
Finite State Machine and Matrix Representation
for Solving Transition Modeling for Dynamic

Programming Solution
Ryan Garnet Andrianto, Rully Soelaiman, Member, IAENG, and Misbakhul Munir Irfan Subakti

Abstract—Efficient computation of expected values is
paramount in scenario analysis and decision-making, especially
for problems involving large finite state machines with complex
state dependencies and transitions. Traditional approaches re-
lying on linear equation systems often fall short under such de-
manding conditions. Addressing this critical need, the proposed
method integrates finite state machines to model transitions and
matrices to manage state properties, delivering a breakthrough
in efficiency. The matrix transition model, enhanced with
an optimized memory management technique, achieves an
average computation time of just 0.179 seconds—over 22 times
faster than the strict 4-second time limit set by the problem
setter—and consumes only 5.63 MB of memory, a mere 0.36%
of the 1536 MB limit. These results underscore the solution’s
exceptional capability to not only meet but vastly exceed
stringent performance requirements, redefining expectations for
large-scale finite state machine calculations.

Index Terms—expected value, geometric series, recurrence
relations, memory optimization.

I. INTRODUCTION

F INITE state machines are computational models exten-
sively utilized for simulating sequential logic. These

models serve as versatile tools for addressing problems in di-
verse domains, including mathematics, artificial intelligence,
gaming, and linguistics [1]. In practical applications, finite
state machines are commonly employed to represent and
manage the states of dynamic systems. This paper leverages
the concept of a cookie crane as a representative example
to construct and analyze a finite state machine. The cookie
crane is chosen for its central role in the Sphere Online Judge
(SPOJ) problem TAP2015E, which serves as the benchmark
for validating the proposed methodology.

To introduce the concept, a single cookie crane is initially
considered. Fig. 1 illustrates three distinct states of a single
cookie crane: (a) the crane is empty and carries no cookies;
(b) it carries one cookie; and (c) it carries two cookies.
The state of the crane evolves as it picks up and packages
cookies. In this paper, the crane’s state is denoted as {x},
where x represents the number of cookies currently carried.
Array notation is adopted for state representation, facilitating

Manuscript received June 17, 2024; revised December 20, 2024. This
work was supported in part by Institut Teknologi Sepuluh Nopember,
Surabaya, Indonesia.

Ryan Garnet Andrianto is a software engineer at PT Informasi Teknologi
Indonesia, Jakarta Selatan, Indonesia, and is a graduate of Institut
Teknologi Sepuluh Nopember, Surabaya, Indonesia (e-mail: ryangarnetan-
drianto@gmail.com).

Rully Soelaiman is an associate professor at Institut Teknologi Sepuluh
Nopember, Surabaya, Indonesia (e-mail: rully130270@gmail.com).

Misbakhul Munir Irfan Subakti is an assistant professor at In-
stitut Teknologi Sepuluh Nopember, Surabaya, Indonesia (e-mail: yi-
fana@gmail.com).

Fig. 1. Illustration of three distinct states of the cookie crane.

Fig. 2. Matrix representation and finite state machine of the cookie crane.

extension to systems involving multiple cranes operating in
coordination.

State transitions occur as the cookie crane picks up cook-
ies, with each transition’s feasibility governed by problem-
specific rules or constraints. A simple example is provided to
elucidate this concept. Fig. 1 visually represents the cookie
crane’s states, illustrating its physical operation. However,
computational analysis necessitates a mathematical represen-
tation of these transitions. In this work, the crane is modeled
as a finite state machine and represented using a transition
matrix, as depicted in Fig. 2. This mathematical abstraction
enables efficient analysis and computation.

Fig. 2 contains two illustrations: (a) a matrix representing
state transitions and (b) a finite state machine diagram for the
cookie crane. In the finite state machine, state {0} denotes
the initial state. The selection of the starting state may vary
based on contextual requirements; here, {0} represents an
empty crane, consistent with the initial state defined in the
SPOJ TAP2015E problem.

State transitions are driven by actions such as picking up
cookies, with each action occurring probabilistically to reflect
real-world uncertainty. To effectively manage these probabil-

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

ities and transitions, a matrix representation is employed. The
matrix facilitates efficient computation through operations
such as addition and multiplication, which underpin the
analysis detailed in subsequent sections.

