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Abstract—Sequential recommendation aims to predict and
recommend the next item of interest based on a user’s his-
torical behavior. Despite advancements in this field, current
methods often focus on limited item co-occurrence patterns
within a session and overlook the potential of rich multi-
modal information on a page. Moreover, they fail to consider
the correlation between user behaviors and preferences across
different languages. Existing methods treat user interests as
static, inadequately capturing their dynamic nature. To address
these challenges, we propose a novel sequential recommendation
method that leverages both multi-modal and multi-lingual
information (SRMML). Our approach employs a multi-modal
fusion mechanism to enhance the representation of diverse
information, embedding items as stochastic distributions that
incorporate both mean and covariance embeddings. Addition-
ally, we introduce a multi-lingual Gate Neural Unit to capture
personalized user preferences across different languages. We
also utilize a probabilistic model to describe the positional
relationships of items, accurately simulating dynamic changes
in user preferences and collaborative transitivity. Experiments
on six real world datasets validate the effectiveness of our al-
gorithm, demonstrating significant improvements over existing
methods.

Index Terms—Multi-modal, Multi-lingual, Sequential recom-
mendation, Self-attention

I. INTRODUCTION

RECOMMENDER systems [1], [2], [3], [4], [5] filter
information by leveraging user behavior and preference

data to deliver personalized recommendations. Sequential
Recommendation (SR) [6] plays a huge role in academia
and industry due to its ability to capture dynamic interests.
Unlike traditional recommendation systems, SR considers the
sequence of user behaviors, effectively capturing the evolu-
tion and trends of user interests to provide more accurate
recommendations. The primary objective of SR consists of
modeling users’ dynamic preferences and estimating their
subsequent selections. Early SR methods employ Recurrent
Neural Network (RNN) [7] to capture the temporal fea-
tures of user behavior. With the advent of the Transformer
model, the self-attention mechanism has become a corner-
stone of sequential recommendation. The self-attention-based
Transformer[8], [9] has recently achieved remarkable ad-
vances in SR.SASRec[10], a pioneering work that introduced
Transformers to sequential recommendation, uses scaled dot-
product self-attention to learn item-item correlation weights.
BERT4Rec[11] employs sequence-based bidirectional mod-
eling, whereas TiSASRec[12] and SSE-PT[13] enhance SAS-
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Rec by incorporating time interval details and user regu-
larization. However, most existing methods predominantly
rely on short-term item ID patterns, which restricts their
accuracy. Fortunately, incorporating multi-modal information
about items presents a promising approach to improving SR
accuracy.

Multi-modal recommendation systems have gained sub-
stantial research interest, as humans naturally interpret
and synthesize information through multiple modalities
concurrently[14], [15]. Multi-modal information about items
presents a compelling approach to enhance recommendation
system performance. Descriptive information, such as images
and text on pages, vividly conveys an item’s style and
attributes. When deciding whether to click on an item, users
typically assess all available information, proceeding only if
each aspect aligns with their preferences. Therefore, a user’s
choice is jointly determined by multi-modal information.
Although some models attempt to incorporate additional in-
formation, such as item categories [16] and description texts
[17], accurately depicting user intent remains challenging.
The main challenges include:

(1) Descriptive information fusion: In SR scenarios involv-
ing multimodal information processing, images and text each
emphasize different properties.These modalities are often
weakly correlated, and certain modalities may lack relevant
or useful information. Therefore, the first challenge is to
effectively assess the similarity of features across different
modalities and evaluate their influence on the decision-
making process in SR.

(2) Multi-lingual model: Recommender systems must ac-
count for the correlation between user behaviors and prefer-
ences across different linguistic environments to accurately
predict users’ needs and interests. Accordingly, to provide
personalized recommendations, another challenge is how to
address the diversity of user preferences and the complexity
of language translation.

(3) Dynamic interest model: Current SR approaches treat
user interests as deterministic. For example, SASRec and
BERT4Rec encodes items through static vector embeddings,
neglecting the inherent uncertainty in sequential interactions.
Thus, the last challenge is how to model uncertainty in user
interests.

To tackle aforementioned issues, we introduce an inno-
vative model, Sequential Recommendation Based on Multi-
modal and Multi-lingual (SRMML), which fuses multi-
modal information to generate comprehensive item repre-
sentations. This model incorporates a Gate Neural Unit for
processing of multi-lingual text and uses a probabilistic
model for predicting SR outcomes. Specifically, to fuse
descriptive information, we utilize a CLIP-based learning
method to capture semantic information and directly mea-
sure the alignment between textual and visual modalities,
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integrating this correlation as a weighting factor. Dynamic
tuning of single-peak features and fusion features is achieved
by introducing an attention layer which dynamically gener-
ates channel weights to quantify the contributions of each
modality.

