
Energy of Partial Complement of a Graph with
Self-loops

Amrithalakshmi, Sabitha D’Souza and Swati Nayak∗

Abstract—The purpose of this paper is to extend the concept
of energy of a graph with self-loops to partial complement of
a graph. The partial complement of a graph G with respect to
a set S denoted by G ⊕ S is the graph obtained by removing
the edges of ⟨S⟩ and adding edges which are not in ⟨S⟩ in G.
Let G be a graph of order n with σ self-loops, then the energy
is defined as E(G) =

n∑
i=1

∣∣∣λi −
σ

n

∣∣∣. Based on this, we introduce

the concept of energy of partial complement of a graph G with
self-loops.

Index Terms—Partial complement, Energy, Self-loop.

I. INTRODUCTION

Let G = (V,E) be a simple, undirected graph of order n
and size m. In 1978, I.Gutman defined energy of the graph
by defining the adjacency matrix A(G) as,

E(G) =
n∑

i=1

|λi|.

where λ1, λ2, . . . , λn represent the zeros of characteristic
polynomial of A(G) [5].
Let GS be the graph with self-loops to each vertex belonging
to S, where S ⊆ V (G). Then the adjacency matrix of GS

is a symmetric square matrix A(GS) of order n such that,

A(GS)ij =


1, if vi and vj are adjacent,
0, if vi and vj are not adjacent,
1, if i = j and vi ∈ S,

0, if i = j and vi /∈ S.

The energy of GS is defined as,

E(GS) =
n∑

i=1

∣∣∣λi(GS)−
σ

n

∣∣∣ ,
where σ is the cardinality of S and λ1(GS), λ2(GS) . . . ,
λn(GS) are the eigenvalues of A(GS) [8].

Let G = (V,E) be a graph and S ⊆ V . The partial
complement of a graph G with respect to S, denoted by
G ⊕ S, is a graph (V,ES), where for any two vertices
u, v ∈ V , uv ∈ ES if and only if one of the following
conditions hold good [3]:

1) u /∈ S or v /∈ S and uv ∈ E.
2) u, v ∈ S and uv /∈ E.
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Let (G ⊕ S)r be the graph obtained by attaching a self-
loop to each of its vertices belonging to ⟨V − S⟩ such that
|V − S| = r. Then the adjacency matrix of (G ⊕ S)r is a
symmetric square matrix A(G⊕S)r of order n whose (i, j)−
entries are

A((G⊕ S)r)ij =


1, if vi and vj are adjacent,
1, if i = j and vi ∈ (V - S ),
0, Otherwise.

Let χ1, χ2, . . . , χn be the zeros of the characteristic polyno-

mial of (G⊕ S)r and
n∑

i=1

χi = r.

Then, the energy of (G⊕ S)r is defined as

E(G⊕ S)r =
n∑

i=1

∣∣∣χi −
r

n

∣∣∣.
Example 1.1: For the graph G, G⊕S and (G⊕S)r is as

follows.

Fig. 1

And the adjacency matrix of partial complement of a graph
with self-loop is given by,

A(G⊕ S)r =


0 0 0 0 1
0 0 1 0 1
0 1 1 1 1
0 0 1 1 0
1 1 1 0 0

.

Theorem 1.1: The eigenvalues χ1, χ2, . . . , χn of partial
complementary graph with self-loops satisfies the following
relations:

1)
n∑

i=1

χi = r.

2)
n∑

i=1

χ2
i = r + 2mS , where mS be the number of edges

of (G⊕ S)r.

Proof:

1) We know that sum of eigenvalues of A(G⊕ S)r=trace
of A(G⊕ S)r = r.
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2) We know that sum of squares of eigenvalues of
A(G⊕ S)r is trace of A2(G⊕ S)r.

n∑
i=1

χ2
i =

n∑
i=1

n∑
j=1

aijaji

=
n∑

i=1

a2ii +
∑
i̸=j

aijaji

=
n∑

i=1

a2ii + 2
∑
i<j

a2ij

= r + 2[mS ].