In finite state machines, each state depends on its pre-
decessor, except for the initial state. For instance, state
{2} is reachable from state {0} via two actions. This de-
pendency introduces recurrence relationships among states,
necessitating precise calculations for expected values in state-
dependent systems. Traditional approaches face challenges
in handling such dependencies efficiently due to exponential
growth in computational complexity with the number of
actions N . This paper addresses these challenges by focusing
on the expected number of cookies packaged by the crane
after N actions. The proposed method overcomes complexity
barriers, enabling computations that would otherwise be
infeasible.

The expected value is a fundamental concept in statistics,
representing the central tendency of a probability distribution
[1]. It serves as a predictive measure for evaluating out-
comes and supports decision-making processes in uncertain
environments [3]. In this study, the objective is to calculate
the expected number of cookies packaged by the crane after
performing N actions. While dynamic programming offers
a viable approach to handle state dependencies, the compu-
tational complexity increases significantly as N grows due
to the expanding sequence of dependencies. This highlights
the critical need for more efficient algorithms to address the
rising resource demands effectively. The efficient algorithm
proposed in this paper addresses this challenge by utilizing
finite state machine and matrix representations to model
transitions for dynamic programming solutions.

The SPOJ TAP2015E – Perfect Packing problem serves
as the primary case study, presenting a critical challenge of
determining the number of cookies a factory can produce
while adhering to probabilistic actions and strict packaging
rules [2]. Efficient solutions to this problem are essen-
tial due to the high computational complexity involved in
handling state dependencies and transitions. The proposed
approach, which integrates finite state machines and matrix
representations, delivers a groundbreaking improvement in
computational efficiency. This solution achieves an average
computation time of just 0.179 seconds, dramatically outper-
forming the 4-second time limit and exceeding the problem
setter’s expectations by 22 times. The method demonstrates
robust performance, effectively managing up to 210 fully
connected states in the worst-case scenario. Furthermore, this
solution ranks as the top submission for the given problem
on the SPOJ platform, highlighting the critical need for
such innovative methods and underscoring the transformative
potential of the proposed approach.

The remainder of this paper is structured as follows:
Section II introduces the finite state machine and matrix
transition methodology. Section III presents the experimental
results and analysis. Finally, Section IV concludes the paper.

II. METHODOLOGY

The transition modeling introduced in this paper outper-
form the dynamic programming approach in computing the
expected value, primarily due to their superior efficiency in
producing faster results.

Fig. 3. The finite state machine of the example (cookie crane)

The process for constructing the system to calculate the
expected value involves four key steps: mapping the finite
state machine, designing a dynamic programming solution
to compute the expected value, constructing the matrix
representation, and formulating the transition matrix.

A. Finite State Machine Mapping
Mapping the finite state machine is a critical step in

identifying the dependencies within the observed object.
Each object is associated with a unique finite state machine
based on its specific actions and characteristics. For example,
while a car can accelerate, a cat can walk, resulting in distinct
finite state machines for each. To enable a comprehensive
calculation of the property (expected value), the finite state
machine is designed to encompass all possible states and
scenarios relevant to the context. This ensures that every
potential scenario is accounted for [4], [17].

To achieve this, the breadth-first search (BFS) algorithm, a
fundamental method for graph traversal, can be implemented.
A finite state machine can be represented as a graph, where
vertices represent states, and edges represent state transitions.
Starting from an initial vertex, BFS systematically traverses
the graph by visiting neighboring vertices layer by layer [10].
In this context, each neighboring vertex corresponds to a
potential next state, and the traversal action represents a state
transition.

In a deterministic finite state machine (FSM), five elements
are defined: a finite set of states (Q), a finite, nonempty set
of inputs (Σ), a set of transition functions (δ), a starting
state (q0), and a set of accepting states (F). Fig. 3 illustrates
these concepts through two representations: (a) a matrix of
transition functions (δ), and (b) a graphical depiction of the
states and their transitions.

The graphical representation models the behavior of the
cookie crane previously discussed. The crane operates in
three distinct states, represented as Q = {{0}, {1}, {2}},
where each state corresponds to a specific configuration or
condition of the crane. The state transitions are governed
by the set of possible actions, Σ = {a1, a2, p1, p2}. These
actions include picking up one cookie (a1), picking up two
cookies (a2), releasing one cookie for packaging (p1), and
releasing two cookies for packaging (p2).