In multi-lingual model, we introduce a gating network to
process a priori information, effectively capturing users’ di-
verse preference patterns in response to linguistic variations.
We add item embeddings into the bottom layer to generate
personalized embedded gates. These gates personalize a
selection of raw embeddings from multiple languages to ob-
tain a score of personalized gates. Different personalization
semantics process more a priori information and inject it into
the model.

Moreover, to dynamically model users’ interests, items
are embedded as stochastic distributions, incorporating mean
embedding (representing base interest) and covariance em-
bedding (representing interest variability). Additionally, item
embeddings are represented as Gaussian distributions, with
distance metrics from metric learning [18] employed to
measure item transitions. The Wasserstein distance [19] in
the self-attention mechanism delineates inter-item positional
relationships within sequences, integrating uncertainty into
model training. Our primary contributions are summarized
as follows:

(1) We propose SRMML, an advanced SR method that
leverages multi-modal information to more accurately reflect
the user decision-making process, surpassing the limitations
of traditional co-occurrence based approaches.

(2) We introduce a Gate Neural Unit to process multi-
lingual textual information, enabling the model to capture
users’ preference characteristics for different language items.

(3) We employ a probabilistic model with innovative tech-
niques to comprehensively uncover user intent. By employ-
ing the Wasserstein distance, which satisfies the triangular
inequality, our approach effectively captures collaborative
transitivity within sequence modeling, enhancing collabora-
tive proximity and significantly improving performance in
the item cold-start problem.

II. METHODOLOGY

We design a model SRMML, which is illustrated in
Fig. 1. We generate multi-modal features by fusing image and
text information, and then introduce a stochastic embedding
method to address dynamic uncertainty. We build a multi-
lingual Gate Neural Unit to capture the user’s personalized
preference for information in different languages and design
a probabilistic model to capture the co-passing signals. We
employ Feed-forward Networks utilizing the Exponential
Linear Unit (ELU) [20] activation function, ensuring the
covariance matrices maintain their positive definiteness.

A. Multi-modal Feature Generation

The pipeline consists of two stages: CLIP-guided Feature
Generation and Feature Aggregation.

1) CLIP-guided Feature Generation: Since CLIP is pre-
trained on numerous diverse datasets, it can embed text and
image into a unified mathematical space, it is conducive to
the computation of cross-modal correlation [21]. We employ
CLIP to encode text and image for features fT and fI . To

enhance the representation in single-peak, we extract features
from several encoders for each branch.

In the CLIP-guided feature generation phase, it is challeng-
ing to mine the obtained text feature fT and image feature
fI for their intrinsic semantic relevance due to their notable
cross modal semantic gaps. These two features are combined
as follows:

fM = concat(fT , fI) (1)

As a complement to uni-modal feature, multi-modal fea-
ture can enhance semantic representation. To eliminate sen-
timent, noise, and other irrelevant features, we first use pre-
trained CLIP models for the uni-modal task. CLIP learns
to extract semantics from large-scale image-text pairs. To
remove redundant information separately, different projection
heads are used for resizing. The three projection heads,
PI , PT , PM , have identical structures but different weights.
Simply combining feature combiners based on CLIP into
multi-modal features does not yield accurate semantic infor-
mation, so we design a fusion adjustment module to eliminate
blurring. This module measures cosine similarity across text
and image features derived from CLIP and modifies the
strength of the combined features accordingly. The cosine
similarity is normalized to [0, 1] and computed as follows:

similarity =
fT · (fI)T

∥fT ∥∥fI∥
(2)

As a result, three channels are generated: image feature
mT , text feature mI , and fusion feature mM . This process
is illustrated as follows: mT = PT (fT )

mI = PI(fI)
mM = M(similarity)PM (fM )

(3)

where M(·) represents a linear map function.
2) Feature Aggregation: Prior to feature aggregation, we

reweight the mT , mI , and mM channels using a modal
cross attention mechanism. Motivated by SE-Net framework
[22], we propose the feature aggregation module shown in
Fig. 1 to recalculate the channel weights of mT , mI , and
mM . Specifically, we perform mean pooling and max pooling
operations on the three connected features to obtain a 1 ×
3 vector. This vector is then normalized using GELU [23]
and Sigmoid in the 3 × 3 fully connected layer to obtain
the attention weights attT , attI , and attM for each feature.
Finally, the aggregated feature is obtained as follows:

mAgg = attT ·mT + attI ·mI + attM ·mM (4)