Theorem 1.2: With the same notation as in theorem 1.1,

we have
n∑

i=1

∣∣∣χi −
r

n

∣∣∣2 = r + 2mS − r2

n
,

where mS is the number of edges of (G⊕ S)r.
Proof:

n∑
i=1

(
χi −

r

n

)2
=

n∑
i=1

χ2
i +

r2

n
− 2r

n

n∑
i=1

χi

= r + 2mS − r2

n
.

Lemma 1.3: 1) If r = 0, then E(G⊕ S)r = E(G).

2) If r = n, then E(G⊕ S)r = E(G).

Proof:

1) If r = 0, then |S| = n and the graph (G⊕S)r coincides
with G. So, E(G⊕ S)r = E(G).

2) If r = n, then |S| = 0 and A(G ⊕ S)r = A(G) + In
where In is an identity matrix. Therefore,
χ(G⊕ S)r = χ(G) + 1.
From (I) and (I), E(G⊕ S)r = E(G).

II. BOUNDS FOR ENERGY OF PARTIAL COMPLEMENT OF
GRAPHS WITH SELF-LOOPS

In this section, we discuss the bounds for energy of
partial complement of graphs with self-loops.

Theorem 2.1: If (G⊕S)r is partial complementary graph
with r self-loops then,√

2mS + r − r2

n
+ n(n− 1)

[
det
(
A(G⊕ S)r −

r

n

)]2/n
≤ E(G⊕ S)r ≤

√
n

(
r + 2mS − r2

n

)
.

Proof: By taking ai = 1 and bi =
∣∣∣χi −

r

n

∣∣∣ in Cauchy-
Schwarz inequality, we get(

n∑
i=1

∣∣∣χi −
r

n

∣∣∣)2

≤ n
n∑

i=1

∣∣∣χi −
r

n

∣∣∣2(
n∑

i=1

∣∣∣χi −
r

n

∣∣∣)2

≤ n

(
r + 2mS − r2

n

)

E(G⊕ S)r ≤

√
n

(
r + 2mS − r2

n

)
.

By Arithmetic and Geometric mean inequality,

1

n(n − 1)

∑
i̸=j

∣∣∣∣χi −
r

n

∣∣∣∣ ∣∣∣∣χj −
r

n

∣∣∣∣ ≥
∏

i̸=j

∣∣∣∣χi −
r

n

∣∣∣∣ ∣∣∣∣χj −
r

n

∣∣∣∣


1

n(n − 1)

≥
[
det

(
A(G ⊕ S)r −

r

n
I

)]2/n
∑
i̸=j

∣∣∣∣χi −
r

n

∣∣∣∣ ∣∣∣∣χj −
r

n

∣∣∣∣ ≥ n(n − 1)

[
det

(
A(G ⊕ S)r −

r

n

)]2/n
.

Consider,

[E(G⊕ S)r]
2 =

(
n∑

i=1

∣∣∣χi −
r

n

∣∣∣)2

=

n∑
i=1

∣∣∣χi −
r

n

∣∣∣2 +∑
i̸=j

∣∣∣χi −
r

n

∣∣∣ ∣∣∣χj −
r

n

∣∣∣ .
E(G⊕ S)r ≥√

2mS + r − r2

n
+ n(n− 1)

[
det
∣∣∣A(G⊕ S)r −

r

n

∣∣∣]2/n.
Theorem 2.2: Let ρ(G ⊕ S)r be the spectral radius of

A(G⊕ S)r of order n and r self-loops. Then√
r + 2mS

n
≤ ρ(G⊕ S)r ≤

√
r + 2mS .

Proof: Consider,

ρ2(G⊕ S)r = max
1≤i≤n

{|χi|2}

≤
n∑

i=1

χ2
i = r + 2mS .

ρ(G⊕ S)r ≤
√
r + 2mS .

Next consider,

nρ2(G⊕ S)r ≥ max
1≤i≤n

{|χi|2}

≥ r + 2mS .

Thus,

ρ(G⊕ S)r ≥
√

r + 2mS

n
.

Hence,

√
r + 2mS

n
≤ ρ(G⊕ S)r ≤

√
r + 2mS .

Theorem 2.3: If χ1 ≥ χ2 ≥ . . . ≥ χn are the eigenvalues
of A(G⊕S)r on n vertices, mS edges with r self-loops then
E(G⊕ S)r ≤ χ1 −

r

n
+√

(n− 1)

(
r + 2

(
mS +

rχ1

n

)
− r2(n+ 1)

n2
− χ2

1

)
.