Initially, the cookie crane starts in the empty-handed state,
represented as q0 = {0}. In this problem, the crane must pick
up and package cookies during each iteration, to return to the
empty-handed state {0}, which signifies the completion of
the task. Therefore, the finish state is denoted as F = {0}.

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

TABLE I
EXAMPLE OF STATE ENCODING FROM STRING TO INTEGER

No. State Encoded to

1 {0} 1

2 {1} 2

3 {2} 3

Fig. 4. Encoding state in the finite state machine to integer

To ensure the unique identification of each state, identifiers
can be assigned as either numbers or strings. If strings are
used, they should be encoded into integers for indexing
purposes. This encoding simplifies subsequent mathematical
processes. In this problem, the states are encoded into
integers, as shown in Table I. It is crucial to map each state
to a unique integer identifier to avoid ambiguity and ensure
accurate representation. This encoding scheme establishes a
one-to-one correspondence between states and their integer
identifiers.

As mentioned earlier, string states are encoded into inte-
gers. In Fig. 4, the string {0} is encoded as integer 1, {1} as
integer 2, and {2} as integer 3. This encoding ensures that
each state is uniquely identified by an integer value. Figure
(a) shows the finite state machine with string state identifiers,
while figure (b) shows the finite state machine with integer
state identifiers.

In a single iteration, to produce one package of cookies,
the crane must pick up and then release cookies. Let’s
take(x) represents the action of picking up x cookies and
pack(y) represents the action of releasing y cookies. During
a single iteration, the crane performs take(x) followed by
pack(y) sequentially. Since take(x) and pack(y) are actions
that transition the crane between states, they should have the
following attributes: the probability of the action occurring
(p), the number of cookies picked up or released (c), the
starting state (s), and the finishing state (f). For example,
take(x)p represents the probability of picking up x cookies.

To enhance the efficiency of the finite state machine, it is
important to merge the take(x) and pack(y) actions into
a single action, since both actions occur during a single
iteration. The feasibility of merging depends on the context
and the object being observed. Fig. 5 illustrates this process:
figure (a) shows the original finite state machine, while figure
(b) presents the merged version. Merging the actions aims to
create a more compact finite state machine, thereby reducing
unnecessary further computations.

In Fig. 5, state 1 is the initial state. At the start, state
1 is set as the current state. If take(1) and pack(1) are

Fig. 5. Merging the state transition in the finite state machine

executed sequentially, the current state will transition from
state 1 to state 2 and then back to state 1. Similarly, if
take(2) and pack(2) are executed sequentially, the state will
change from state 1 to state 3 and then return to state 1.
If take(2) and pack(1) are executed sequentially, the state
will transition from state 1 to state 3 and then to state 2.
Since each iteration consists of one take(x) followed by one
pack(y), these actions can be merged into a single action
called prod(z). Table II shows all possible combinations of
take(x) and pack(y) that form prod(z).

The action take(x) can occur with a certain probability,
denoted as take(x)p. Similarly, the action pack(y) has a
probability of occurrence denoted as pack(y)p. Since these
two actions are independent, the probability of both actions
occurring in sequence is the product of their probabilities
[1]. Equation (1) illustrates how the probability of prod(z)p
is calculated.

prod(z)p = take(x)p × pack(y)p (1)

There may be multiple actions prod(z) with the same
starting and finishing states. For example, in Table II, both
prod(1) and prod(2) share the same start and finish states.
According to the sum rule, if there are two mutually exclusive
events, A and B, the probability of either A or B occurring
is given by Equation (2) [1].

P (A ∪B) = P (A) + P (B) (2)

Each pack(z) action is mutually exclusive, representing
distinct scenarios that do not depend on each other. There-
fore, applying (2) to determine the probability of transition-
ing from state a to state b is possible. Equation (3) shows
how the probability from state a to state b is calculated,
denoted as Pa,b. Let W be the set of prod(z), defined as
W = {prod(1), prod(2), . . . , prod(n)}.

Pa,b =

{e∈W |es=a∧ef=b}∑
e

ep (3)

Equation (3) states that the probability Pa,b of transitioning
from state a to state b is determined by summing the
probabilities of all elements e in the set W (where e is
a prod(z) action) such that es = a and ef = b. In this
equation, ep represents the probability associated with action
e.

