simulations are performed,
with the results presented in Figs. 8-9. If DSC is utilized,
the resulting expression of the continuous control signal is
as follows:

wk = −cnk
k2n
πζn

tan(
πz2n
2k2n

)− ζn−1zn
ζn

−Lnkη̄y tanh(
ζnLnkη̄y

µ
)− Lnkη̄w tanh(

ζnLnkη̄w
µ

)

+α̇c
n−1,k − Lnkυ1E

jst
J tanh(

ζnE
jst
J

µ
), (59)

where αc
n−1,k is obtained by passing αn−1,k through the out-

put of a first-order low-pass filter ϑn−1,kα̇
c
n−1,k +αc

n−1,k =
αn−1,k, where ϑn−1 > 0 is the time constant. αc

n−1,k(0) =
αn−1,k(0) and αn−1,k is the virtual control law. It can be
observed that the proposed low-computation hybrid event-
trigger adaptive control scheme has the same control effect,
but further simplifies the controller structure.

With the simulation time set to 80s, the comparison of
the communication counts among the presented method,
the method in [27], the method with DSC, the method in
[29] and the method with time-triggered are illustrated in
TABLE I. The triggering interval for time-triggered is set to
0.02s. In contrast, the hybrid event-triggered control scheme
proposed in this paper significantly conserves communication
resources while achieving equivalent control performance.
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Fig. 2. The system states x1, x2 and their estimations x̂1, x̂2.
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Fig. 3. The tracking error z1 and the state error z2.
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Fig. 4. Continuous output signal y(t) and triggered output signal y̌(t).

VII. CONCLUSION

A hybrid event-triggered low-computation control scheme
is proposed for a family of switched nonlinear systems with
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unmeasurable states. By adopting event-triggering mech-
anisms in both the sensor-to-controller and controller-to-
actuator channels, the communication burden is significantly
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Fig. 8. The comparison results on the tracking error z1.
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Fig. 9. The comparison results on the input signal u(t).

alleviated, thereby conserving network resources. Moreover,
the state observers, composed of the output signal after
triggering and the measurable signal, address the problem
of unmeasurable states. At the same time, by combining the
stabilization errors with the observation results, the challenge
of non-differentiable virtual control laws caused by triggering
is successfully overcome. Additionally, the adaptive compen-
sation term resolves the mismatch between switching and
triggering intervals, and it is rigorously proven that the Zeno-
behavior is absent. The applicability of the proposed output-
triggered control method to MIMO nonlinear systems will
be considered in future work.
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