Proof: Applying Cauchy Schwarz inequality for (n−1)
terms, (

n∑
i=2

∣∣∣∣χi −
r

n

∣∣∣∣
)2

≤
(

n∑
i=2

1

)(
n∑

i=2

(
χi −

r

n

)2
)

[
E(G ⊕ S)r −

(
χ1 −

r

n

)]2
≤ (n − 1)

(
r + 2mS −

r2

n
−
(
χ1 −

r

n

)2
)

E(G⊕S)r ≤ χ1−
r

n
+

√√√√(n − 1)

(
r + 2

(
mS +

rχ1

n

)
−

r2(n + 1)

n2
− χ2

1

)
.

Lemma 2.4: [6] Let x1, x2, . . . , xn and y1, y2, . . . , yn be
real numbers. If there exist real constants x, y,Xand Y such
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that for each i, i = 1, 2, . . . , n, x ≤ xi ≤ X and
y ≤ yi ≤ Y , then∣∣∣∣∣n

n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi

∣∣∣∣∣ ≤ α(n)(X − x)(Y − y),

where α(n) = n[n2 ](1−
1
n [

n
2 ]). Equality holds if and only if

x1 = x2 = . . . = xn and y1 = y2 = . . . = yn.
Theorem 2.5: Let χ1, χ2, . . . , χn be the eigenvalues of the

graph (G⊕S)r, containing r self-loops. Then, E(G⊕S)r ≥

n

√
r

n
+

2ms

n2
−
( r
n

)2
− 1

4

(∣∣∣χ1 −
r

n

∣∣∣− ∣∣∣χn − r

n

∣∣∣)2.

Proof: Let
∣∣∣χ1 −

r

n

∣∣∣ ≥ ∣∣∣χ2 −
r

n

∣∣∣ ≥ . . . ≥
∣∣∣χn − r

n

∣∣∣.
By substituting xi =

∣∣∣χi −
r

n

∣∣∣ , yi =
∣∣∣χi −

r

n

∣∣∣ , x = y =∣∣∣χn − r

n

∣∣∣ and X = Y =
∣∣∣χ1 −

r

n

∣∣∣ and α(n) ≤ n2

4
in 2.4,

we obtain

∣∣∣∣∣∣n
n∑

i=1

∣∣∣χi −
r

n

∣∣∣2 −( n∑
i=1

(
χi −

r

n

))2
∣∣∣∣∣∣

≤ n2

4

(∣∣∣χ1 −
r

n

∣∣∣− ∣∣∣χn − r

n

∣∣∣)2 .
But,

n∑
i=1

∣∣∣χi −
r

n

∣∣∣2 = r + 2mS − r2

n
and

n∑
i=1

∣∣∣χi −
r

n

∣∣∣ = E(G⊕ S)r.

Then the above inequality becomes,

n

(
r + 2mS − r2

n

)
− (E(G⊕ S)r)

2

≤ n2

4

(∣∣∣χ1 −
r

n

∣∣∣− ∣∣∣χn − r

n

∣∣∣)2 .
Thus

E(G ⊕ S)r ≥ n

√
r

n
+

2ms

n2
−
(

r

n

)2

−
1

4

(∣∣∣∣χ1 −
r

n

∣∣∣∣− ∣∣∣∣χn −
r

n

∣∣∣∣)2

.

Lemma 2.6: [6] Let x1, x2, . . . , xn and y1, y2, . . . , yn be
real numbers. If there exist real constants r and R such that
for each i, i = 1, 2, . . . , n, rxi ≤ yi ≤ Rxi, then

n∑
i=1

y2i + rR

n∑
i=1

x2
i ≤ (r +R)

n∑
i=1

xiyi.

Equality holds if rxi = yi = Rxi for at least one i.
Theorem 2.7: [6] Let χ1, χ2, . . . , χn be the eigenvalues

of the graph (G⊕ S)r, containing r self-loops. Then,

E(G⊕ S)r ≥
r + 2ms −

r2

n
+ n

∣∣∣χn − r

n

∣∣∣ ∣∣∣χ1 −
r

n

∣∣∣∣∣∣χn − r

n

∣∣∣+ ∣∣∣χ1 −
r

n

∣∣∣ .