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

TABLE II
ACTION PROD GENERATED FROM ACTION TAKE AND ACTION PACK

No. Selected Action Take Selected Action Pack Formed Action Prod State Transition

1 take(1) pack(1) prod(1) 1,2,1

2 take(2) pack(2) prod(2) 1,3,1

3 take(2) pack(1) prod(3) 1,3,2

Fig. 6. Collective operation of machines as a single system

Further, according to the expected value formula, it is
possible to calculate the expected value by multiplying the
probability of a random variable by its corresponding value
[1], [17]. In the given problem, the objective is to calculate
the expected value of the cookies packaged. Therefore, the
random variable represents the number of cookies packaged
during the prod(z) action. Equation (4) shows the method
for calculating the expected value in this scenario. Let
Ea,b denote the expected value of cookies packaged when
transitioning from state a to state b.

Ea,b =
∑

xf(x) =

{e∈W |es=a∧ef=b}∑
e

epec (4)

Equation (4) defines Ea,b, the expected value of cookies
packaged when transitioning from state a to state b, as the
sum of the products of the probability and the number of
cookies produced for each element e in the set W (where e
is a prod(z) action), such that es = a and ef = b. By using
this equation, calculating every Ea,b for all state transitions
can be performed. The expected value is calculated by
multiplying each possible scenario with its likelihood to
occur and then summing all of the values [17].

The given problem, however, is quite complex. Multiple
cookie cranes may elaborate as a system, as illustrated in
Fig. 6, thereby increasing the complexity of calculating the
expected value due to the combination of involved configu-
ration scenarios.

In Fig. 6, (a) Crane A, B, and C are identical machines, but
they may pick up different quantities of cookies. (b) When
cranes A, B, and C operate together, they form a unified
system. In the given problem, a system can comprise N
cookie cranes. At maximum, N can be 4. At a minimum, N
can be 1. Therefore, to represent the state of the system, an
array notation is utilized. For instance, the state is denoted as
{c1, c2, c3} for a system consisting of three machines where
ci represents the number of cookies held by the i-th machine
at the current state.

In Fig. 7, two distinct conditions exist for a system com-
prising three cookie cranes. These conditions are represented
by state {1, 2, 2} and {2, 2, 1}. Given that the cookie cranes
are identical in this problem, both states are considered
equivalent as they function within the same system. In other
words, the permutation rule does not apply; instead, the
combination rule is applicable.

Fig. 7. Two configurations for a system with three machines

TABLE III
CALCULATION OF PROBABILITY OF POSSIBLE SCENARIOS DURING

ACTION TAKE OF THE SAMPLE TEST CASE

Initial State Stake Finish State Probability (Ptake)

{0,0,0} {1,1,1} {1,1,1} (3!/(3!1!))(0.5)3 = 0.125

{0,0,0} {2,1,1} {2,1,1} (3!/(1!2!))(0.5)3 = 0.375

{0,0,0} {2,2,1} {2,2,1} (3!/(2!1!))(0.5)3 = 0.375

{0,0,0} {2,2,2} {2,2,2} (3!/3!)(0.5)3 = 0.125

{2,0,0} {0,1,1} {2,1,1} (2!/2!)(0.5)2 = 0.25

{2,0,0} {0,2,1} {2,2,1} (2!/(1!1!))(0.5)2 = 0.5

{2,0,0} {0,2,2} {2,2,2} (2!/2!)(0.5)2 = 0.25

TABLE IV
CALCULATION OF PROBABILITY OF POSSIBLE SCENARIOS DURING

ACTION PACK OF THE SAMPLE TEST CASE

Start State Spack Finish State Probability (Ppack)

{1,1,1} {1,1,1} {0,0,0} 1.0

{2,1,1} {2,1,1} {0,0,0} 1.0

{2,2,1} {2,2,1} {0,0,0} 1.0

{2,2,2} {2,2,0} {2,0,0} 3/(3 + 1) = 0.75

{2,2,2} {2,2,2} {0,0,0} 1/(3 + 1) = 0.25

In the sample test case of the given problem, each cookie
crane in the system has a 50% probability of taking either one
cookie or two cookies [2]. The desired number of cookies
in a package is denoted as G and its value is 5. The system
has 3 cookie cranes working together. The probabilities of
possible scenarios during the action take and the action pack
have been calculated by implementing the product rule and
the combination rule. Table III shows the calculation during
the action take and Table IV shows the calculation during
the action pack.