B. Stochastic Embedding

In our model, items are embedded as stochastic distri-
butions, including mean and covariance embeddings. This
stochastic representation spans a wider space, allowing for
the inclusion of denser collaborative neighborhoods. Each
item is parameterized by a mean and covariance embedding,
introducing an element of uncertainty and reflecting the
variability of user-item interactions. The framework enriches
item embeddings with the potential to capture more nuanced
user preferences. A mean embedding table Mµ ∈ R|v|×d and
a covariance embedding table MΣ ∈ R|v|×d are defined to
represent all entities, where d is the number of latent dimen-
sions. To account for the different information represented

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 490-498

 
______________________________________________________________________________________ 



𝐸𝑖~𝛮(𝜇𝑖 , 𝛴𝑖)

Probablistic Model

P
ro

b
ab

listic
m

o
d

el

Im
ag

e E
n

co
d

er

(C
L

IP
)

F
eatu

re 

A
g

g
reg

atio
n

Em

Eid

T
ex

t E
n

co
d

er

(C
L

IP
)

P
o

sitio
n

 

E
n

co
d

er

Candidate Items

⚫ Item 1

⚫ Item 2

⚫ Item 3

⚫ Item 4…

⚫ Item N

S
to

ch
astic E

m
b

ed
d

in
g

M
u

lti-lin
g

u
al G

ate

N
eu

ral U
n

it

F
eed

-fo
rw

ard
 w

ith
 E

lu

L
ay

er O
u

tp
u

ts

P
red

ictio
n

 L
ay

er

fc

G
E

L
U

S
ig

m
o

id

𝛴

Feature  Aggregation

Multi-modal feature
Aggregated feature

Channels weight

N
eu

ral L
ay

er（
relu）

N
eu

ral L
ay

er

（
sig

m
o
id）

L
an

g
u

ag
e 

E
n

co
d

er

G
ate v

ecto
r

Multi-lingual Gate Neural Unit

Behavior Information

ID Embeddings

A
 1

0
 m

l n
u

d
e 

p
in

k
 n

ail p
o

lish
 

set

ヌ
ー
ド
ピ
ン
ク

ネ
イ
ル
ポ
リ
ッ

シ
ュ

1
0

m
l1本

セ
ッ
ト

T
w

o
 P

&
G

 

S
h

am
p

o
o

 

E
n

erg
y

 R
efills

P
&

G
シ
ャ
ン
プ

ー
・
エ
ナ
ジ
ー

詰
め
替
え
用

2
本

A
 b

lack
 co

tto
n

 

p
rin

ted
 T

-sh
irt

黒
の
コ
ッ
ト
ン

プ
リ
ン
ト

T
シ
ャ

ツ

ImageText

M
u
lti-m

o
d

al In
fo

rm
atio

n

Fig. 1. Schematic diagram illustrating the architecture of the SRMML network

by the mean and covariance, we employ additional positional
embeddings Pµ ∈ Rn×d and PΣ ∈ Rn×d for them. Thus, we
obtain embeddings for the mean and covariance sequences
of users: 

EΣ
Su

= [EΣ
S1
, . . . , EΣ

Sn
]

= [MΣ
s1 + PΣ

s1 , . . . ,M
Σ
sn + PΣ

sn ]

Eµ
Su

= [Eµ
S1
, . . . , Eµ

Sn
]

= [Mµ
s1 + Pµ

s1 , . . . ,M
µ
sn + Pµ

sn ]

(5)

C. Multi-lingual Gate Neural Unit

In recommender systems, we need to deal with a priori
information with different personalized semantics to obtain
an exhaustive understanding of user tendencies. Specifically,
item IDs and description languages are key to matching users
and items. According to several research [24], users exhibit
unique individual preference patterns for diverse items. In-
spired by this, we design a Gate Neural Unit comprising
two neural network layers, which are then injected into the
model. We represent the input to Gate Neural Unit as y and
describe the first layer’s formulation in the following way:

y′ = ReLU(yw + b) (6)

where w and b represent the trainable weights and biases.
ReLU serves as the nonlinear activation function. The first
layer integrates multiple features with prior knowledge. Next,
we modify the gate scores according to the second layer as
below:

G = λ ∗ Sigmoid(y′w′ + b′), G ∈ [0, λ] (7)

where w′ and b′ represent the learnable weights and bias,
and y′ is derived from the first layer’s output. The Sigmoid
function is applied to produce gate vectors G, limiting the

output to the range [0, λ], where λ is a scaling factor set to
2.