Proof: Taking xi = 1, yi =
∣∣∣χi −

r

n

∣∣∣ , r =
∣∣∣χn − r

n

∣∣∣
and R =

∣∣∣χ1 −
r

n

∣∣∣ in 2.7, we obtain

n∑
i=1

∣∣∣χi −
r

n

∣∣∣2 + ∣∣∣χn − r

n

∣∣∣ ∣∣∣χ1 −
r

n

∣∣∣ n∑
i=1

12

≤
(∣∣∣χ1 −

r

n

∣∣∣+ ∣∣∣χn − r

n

∣∣∣) n∑
i=1

∣∣∣χi −
r

n

∣∣∣ .

Inequality becomes,

r + 2mS − r2

n
+ n

∣∣∣χn − r

n

∣∣∣ ∣∣∣χ1 −
r

n

∣∣∣
≤
(∣∣∣χ1 −

r

n

∣∣∣+ ∣∣∣χn − r

n

∣∣∣)E(G⊕ S)r

E(G⊕ S)r ≥
r + 2ms −

r2

n
+ n

∣∣∣χn − r

n

∣∣∣ ∣∣∣χ1 −
r

n

∣∣∣∣∣∣χn − r

n

∣∣∣+ ∣∣∣χ1 −
r

n

∣∣∣ .

Theorem 2.8: Let G be a graph of order n and∑
i<j

χ2
ij = ms. Then E(G⊕ S)r ≤

√
n

(
r + 2ms −

r2

n

)
.

Proof: We have
n∑

i=1

n∑
j=1

(∣∣∣χi −
r

n

∣∣∣− ∣∣∣χj −
r

n

∣∣∣)2 ≥ 0

n

(
n∑

i=1

∣∣∣χi −
r

n

∣∣∣2 + n∑
j=1

∣∣∣χj −
r

n

∣∣∣2)− 2
n∑

i=1

n∑
j=1

∣∣∣χi −
r

n

∣∣∣∣∣∣χj −
r

n

∣∣∣ ≥ 0

n

[
r + 2ms −

r2

n

]
≥ (E(G⊕ S)r)

2

E(G⊕ S)r ≤

√
n

(
r + 2ms −

r2

n

)
.

III. ENERGY OF PARTIAL COMPLEMENT OF SOME
GRAPHS WITH SELF-LOOPS

In this section, we aim to provide the energy of partial
complement of various classes of graphs with self-loops. We
adopt the eigenvector approach to prove the theorems.

Theorem 3.1: Let (Kn ⊕ S)r be the complete graph with
r self-loops then E(Kn ⊕ S)r =

r

n
+

√
4nr − 3r2.

Proof:

A(Kn ⊕ S)r =

[
0(n−r)×(n−r) I(n−r)×r

Ir×(n−r) Ir×r

]
n×n

is the

adjacency matrix of (Kn ⊕ S)r.

Let W =

[
X
Y

]
be an eigenvector of order n partitioned

conformally with A(Kn ⊕ S)r.
Consider

det[χI −A(Kn ⊕ S)r]

(
X
Y

)
=[

χI(n−r)×(n−r)X(n−r)×1 − J(n−r)×rYr×1

−Jr×(n−r)X(n−r)×1 + (χI − J)r×rYr×1

]
. (1)

Case 1: Let X = Xj = e1 − ej , j = 2, 3, . . . , (n − r) and
Y = 0r×1.
From equation (1), (χI)Xj − J0r×1 = χXj .
Then, χ = 0 is an eigenvalue with multiplicity of at least
(n− r − 1) as there are (n− r − 1) independent vectors of
the form Xj .
Case 2: Let X = 0(n−r)×1 and Y = Yj = e1 − ej , j =
2, 3, . . . , r.
From equation (1), (χI − J)Yj = χYj .
So χ = 0 is an eigenvalue with multiplicity of at least (r−1)
since there are r − 1 independent vectors of the form Yj .