Table V provides an overview of the process involved in
creating the finite state machine according to the sample
input data described in Table III and Table IV. It en-
compasses all possible scenarios of the system, including

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

TABLE V
POSSIBLE SCENARIOS FROM ACTION TAKE AND ACTION PACK

Action Initial State Stake Ptake Spack Ppack Cookies Packaged (x =
∑

Spack) End State

prod(1) {0,0,0} {1,1,1} 0.125 {1,1,1} 1.0 3 {0,0,0}
prod(2) {0,0,0} {2,1,1} 0.375 {2,1,1} 1.0 4 {0,0,0}
prod(3) {0,0,0} {2,2,1} 0.375 {2,2,1} 1.0 5 {0,0,0}
prod(4) {0,0,0} {2,2,2} 0.125 {2,2,2} 0.25 6 {0,0,0}
prod(5) {0,0,0} {2,2,2} 0.125 {2,2,0} 0.75 4 {2,0,0}
prod(6) {2,0,0} {0,1,1} 0.25 {2,1,1} 1.0 4 {0,0,0}
prod(7) {2,0,0} {0,2,2} 0.25 {2,2,0} 0.75 4 {2,0,0}
prod(8) {2,0,0} {0,2,1} 0.5 {2,2,1} 1.0 5 {0,0,0}
prod(9) {2,0,0} {0,2,2} 0.25 {2,2,2} 0.25 6 {0,0,0}

the actions taken during take(i) and pack(j) actions. The
value of G plays a crucial role in forming Table V. For
prod(1), prod(2), and prod(3) actions, they hold fewer
cookies than G. Consequently, all the cookies they hold are
released during the release or package action. As a result, the
state eventually becomes {0, 0, 0}, indicating that all cranes
become empty. However, for prod(4) action, it holds more
cookies than G, leading to a hybrid scenario where the cranes
can either pack all cookies or pack some cookies only. Fig.
8 provides a visual representation of this scenario.

In scenario prod(4) and prod(5) present different sce-
narios. After their take(x) actions, they hold 6 cookies.
Subsequently, there are two possible outcomes for their
pack(y) action: they can release either 4 cookies or 6 cook-
ies. This variability arises because the difference between
G and the number of cookies held by the cranes is equal
to 1 (|G − 4| = |G − 6|) and it is impossible to achieve a
combination with a cookie difference of 0.

The system can have multiple outcomes in each scenario,
adding complexity to the finite state machine. As shown in
Fig. 8, this machine is complex, with some states having
multiple transitions. It can be simplified by applying (3) and
(4) and encoding state names as unique integers, as explained
earlier. In this figure, p represents the probability of the state
transition and x represents the number of cookies packaged
during the state transition which is the random variable in
the given problem. The results of these simplifications are
shown in Fig. 9.

The values of Pi,j in Fig. 9 are shown by (5), (6), (7),
and (8). In these equations, the sum rule has been applied
as mentioned in (2). This approach simplifies the finite state
machine, ensuring that each state has only one transition to
any other state.

P0,1 = prod(5)p = (0.125)(0.75) = 0.09375 (6)

P1,0 = prod(6)p + prod(8)p + prod(9)p

= (0.25)(1.0) + (0.5)(1.0) + (0.25)(0.25)

= 0.8125

(7)

P1,1 = prod(7)p = (0.25)(0.75) = 0.1875 (8)

State 0 can transition to state 1 with a certain probability
of P0,1. Similarly, state 1 can transition to state 0 with a
certain probability of P1,0. If the crane transitions from state
0 to state 1 and then from state 1 to state 0 in a sequence,

then the probability can be calculated by using the Markov
Chain property.

Let X be a random variable, where P (X = i) represents
the probability that X takes the value i. The stochastic
process {Xn : n ∈ N} is a Markov chain if it satisfies
the Markov property, as defined in (9) [5].

P (Xn+1 = j|X0, X1, . . . , Xn−1, Xn) = P (Xn+1|Xn) (9)

In (9), n indicates time, specifically the iteration number.
For example, P (X0 = i) represents the probability that at
the first iteration, a movement from state 0 to state i occurs.
P (X1 = j|X0) denotes the probability such that at the
second iteration, a movement from state i to state j occurs,
given that a movement from state 0 to state i occurred in the
first iteration.