Gate Neural Unit creates personalized gates G by using a
priori knowledge y. It adaptively controls the importance of
a priori information and uses hyper-parameters to compress
and amplify the effective signal. We take the item’s language
information E(fL), including the language ID and language-
specific personalized statistical features, as input to Gate
Neural Unit. The Ωep represents the Gate Neural Unit of our
model in the embedding layer. Then we obtain a personalized
gating vector through a gating network:

GL = Ωep(E(fL)) (8)

We personalize the multi-modal embeddings using gating
vectors to transform them in a way that preserves the original
embedding layer. This method adaptively controls the impor-
tance of plurality and adjusts the degree of user preference
for various linguistic messages. The transformed embeddings
are calculated by element-wise product as follows:{

ẼΣ
Si

= GL ⊗ EΣ
Si

Ẽµ
Si

= GL ⊗ Eµ
Si

(9)

D. Probabilistic Model

The self-attention mechanism is commonly used to model
embedded behavioral sequences. To address the challenges
of shifting and distributing items in the model dynamics
and aggregating these sequential signals to acquire a rep-
resentation of the user, we employ the Wasserstein distance.
This distance assesses the pairwise relationships between the
sequence items. We use the linear combination characteristic
of the Gaussian distribution to combine the historical items
in order to generate the sequential representation.
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1) Gaussian Distribution Embedding: We capture the
probabilistic nature of item interactions by representing items
as multidimensional elliptical Gaussian distributions instead
of static vectors. For instance, the stochastic embedding of
the i-th item in the sequence can be depicted with a d-
dimensional Gaussian distribution: N(µsi ,Σsi) ∈ Rd×d,
where µsi = Ẽµ

Si
and Σsi = diag(ẼΣ

Si
).

2) Wasserstein Attention: We design a Wasserstein self-
attention mechanism, where A ∈ Rn×n denotes the self-
attention values. Akt indicates the attention value between
item sk at k-th position and item st at t-th position in
the sequence, where k ⩽ t. The attention weights in the
conventional self-attention mechanism are determined as
follows:

Akt = QkK
T
t /

√
d (10)

where Qk = Σ̃Sk
WQ, Kt = Σ̃St

WK . WQ, WK ∈ Rd×dk

are trainable query and key weight matrices respectively.
However, traditional self-attention computes the similarity
between dot product vector embeddings, which is not suit-
able for our setup. Consequently ,we estimate the dis-
tance between stochastic embeddings using the Wasserstein
distance[25]. Formally, the corresponding stochastic embed-
dings for items sk and st are N(µsk ,Σsk) and N(µst ,Σst),
where µsk = Ẽµ

Sk
Wµ

K , Σsk = ELU(diag(ẼΣ
Sk
WΣ

K)) + 1,
µst = Ẽµ

St
Wµ

Q, Σst = ELU(diag(ẼΣ
St
WΣ

Q )) + 1. Wµ
K , WΣ

K

represents the key weight matrix for mean embedding and
covariance embedding respectively, and Wµ

Q, WΣ
Q represents

the query weight matrix. ELU is used to ensure the positive
characterization of the covariance, which maps the inputs into
[−1,+∞). The attention weight is defined as the negative
2-Wasserstein distance W2(·,·), and it is quantified in the
following way:

Akt = −(W2(sk, st))

= −(∥µsk − µst∥
2
2

+ trace(Σsk +Σst − 2(Σ
1
2
skΣ

1
2
st)

1
2 ))

(11)

3) Wasserstein Attentive Aggregation: The output embed-
ding is the sum of the weights of the embeddings from the
previous step for each item at each location in the sequence.
The weights are the normalized attention values Ã as follows:

Ãkt =
Akt∑t
j=1 Ajt

(12)

Each item consists of a linear combination of stochastic em-
beddings of the mean and covariance, which are represented
as follows: 

zµst =
t∑

k=1

ÃktV
µ
k

zΣst =
t∑

k=0

Ã2
kt
V Σ
k

(13)

where V µ
sk

= Ẽµ
stW

µ
V , V

Σ
sk

= diag(ẼΣ
Sk
)WΣ

V , and k ≤ t
for causality. Wµ

V , WΣ
V represents the value weight matrix

for mean embedding and covariance embedding respec-
tively. The outputs Zµ = (zµs1 , z

µ
s2 , ..., z

µ
sn) and ZΣ =

(zΣs1 , z
Σ
s2 , ..., z

Σ
sn) together form the newly generated se-

quence’s stochastic embeddings, which combine previous
sequential signals while taking uncertainty into account.