Case 3: Let X(n−r) = 1(n−r) and Y =

(
n− r

χ− r

)
1r, where

χ is any root of the equation

χ2 − rχ− r(n− r) = 0.
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From equation (1),

χI1(n−r) − J(n−r)×r

(
r

χ− r

)
1r

= χ1(n−r) −
(
r(n− r)

χ− r

)
1(n−r)

=

(
χ−

(
r(n− r)

χ− r

))
1(n−r).

So χ =
r +

√
4nr − 3r2

2
and χ =

r −
√
4nr − 3r2

2
are the

eigenvalues with multiplicity of at least one.
Thus the spectrum of (Kn ⊕ S)r is 0

r +
√
4nr − 3r2

2

r −
√
4nr − 3r2

2
n− 2 1 1

 .

So, E(Kn ⊕ S)r =
r

n
+
√
4nr − 3r2.

Theorem 3.2: Let (K1,n−1 ⊕ S)r be the partial comple-
ment of star graph with r self-loops. Then

E(K1,n−1 ⊕ S)r =
2n2 − 3nr − 2r

n
.

Proof: Let

A(K1,n−1 ⊕ S)r =

 Br 0r×(n−r−1) Jr×1

0(n−r−1)×r I(n−r−1) J(n−r−1)×1

J1×r J1×(n−r−1) J1


n

be the adjacency matrix of (K1,n−1 ⊕ S)r. Here B is the
adjacency matrix of complete sub-graph and J is the matrix
with all entries 1.
Step 1: Consider |χI −A(K1,n−1 ⊕ S)r|.
Then by applying row operation R′

i −→ Ri −Ri+1,
i = 2, 3, . . . , (r − 1), (r + 1), . . . , (n− r − 2) and
column operations C ′

i −→ Ci + Ci−1 + . . .+ Cr+1,
i = (n−r−1), . . . , (r+2) and C ′

j −→ Cj+Cj−1+. . .+C1,
j = r, r− 1, . . . , 2 on |χI −A(K1,n−1 ⊕ S)r|, we get (χ+
1)r−1(χ− 1)n−r−2(χ2 + χ(r − n)).
Hence the spectrum of partial complement of star graph with
r self-loops is represented by{
0 1 −1 n− r
1 n− r − 1 r − 1 1

}
and its energy is E(K1,n−1 ⊕ S)r =

2n2 − 3nr − 2r

n
.

Theorem 3.3: Let (K1,n−1 ⊕ S)r be the partial comple-
ment of star graph with r self-loops attached to the peripheral
vertices. Then E(K1,n−1 ⊕ S)r =

√
4n− 3.

Proof: Let r be the self-loops added to the graph V −
{v0}. Then

A(K1,n−1 ⊕ S)r =

[
01×1 J1×(n−1)

J(n−1)×1 I(n−1)×(n−1)

]
n×n

be the adjacency matrix of (K1,n−1 ⊕ S)r.

Let W =

[
X
Y

]
be an eigenvector of order n.

|λI −A(K1,n−1 ⊕ S)r|
(
X
Y

)
=[

χI1×1X1×1 − J1×(n−1)Y(n−1)×1

−J(n−1)×1X1×1 + (χ− 1)I(n−1)×(n−1)Y(n−1)×1

]
. (2)

Case 1: Let Y = Yj = e1 − ej , j = 2, 3, . . . , (n − 1) and
X = 0.
From equation (2), −J(0) + (χ− 1)IYj = (χ− 1)Yj .
As there are (n − 2) independent vectors of the form Yj ,
χ = 1 is an eigenvalue with multiplicity of at least (n− 2).

Case 2: Let X = 1 and Y =

(
1

χ− 1

)
, where χ is any root

of the equation

χ2 − χ− (n− 1) = 0.

From equation (2),

χI(1)− J1×(n−1)

(
1

χ− 1

)
= χ−

(
n− 1

χ− 1

)
.

So, χ =
1 +

√
4n− 3

2
and χ =

1−
√
4n− 3

2
are the

eigenvalues with multiplicity of at least one.
Thus the spectrum of (K1,n−1 ⊕ S)r is 0

1 +
√
4n− 3

2

1−
√
4n− 3

2
n− 2 1 1

 .

So, E(K1,(n−1) ⊕ S)r =
√
4n− 3.