According to the Markov Chain property, a sequence of
states visited over time has been considered. Let S denotes
the set of visited states. Starting from state 0, the crane
sequentially moves to each state in S. In this scenario,
the Markov Chain property can be applied to calculate the
probability of visiting each state in S in sequence. Equation
(10) shows how this probability is calculated.

P (Xi = Si | X0, X1, . . . , Xi−1) =

P (Xi−1 | Xi−2)PSi−1,Si

(10)

B. DP Solution to Compute Expected Value

When calculating the expected value, the outcomes depend
on the state transition probabilities mapped within the finite
state machine. Each transition from one state to another
encompasses multiple scenarios that occur with specific
probabilities. According to the mathematical expectation
formula [1], the expected value is calculated as shown in
(11).

E(X) =
∑
x

xf(x) (11)

To calculate the expected value for the problem of SPOJ
TAP2015E, equation (11) is applied. In a single iteration,
there are no dependencies because there is only one state
transition. However, for multiple iterations, dependencies
between states arise. In this problem, multiple iterations
(where 1 iteration visits 1 state) can occur. Let M represents
the number of iterations. For M > 1, the probability is
calculated using (10).

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

Fig. 8. Possible scenarios of machines starting empty and then each taking a different number of cookies

Fig. 9. The finite state machine with encoded states and simplified
transitions

The Law of Total Expectation has been applied, as shown
in (12). According to the Law of Total Expectation, the
expected value of a random variable equals the sum of the
expected values conditioned on another random variable [6].
By applying the Law of Total Expectation, the expected
value can be calculated based on the iteration number, which
corresponds to the number of movements.

E(X) = E(E(X|A)) =
n∑

i=1

E(X|Ai)P (Ai) (12)

In the first iteration (m = 1), as mentioned, there is
no dependency because it only has one state transition.
Hence, m = 1 can be served as the terminating case.
For convenience, a notation E(X|M = m,Q = q) is
introduced. In (13), m represents the iteration number and q
represents the current state during that m-th iteration. This
notation denotes the expected value of the random variable
X during the m-th iteration with the current state q. In (13),
n represents the highest integer in the set of encoded states.

E(X|M = 1, Q = q) =
n∑

j=0

E0,j (13)

For m > 1, dependencies exist because the current state in
the x-th iteration depends on the finish state in the (x−1)-th
iteration. If the crane transitions from state A to state B in
the 1st iteration, then state B becomes the start state in the
2nd iteration. Based on (12), (14) shows the application of
the Law of Total Expectation in this problem. With (13) and

(14), a recurrence function can be established as shown in
(15).

The objective of (15) is to compute the expected value of
the random variable X up to the depth of m in the iteration.
Consequently, the mean value of these expected values can
be calculated ranging from m = 1 to m = M . The final
output is determined using (16). Equation (16) aggregates the
expected values E(X|M = m,Q = q) across all iterations
from 1 to M , to provide the overall expected value of X
after M iterations.

E(X) =
1

M

M∑
m=1

E(X|M = m,Q = 0) (16)

Based on (15) and (16), the dynamic programming solu-
tion for this problem is presented in algorithm in Fig 10.
This algorithm utilizes tabulation, an optimization technique
that enhances efficiency by precomputing solutions to sub-
problems and storing them in a table [18]. By leveraging
tabulation, algorithm in Fig. 10 efficiently computes the
expected value of the random variable X after M iterations,
ensuring faster execution.

In the algorithm presented in Fig. 10, P denotes a matrix
that stores the probabilities of state transitions, while E
represents a matrix containing the expected values associ-
ated with these transitions. The parameter M specifies the
iteration count, which corresponds to the number of state
transitions performed. Further details about these matrices
are provided in Section II.C.

C. Matrix Representation

As previously mentioned, matrices play a crucial role in
storing both the probabilities and the expected values of
state transitions. Each state transition yields an associated
expected value. Accordingly, matrix P is defined to represent
transition probabilities, while matrix E is defined to represent
the expected values, as expressed in (17) and (18).

P =

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n

...
...

. . .
...