E. Feed-Forward Network and Layer Outputs

The nonlinear activation function is capable of capturing
intricate relations. To introduce nonlinearity in the learning
of stochastic embeddings, we employ two fully connected
layers with ELU activations applied point-wise:{

FFNµ(zµst) = ELU(zµstW
µ
1 + bµ1 )W

µ
2 + bµ2 )

FFNΣ(zΣst) = ELU(zΣstW
Σ
1 + bΣ1 )W

Σ
2 + bΣ2 )

(14)

where Wµ
1 , WΣ

1 ∈ Rd×d, Wµ
2 , WΣ

2 ∈ Rd×d, bµ1 , bΣ1 ∈ Rd,
and bµ2 , bΣ2 ∈ Rd are learnable parameters. Because of
its better numerical stability, we choose ELU instead of
ReLU. Additionally, we incorporate elements like residual
connection, layer normalization, and dropout layers. The
outputs of each layer are formulated in the following way:

Zµ
st = zµst +Dropout(FFNµ(LayerNorm(zµst)))

ZΣ
st = ELU(zΣst +Dropout(FFNΣ(LayerNorm

(zΣst)))) + 1
(15)

ELU activation along with additive covariance embeddings
is applied to ensure covariances remain positively definite.
Layer superscripts are omitted for simplicity, particularly
when layers are stacked, with Zµ and ZΣ serving as inputs
for the subsequent Wasserstein self-attention layer.

F. Prediction Layer

The probability of a potential item j following item st
at position t-th is derived by computing the 2-Wasserstein
distance between their Gaussian distributions, represented as
N(µst ,Σst) and N(µj ,Σj):

ŷj = Softmax(W2(st, j)) (16)

where µst = Zµ
st and Σst = ZΣ

st are inferred representations;
The embeddings for µj and Σj and are derived from the
input stochastic embeddings. To boost the effectiveness of
recommendations, we apply the cross-entropy method:

L = −
n∑

j=1

yj log(ŷj) + (1− yj) log(1− ŷj) (17)

where yj corresponds to the true click status of item j and ŷj
signifies the estimated probability that item j will be clicked.

III. EXPERIMENTS

This section addresses the following five research ques-
tions:

• RQ1: Does SRMML generate recommendations that
outperform baselines?

• RQ2: What impact do the various innovative techniques
introduced in SRMML have on performance?

• RQ3: How does SRMML mitigate the item cold-start
problem?

• RQ4: How does SRMML perform with different se-
quence lengths?

• RQ5: What effects do different hyper-parameter settings
have on SRMML?
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A. Experimental Settings

1) Dataset: The dataset used in this experiment is de-
rived from the Multi-lingual Shopping Sessions Dataset
[26] provided by Amazon. This dataset includes anonymous
customer session data across six different regions: English,
German, Japanese, French, Italian, and Spanish. The dataset
contains two primary components: product characteristics
and user behavior. User behavior is represented as a chrono-
logical list of product interactions, and product attributes
include details such as title, price (in local currency), brand,
color, and description. To convert the dataset into an im-
plicit one, each rating or review is treated as a user-item
interaction. We then grouped the interactions by region and
excluded sequences that were either too short (length 1) or
too infrequent (occurring fewer than 5 times). Additionally,
items with missing or invalid images or texts were removed.
Table I provides the statistical overview of the dataset.

TABLE I
DATASET STATISTICS AFTER PRE-PROCESSING

Dateset #user #Item Density

German(DE) 1111416 513811 0.00063%
Japanese(JP) 979119 389888 0.00094%
English(UK) 1182181 494409 0.00061%
Spanish(ES) 89047 41341 0.09796%
French(FR) 117516 43033 0.07131%

Italia(IT) 126925 48788 0.05824%

2) Compared Methods: We evaluate the proposed SR-
MML model against two baseline categories: General Models
and Cross-domain Models. These categories are defined as
follows:

a) General Models:
• SASRec [10] captures sequences of user-item in-

teractions.
• BERT4Rec [27] captures bidirectional dependen-

cies for the SR.
• STOSA [19] utilizes self-attention mechanisms to

capture and represent spatiotemporal patterns in
sequential data.

b) Cross-domain Models:
• NATR [28] recommends items by learning shared

features between domains.
• PiNet [29]enhances recommendation accuracy by

using a personalized interest network.
• MiFN [30] is a session-based recommendation

model that utilizes a mixed information flow net-
work.