Theorem 3.4: Let Kl,m ⊕ S be partial complement of
complete bipartite graph with partites V1 and V2 of l and
m vertices respectively and r be the number of self-loops
attached to any one of the partite.Then
E(Kl,m ⊕ S)r = n− 2 +

√
l2 − 4(l − 1− lm).

Proof: Let A(Kl,m⊕S)r =

[
Bl×l Jl×m

Jm×l Im×m

]
n×n

be the

adjacency matrix of (Kl,m ⊕ S)r with r self-loops.

Let W =

[
X
Y

]
be an eigenvector of order n = l +m.

Consider

(χI −A(Kl,m ⊕ S)r)

(
X
Y

)
=

[
((χ+ 1)I − J)X − JY
−JX + (χ− 1)IY

]
.

(3)
Case 1: Let X = 0l×1 and Y = e1 − ej = Yj , j =
2, 3, . . . ,m.
Then, from equation 3 −J(0) + (χ− 1)IYj = (χ− 1)Yj .
So χ = 1 is the eigenvalue with the multiplicity m−1 since
there are m− 1 independent vectors in Y = Yj .
Case 2: Let Y = 0m×1 and X = Xj = e1 − ej , j =
2, 3, . . . , l.
From equation (3), [(χ+ 1)I]Xj = (χ+ 1)Xj .
So χ = −1 is an eigenvalue with multiplicity of at least
(l− 1) since there are l− 1 independent vectors of the form
Xj .

Case 3: Let X = 1l and Y =

(
l

χ− 1

)
1m, where χ is any

root of the equation

χ2 − lχ+ (l − 1− lm) = 0.

From equation (3),

−J

(
l

χ− 1

)
1m + [−J + (χ+ 1)I]1l

= (χ+ 1)1l +−l1l −
(

ml

χ− 1

)
1l

=
(χ− 1)(χ+ 1− l)−ml

χ− 1
1l.

So χ =
l

2
+

√
(l)2 − 4(l − 1− lm)

2
and

χ =
l

2
−
√
(l)2 − 4(l − 1−ml)

2
are the eigenvalues with

multiplicity of at least one. Thus the spectrum of partial
complement of complete bipartite graph is

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 470-475

 
______________________________________________________________________________________ 



{
1 −1

l + P

2

l − P

2
m− 1 l − 1 1 1

}
,

where P =
√
(l)2 − 4(l − 1− lm).

So, E(Kl,m ⊕ S)r = n− 2 +
√
l2 − 4(l − 1− lm).

Theorem 3.5: Let (Kn×2⊕S)r be the partial complement
of Cocktail party graph with r self-loops to Kn.
Then E(Kn×2 ⊕ S)r = 2n− 2 +

√
n2 + 4(n− 1)2.

Proof: Let

A(Kn×2⊕S)r =

[
0n Bn

Bn Jn

]
2n×2n

be the adjacency matrix

of (Kn×2 ⊕ S)r, where B is the adjacency matrix of
complete sub-graph.

Let W =

[
X
Y

]
be an eigenvector of order 2n partitioned

conformally with A(Kn×2 ⊕ S)r.

Consider

(χI −A)

(
X
Y

)
=

[
χIX + (J − I)Y

(J − I)X + (χI − J)Y

]
. (4)

Case 1: Let X = Xj = e1 − ej , j = 2, 3, . . . , n and

Y =
1

χ
Xj , by substituting in equation (4) we get χ = −1

and χ = 1 are the roots with the multiplicity of at least
(n− 1), as there are n− 1 eigenvectors of the form Xj .

Case 2: Let X = 1n and Y =
−χ1n
(J − I)

, where χ is any

root of the equation, χ2 − nχ− (n− 1)2 = 0.
From equation (4),

(J − I)1n + (χI − J)
−χ

J − I
1n

=

(
(n− 1)2 − χ(χ− n)

(J − I)

)
1n.

Thus χ =
n+

√
n2 + 4(n− 1)2

2
and

χ =
n−

√
n2 + 4(n− 1)2

2
are the eigenvalues with multi-

plicity of at least one. Therefore energy of Kn×2⊕S with r
self-loops is E(Kn×2 ⊕ S)r = 2n− 2 +

√
n2 + 4(n− 1)2.