Pn−1,0 Pn−1,n

 (17)

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

P0,0 = prod(1)p + prod(2)p + prod(3)p + prod(4)p

= (0.125)(1.0) + (0.375)(1.0) + (0.375)(1.0) + (0.125)(0.25)

= 0.90625

(5)

E(X|M = m,Q = q) =
n∑

j=0

E(X|M = m− 1, Q = j)Pq,j (14)

E(X|M = m,Q = q) =

{∑n
j=0 E0,j ,m = 1∑n
j=0 E(X|M = m− 1, Q = j)Pq,j ,m > 1

(15)

Require: P,E,M
Ensure: answer

1: for q ← 0 to n− 1 do
2: dp[0][q]← 0.0
3: for v ← 0 to n− 1 do
4: dp[0][q]← dp[0][q] + E[q][v]
5: end for
6: end for
7: sum← dp[0][0]
8: for m← 1 to M − 1 do
9: for q ← 0 to n− 1 do

10: dp[m mod 2][q]← 0.0
11: for v ← 0 to n− 1 do
12: if P [q][v] > 0.0 then
13: dp[m mod 2][q]← dp[m mod 2][q]+dp[(m−

1) mod 2][v]× P [q][v]
14: end if
15: end for
16: end for
17: sum← sum+ dp[m mod 2][0]
18: end for
19: answer ← sum/M

Fig. 10. Dynamic programming algorithm solution for the problem

E =

E0,0 E0,1 . . . E0,n

E1,0 E1,1 . . . E1,n

...
...

. . .
...

En−1,0 En−1,n

 (18)

P and E are square matrices, meaning they have an equal
number of rows and columns [7], [18]. The element Pi,j

represents the probability of transitioning from state i to state
j, while Ei,j denotes the expected value generated during the
transition from state i to state j. These matrices are capable
of representing fully connected state transitions, where any
state can transition to any other state. Consequently, the size
of these matrices, denoted as n, corresponds to the total
number of states in the finite state machine.

In C++ programming, matrices are commonly represented
using 2-dimensional arrays [9] due to their straightforward
structure, which closely mirrors the mathematical represen-
tation of matrices. Both matrix addition and matrix multi-
plication require iterative computations over the elements
of the matrices. The algorithm in Fig. 11 illustrates how

Require: A,B
Ensure: C

1: n← A.rowSize
2: m← A.colSize
3: for i← 0 to n− 1 do
4: for j ← 0 to n− 1 do
5: C[i][j]← A[i][j] +B[i][j]
6: end for
7: end for

Fig. 11. Matrix addition algorithm

Require: A,B
Ensure: C

1: r1← A.rowSize
2: c2← B.colSize
3: c1← A.colSize
4: for i← 0 to r1− 1 do
5: for j ← 0 to c2− 1 do
6: for k ← 0 to c1− 1 do
7: C[i][j]← C[i][j] +A[i][k] +B[k][j]
8: end for
9: end for

10: end for

Fig. 12. Naı̈ve matrix multiplication algorithm

matrix addition is performed, while Fig. 12 presents a naı̈ve
iterative approach to matrix multiplication. A more efficient
iterative method for matrix multiplication is discussed in the
subsequent sections.

The algorithm in Fig. 11 has a time complexity of O(N2),
which arises from its two nested loops, each iterating over
the rows and columns of the matrix. In contrast, the algo-
rithm in Fig. 12 has a time complexity of O(N3) because
it involves three nested loops: two for iterating over the
rows and columns, and one for summing over the elements
during matrix multiplication. In both algorithms, the methods
‘A.rowSize‘ and ‘A.colSize‘ return integers representing
the number of rows and columns in matrix A, respectively.

A computer’s memory is a collection of cells, each of
which stores one bit of information [8]. The computer’s
memory (primary storage) has a linear structure [9]. Typ-
ically, memory addresses range from 0 to an upper limit
determined by the amount of memory available on the given
computer. Consider there is an array of integer, A[4][5], i.e.,

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

Require: A,Bt
Ensure: C

1: r1← A.rowSize
2: c2← Bt.rowSize
3: c1← A.colSize
4: for i← 0 to r1− 1 do
5: for j ← 0 to c2− 1 do
6: for k ← 0 to c1− 1 do
7: C[i][j]← C[i][j] +A[i][k] +B[j][k]
8: end for
9: end for

10: end for

Fig. 13. Matrix multiplication algorithm with matrix transpose

an array of integers named A having 4 rows and 5 columns.
The address of A[0][0] is called the base address, BA.
Suppose each element of the integer occupies 4 bytes. A[0][0]
is stored at memory location BA. A[0][1] is stored at memory
location BA+4. A[0][2] is stored at memory location BA+8.
A[0][3] is stored at memory location BA + 12. A[0][4] is
stored at memory location BA + 16. A[1][0] is stored at
memory location BA + 20. A[3][4] is stored at memory
location BA+ 76.