3) Evaluation Protocols: We follow a full ranking pro-
tocol to assess the top-K recommendation performance:
Recall@N , NDCG@N and MRR@N. The average of these
metrics is reported across all users, with N set to 10 and 20.

4) Implementation Details: The SRMML model is imple-
mented using PyTorch on an Nvidia 3090 64GB GPU. We
conduct a grid search to tune the parameters and evaluate
performance using the top validation outcomes. For all
baseline models, embedding dimensions are chosen from
{16, 32, 64, 128, 256}. Since the models incorporate both
mean and covariance embeddings, we examine SRMML

embedding dimensions in {8, 16, 32, 64, 128} to ensure
a fair comparison. The learning rate is adjusted within the
range {10−3, 10−4} and the dropout rate is varied between
{0.3, 0.5, 0.7}. For the sequential approach, we search the
depth of the layers in {1, 2, 3, 4} and the number of heads
in {1, 2, 4, 8, 16}. An early stopping strategy is employed,
halting optimization if the validation MRR does not improve
within 50 epochs.

B. Overall Performance(RQ1)

Table II provides a detailed comparison of the performance
of all models. It shows the significant effectiveness and
advantages of SRMML. Instead of simply combining image
and text representations, we introduce a novel deblurring
tuning mechanism. This mechanism employs the cosine
similarity calculated from textual and visual representations
obtained through the CLIP model, refining the combined
weights to enhance semantic precision. Additionally, we
introduce a multi-lingual gate mechanism to processes and
integrate a priori information with different semantics. This
mechanism effectively captures personalized user preferences
across different languages. Moreover, we incorporate a prob-
abilistic model and a Wasserstein self-attention mechanism
to describe the positional relationships between items in a
sequence and to model dynamic changes in user preferences.
This approach enables the model to provide insights into user
preferences from multivariate features and accurately capture
preferences for items in various languages and changing user
interests. Experiments conducted on six different datasets
demonstrate that our SRMML model outperforms current
methods, especially on the IT dataset, where it shows a
significant improvement over the best baseline.

Cross-domain recommendation methods utilize data and
resources from multiple domains to improve system per-
formance and coverage. TiSASRec utilizes temporal inter-
val information between items in user behavior sequences.
CoNet learns relevant information across domains synergis-
tically. MiFN focuses on leveraging multi-modal information
for recommendation. Nevertheless, they only perform basic
modal fusion and do not take into account the impact of
language diversity on user preferences, which restricts their
ability to comprehensively model user preferences. In con-
trast, our approach addresses these limitations and enhances
recommendation accuracy.

C. Ablation Study(RQ2)

We conduct an ablation study focused on assessing the
importance of various modules in SRMML.

1) Effect of Modules: We create the following model vari-
ants to evaluate the impact of key components in SRMML.

• w/o MF: The multi-modal fusion module is removed.
Instead, image and text features are simply combined
and directly input into the multi-modal information
encoder.

• w/o MG: The multi-lingual Gate Neural Unit is re-
moved, which means the model does not personalize
multi-lingual text.

• w/o PM: The probabilistic model module is removed,
and item embeddings are treated as fixed vectors.
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TABLE II
THE PERFORMANCE COMPARISON OF DIFFERENT RECOMMENDATION MODELS

Dataset Metric General Model Cross-domain Model Ours
SASRec BERT4Rec STOSA NATR PiNet MiFN

UK
Recall@20 0.0445 0.0541 0.0570 0.0913 0.0935 0.1011 0.1046
NDCG@20 0.0370 0.0391 0.0435 0.0744 0.0774 0.0778 0.0824

MRR 0.0330 0.0380 0.0415 0.6927 0.6990 0.0708 0.0756

DE
Recall@20 0.0446 0.0564 0.0601 0.0897 0.0935 0.1028 0.1050
NDCG@20 0.0367 0.0399 0.0444 0.0733 0.0773 0.0776 0.0813

MRR 0.0342 0.0376 0.0428 0.6847 0.0698 0.0701 0.0741

JP
Recall@20 0.0511 0.0648 0.0661 0.0961 0.1002 0.1195 0.1408
NDCG@20 0.0421 0.0459 0.0495 0.0793 0.0809 0.0890 0.1131