Theorem 3.6: Let Kl,m ⊕ S be partial complement of
complete bipartite graph with partites V1 and V2 of l and
m vertices respectively and r self-loop consists of p vertices
of V1 and q vertices of V2. Then the characteristic polyno-
mial of [(Kl,m ⊕ S)r, χ] = (χ + 1)(p+q−2)χ(l−p−1)(χ −
1)(m−q−1)(χ4+(1− q− l)χ3+(p− l− lm+ lq+pq−p2−
1)χ2+(l+q+2lm− lp+2lq+mp−2pq− lp2+ l2p− lq2−
2mp2+2p2q+2lmp+ lmq− lpq− 1)χ+ l− p− lm− lp+
lq+mp− pq− lp2 + l2p− lq2 − 2mp2 + pq2 +2p2q+ p2 −
p2q2 + lpq2 +mp2q + 2mlp+ lmq − 2lpq −mpq − lmpq).

Proof: Let A(Kl,m ⊕ S)r =(J − I)p×p 0p×(l−p) 0p×q Jp×m−q

0(l−p)×p J(l−p)×(l−p) J(l−p)×q J(l−p)×(m−q)

0q×p Jq×(l−p) (J − I)q×q 0q×(m−q)

J(m−q)×p J(m−q)×(l−p) 0(m−p)×q I(m−q)×(m−q)


n×n

.

Consider |χI −A(Kl,m ⊕ S)r|.
On performing row operations R′

i −→ Ri − Ri+1, i =
2, 3, . . . , (p − 1), (p + 1), . . . , (l − p − 1), (l − p + 1), . . . , (q −
1), (q + 1), . . . , (m − q − 1). And column operations C′

i −→
Ci + Ci−1 + . . .+ Cq+1, i = (m− q), (m− q − 1), . . . , (q + 2),
C′

j −→ Cj +Cj−1 + . . .+Cl−p+1, j = q, q − 1, . . . , (l− p+ 2),

C′
w −→ Cw+Cw−1+ . . .+Cp+1, w = l−p, l−p−1, . . . , (p+2)

and C′
z −→ Cz + Cz−1 + . . . + C1, z = p, p − 1, . . . , 2 on

|χI −A(K1,n−1 ⊕ S)r|, we get
|χI − A(K1,n−1 ⊕ S)r| = (χ + 1)(p+q−2)(χ)(l−p−1)(χ −
1)(m−q−1) det(B).
We have,

det(B) =

∣∣∣∣∣∣∣
χ− (p− 1) 0 0 −(l +m− q)

0 χ+ p− l −q −(m− q)
0 −(l − p) χ− (q − 1) 0
−p −(l − p) 0 (χ− 1)

∣∣∣∣∣∣∣
which is on expansion leads to the polynomial

(χ4 + (1 − q − l)χ3 + (p − l − lm + lq + pq − p2 − 1)χ2 +
(l+ q+ 2lm− lp+ 2lq+mp− 2pq− lp2 + l2p− lq2 − 2mp2 +
2p2q + 2lmp+ lmq − lpq − 1)χ+ l− p− lm− lp+ lq +mp−
pq− lp2 + l2p− lq2 − 2mp2 + pq2 + 2p2q+ p2 − p2q2 + lpq2 +
mp2q + 2mlp+ lmq − 2lpq −mpq − lmpq).
Therefore the characteristic polynomial of partial complement of
complete bipartite graph is,
[(Kl,m ⊕S)r, χ] = (χ+1)(p+q−2)χ(l−p−1)(χ− 1)(m−q−1)(χ4 +
(1−q−l)χ3+(p−l−lm+lq+pq−p2−1)χ2+(l+q+2lm−lp+
2lq+mp−2pq−lp2+l2p−lq2−2mp2+2p2q+2lmp+lmq−lpq−
1)χ+l−p−lm−lp+lq+mp−pq−lp2+l2p−lq2−2mp2+pq2+
2p2q+p2−p2q2+lpq2+mp2q+2mlp+lmq−2lpq−mpq−lmpq).

Theorem 3.7: Let (S0
n ⊕ S)r be the partial complement

of a crown graph with r self-loops attached to one of the
partites of V = {V1, V2}. Then E(S0

n ⊕ S)r = 2
√
2(n −

1) +
√

n2 − 4(n− 1)(2− n).
Proof: Let

A(G ⊕ S)r =

[
(J − I)n −(J − I)n
(I − J)n (I)n

]
2n×2n

be the adja-

cency matrix of (S0
n ⊕ S)r.

Let W =

[
X
Y

]
be an eigenvector of order 2n.

Consider

(χI−A(G⊕S)r)

(
X
Y

)
=

[
[(χ+ 1)I − J ]X − (J − I)Y
(I − J)X + [(χ− 1)I]Y

]
.

(5)

Case 1: Let X = 1n and Y =

(
n− 1

χ− 1

)
1n, where χ is

any root of the equation

χ2 − nχ+ (n− 1)(2− n) = 0.

From equation (5),

((χ+ 1)I − J)1n − (J − I)(n− 1)

(χ− 1)
1n

=

[
(χ+ 1− n)− (n− 1)2

(χ− 1)

]
1n.

Thus χ =
n+

√
n2 − 4(n− 1)(2− n)

2
and

χ =
n−

√
n2 − 4(n− 1)(2− n)

2
are the eigenvalues with

multiplicity of at least one.
Case 2: Let X = Xj = e1 − ej , j = 2, 3, . . . , n and

Y =
−Xj

χ− 1
, where χ is root of the equation

χ2 − 2 = 0.

From equation (5),

((χ+1)I−J)Xj+

(
J − I

χ− 1

)
Xj =

[
(χ+ 1)− 1

(χ− 1)

]
Xj .

Hence χ =
√
2 and χ = −

√
2 are the eigenvalues each

with multiplicity of at least (n − 1) as there are (n − 1)
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eigenvectors of the form Xj .
Thus the spectrum of partial complement of crown graph
with self-loops is( √

2 −
√
2

n+ P

2

n− P

2
n− 1 n− 1 1 1

)
,

where P =
√

n2 − 4(n− 1)(2− n) and its energy is
E(S0

n ⊕ S)r = 2
√
2(n− 1) +

√
n2 − 4(n− 1)(2− n).

Theorem 3.8: For a partial complement of friendship
graph (Fn⊕S)r with r−self-loops to its peripheral vertices.
Then, E(Fn ⊕ S)r = n+ 2

√
n− 3.

Proof: Let the adjacency matrix of (Fn ⊕ S)r is

A(Fn ⊕ S)r =


01×1 J1×2 J1×2 · · · J1×2

J2×1 J2×2 02×2 · · · 02×2

J2×1 02×2 J2×2 · · · 02×2

...
...

...
. . .

...
J2×1 02×2 02×2 · · · J2×2


n−1
2 +1

.

The characteristic polynomial of (Fn ⊕ S)r is given by
|χI −A(Fn ⊕ S)r| =∣∣∣∣∣∣∣∣∣∣∣

χI −J1×2 −J1×2 · · · −J1×2

−J2×1 (χI − J)2×2 02×2 · · · 02×2

−J2×1 02×2 (χI − J)2×2 · · · 02×2

...
...

...
. . .

...
−J2×1 02×2 02×2 · · · (χI − J)2×2

∣∣∣∣∣∣∣∣∣∣∣
.

Step 1: Applying row operation R
′

i −→ Ri − Ri+1, for
i = 2, 3, . . . ,

(
n−1
2 − 1

)
and C

′

i −→ Ci + Ci−1 + . . . + C2

for i =
(
n−1
2

)
,
(
n−1
2 − 1

)
, . . . , 3 on the above determinant,

we get |χI − J |n−1
2 −1det(B).

Step 2: Further simplification leads to the polynomial
[(χ− 1)2 − 1]

n−3
2 (χ3 − 2χ2 + χ(n− 1)).

Hence the spectrum of partial complement of friendship
graph with r−self-loop (Fn ⊕ S)r is(

0 2 1−
√
n 1 +

√
n

n− 1

2
n−3
2 1 1

)
.

So, E(Fn ⊕ S)r = n+ 2
√
n− 3.

IV. CONCLUDING REMARKS

The energy of a graph with self-loops is one of the
emerging topic within graph theory. Graph energy has so
many application in the field of Chemistry, Physics and
Mathematics. In this article, we have derived energy of partial
complement of some standard graphs with self-loops and
bounds for the same.
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