MRR 0.0382 0.0447 0.0456 0.0743 0.0788 0.0808 0.1047

IT
Recall@20 0.0365 0.0513 0.0521 0.0848 0.0863 0.0895 0.1268
NDCG@20 0.0303 0.0342 0.0346 0.0642 0.0692 0.0704 0.0974

MRR 0.0287 0.0298 0.0305 0.0581 0.0589 0.0604 0.0886

FR
Recall@20 0.0344 0.0500 0.0495 0.0854 0.0872 0.0909 0.1369
NDCG@20 0.0288 0.0331 0.0360 0.0648 0.0660 0.0705 0.1023

MRR 0.0283 0.0293 0.0337 0.0587 0.0574 0.0566 0.0918
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Recall@20 0.0484 0.0495 0.0557 0.0878 0.0934 0.0889 0.1340
NDCG@20 0.0335 0.0357 0.0379 0.0728 0.0781 0.0797 0.0991

MRR 0.0320 0.0335 0.0344 0.0683 0.0675 0.0640 0.0886

ALL
Recall@20 0.0485 0.0568 0.0597 0.0923 0.0968 0.1024 0.1172
NDCG@20 0.0380 0.0447 0.0465 0.0789 0.0804 0.0852 0.0923

MRR 0.0327 0.0433 0.0446 0.0705 0.0721 0.0768 0.0847
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Fig. 2. The performance comparison of SRMML with different multi-modal, multi-lingual and probabilistic model setting

Fig. 2 shows Recall@20 and NDCG@20 for these variants
on six datasets. The model without the multi-modal fusion
(MF) performs significantly worse than SRMML, indicating
that simple combination of modal features is insufficient.
The multi-modal fusion module effectively retains more in-
formation and strengthens the associations between different
features, thereby improving recommendation performance.

When the multi-lingual Gated Neural Unit (MG) is re-
moved, performance for items in multiple languages de-
teriorates significantly. This underscores the importance of
personalizing multi-lingual information, as it helps capture
language-specific user preferences and semantic patterns.

The removal of the probabilistic model (PM) also results in
a noticeable decline in recommendation effectiveness. This
indicates the essential role of distributional representations
and uncertainty modeling in sequence-based recommenda-
tion tasks. Moreover, the self-attention mechanism proves to
be essential for sequential recommender systems.

2) Effect of Modalities: As shown in Table III,we conduct
a series of experiments with varying input conditions to
assess how different modalities affect SRMML’s efficiency .
The text modality includes textual data, the image modality
incorporates image data, and the multi-modal condition com-
bines both types of information. Experimental results indicate
that both text and image features contribute positively to
recommendation performance, with text features having a
more pronounced effect. This observation can be attributed
to the multi-lingual Gate Neural Units, which effectively
capture user preferences and behavioral patterns across dif-
ferent languages. Additionally, image data often contains
misleading information, which may overwhelm the model’s
ability to extract useful patterns from user preferences.

D. Performance in Cold-start Scenario(RQ3)
Recommender systems face a persistent challenge known

as the cold-start problem, where new items that have not been
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Fig. 3. The performance in cold-start scenario
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Fig. 4. The performance on different sequence lengths
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Fig. 5. The influence of embedding dimension on ALL dataset

seen in the training set need to be recommended. To assess
SRMML’s performance in such a scenario, we test the model
with new items that were not part of the training data. The
statistics are shown in Table IV with insights drawn from
Fig. 3:

Both models exhibit reduced performance when dealing
with new items, highlighting the significant challenges of
the cold-start problem in SR. However, the concept of
collaborative transitivity proves to be an effective solution.
By identifying similarities between items within the same

item-project transition pair, this technique can inductively
introduce collaborative similarities beyond the limited item-
project pairs in the dataset. As a result, collaborative transi-
tivity helps mitigate the cold-start problem by incorporating
a broader range of collaboratively similar items. The key
difference between the two models lies in SRMML’s ability
to capture collaborative transitivity through the Wasserstein
self-attention mechanism within its probabilistic model. This
feature, which is absent in MiFN, enables SRMML to gen-
eralize collaborative signals to cold items more effectively.

E. Performance with different sequence length(RQ4)

We analyze the performance of SRMML across varying
sequence lengths. We initially categorize users based on the
number of interactions they engage in during the training
phase. The category with the shortest sequences contains the
largest number of users, and as the sequence length increases,
the number of users in each category correspondingly de-
creases. In Fig. 4, the proposed SRMML achieves a greater
improvement over the baseline on the maximum sequence
length interval compared to short sequences. Obviously, it
is difficult for traditional methods to accurately predict user
behavior in long sequences as users with frequent interactions
tend to exhibit a greater diversity of interests. In contrast,
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TABLE III
THE PERFORMANCE COMPARISON UNDER DIFFERENT MODALITIES

Datasets Modality Recall@20 NDCG@20 MRR

Text 0.0954 0.0768 0.0711
UK Image 0.0906 0.0758 0.0713

Multi-modal 0.1046 0.0824 0.0756

Text 0.0955 0.0762 0.0704
DE Image 0.0935 0.0765 0.0712

Multi-modal 0.1050 0.0813 0.0741

Text 0.1020 0.0830 0.0772
JP Image 0.1051 0.0861 0.0804

Multi-modal 0.1408 0.1131 0.1047

Text 0.0903 0.0687 0.0621
IT Image 0.0856 0.0693 0.0645

Multi-modal 0.1268 0.0974 0.0886

Text 0.0891 0.0696 0.0637
FR Image 0.0836 0.0662 0.0612

Multi-modal 0.1368 0.1023 0.0918

Text 0.0957 0.0775 0.0719
ES Image 0.0845 0.0693 0.0647

Multi-modal 0.1340 0.0990 0.0886

Text 0.0971 0.0781 0.0723
ALL Image 0.0955 0.0786 0.0735

Multi-modal 0.1172 0.0923 0.0847

TABLE IV
DATASET STATISTICS WITH COLD-START ITEMS

Dateset #user #Item Density

German(DE) 1224161(+112745) 562723(+48912) 0.00058%
Japanese(JP) 1019446(+40327) 418610(+28722) 0.00093%
English(UK) 1306660(+124479) 528888(+34479) 0.00058%
Spanish(ES) 98868(+9821) 44620(+3279) 0.09035%
French(FR) 175185(+57669) 46247(+3214) 0.04920%

Italia(IT) 161546(+34621) 52560(+3772) 0.04694%

SRMML proves the efficiency of stochastic embeddings
in modeling uncertainty within user behavior. Moreover,
SRMML achieves relatively good results in all cases, which
again proves its effectiveness in sequential recommendation.

F. Parameter analysis(RQ5)

This section evaluates how hyper parameters influence
model performance and recommendation accuracy. Specifi-
cally, we focus on the embedding dimension in multi-modal
fusion and the number of layers and heads in the Wasserstein
Attention module. First, we varies the embedding dimension
in the set {8, 16, 32, 64, 128} to assess its influence on
SRMML. The results, shown in Fig. 5, reveal that per-
formance improves progressively as the embedding dimen-
sion increases. However, the gains plateau after a certain
threshold, indicating that higher-dimensional representations
enhance the model’s capacity to capture richer and more
accurate information. Next, we performed experiments on
the ALL dataset by adjusting the number of layers and
heads in Wasserstein Attention. The results are presented in
Fig. 6 and Fig. 7. These experiments demonstrate that as the
network structure evolves, recommendation accuracy initially
improves but eventually stabilizes. A shallow network fails to
adequately capture the complex dependencies between multi-
behavioral sequences. In contrast, increasing the network
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Fig. 6. The influence of the number of layers in Wasserstein Attention
module on ALL dataset
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Fig. 7. The influence of the number of heads in Wasserstein Attention
module on ALL dataset

depth yields only marginal improvements beyond a certain
point. Increasing the number of attention heads enhances the
model’s ability to focus on both local and global sequence
patterns, which in turn improves performance. However,
excessive increases in the number of attention heads can lead
to redundancy, diminishing the model’s overall accuracy.

IV. CONCLUSION

In this paper, we propose a novel sequential recommen-
dation method SRMML improves recommendation perfor-
mance by integrating multi-modal information and multi-
lingual text. Experimental results reveal that SRMML offers
significant improvements in both recommendation accuracy
and personalization. Our multi-modal fusion mechanism is
designed to maximize the mutual information between fused
multi-modal and behavioral features, effectively capturing
both complementary and supplementary preference infor-
mation. Additionally, the multi-lingual Gate Neural Unit
captures correlations between user behaviors and preferences
across varied linguistic environments, thus improving the
semantic accuracy of recommendations. Furthermore, the
probabilistic model adeptly simulates the dynamic evolution
of user interests, enabling a more flexible and responsive
recommendation process. Overall, SRMML demonstrates
considerable promise in advancing recommender systems
by providing highly accurate and personalized recommen-
dations. This work contributes novel methodologies and
insights to the field, underscoring its potential to significantly
enhance user experience within complex and multi-lingual
environments.
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