During an execution of a program, memory references by
a processor, for both instructions and data. The processor
cache contains a copy of a portion of the main memory.
When the processor attempts to read a byte of memory, a
check is made to determine whether the byte is in the cache.
If so, the byte is delivered to the processor immediately. If
not, a block of memory which consists of a fixed number
of bytes is read into the cache. Further, the byte is delivered
to the processor. Because of the phenomenon of locality of
reference, when a block of data is fetched into the cache to
satisfy a single memory reference, it is likely that many of
the near-future memory references will be to other bytes in
the block [11].

As mentioned above, when the processor accesses an
element of the matrix in memory, it checks whether the
element is already present in the cache. If the element is not
in the cache, a block of memory containing several elements
of the matrix is loaded into the cache. In the algorithm shown
in Fig. 12, the elements of matrix B are not accessed in a
sequential memory address order. As a result, data is loaded
from memory to the cache more frequently. Furthermore,
when new data is written to the cache, it may cause existing
cached data to be flushed to make room for the new block.
This repeated loading and flushing of data increases latency
and reduces computational efficiency.

To accelerate matrix multiplication, matrix transposition
has been incorporated into the algorithm shown in Fig.
12. The optimized approach is presented in Fig. 13, which
demonstrates a more efficient method for matrix multipli-
cation. By transposing one of the matrices, the algorithm
improves memory access patterns, reducing repetitive cache
loads and increasing the cache hit rate [19]. This opti-
mization minimizes latency caused by frequent memory-
to-cache transfers, thereby enhancing overall computational
performance.

In the algorithm shown in Fig. 13, Bt represents the
transpose of B, denoted as Bt = BT . The access sequence

for the array indices follows the order (i, j), (i, k), and
(j, k). This sequence ensures that the elements of the arrays
are accessed in ascending order of memory addresses. For
instance, when computing C[1, 2], the processor cache is
likely to already contain the data for A[1, x] and Bt[2, x]
for x = {1, 2, 3, . . . , c1}. This is because the data for
A[1, x] and Bt[2, x] was loaded into the cache during the
calculation of the previous element, C[1, 1]. By leveraging
this memory access pattern, the approach optimizes cache
usage and significantly accelerates matrix multiplication.

D. Transition Matrix

The transition matrix model can vary significantly depend-
ing on the context and specific rules of the problem. For the
SPOJ TAP2015E problem, a final matrix, denoted as F , has
been constructed to address its unique requirements. This ma-
trix is used to solve (16) through matrix transitions. Equation
(19) illustrates how matrix F substitutes the variables in (16),
reflecting the specific context of this scenario.

E(X) =
1

M

n∑
j=0

F (M)0,j (19)

In (19), F (M) represents the final matrix for the M -th
iteration. For example, F (3) is the final matrix for the 3rd
iteration. It is important to note that F (x) ̸= F (y) for x ̸= y
and 1 ≤ x < y ≤ M . Since F (M) is a matrix, its element
can be accessed by using the notation F (M)i,j for the i-th
row and j-th column. For instance, F (M)0,j refers to the
element in the first row and j-th column of the matrix. For
the terminator case or base case where M = 1, the matrix
F has been defined as (20).

For M = 2, the Law of Total Expectation is applied,
indicating that there is a dependency between the expected
value at M = 2 and the expected value at M = 1. This
dependency must be considered to accurately calculate the
expected value for M = 2. By using matrix multiplication,
based on (15), F (M) has been defined as (21).

F (M) = E + PE + P 2E + . . .+ PM−1E (21)

In the properties of matrix arithmetic, there is distributive
law A(B+C) = AB+AC [7]. The reversed version of this
distributive law has been applied to matrix multiplication in
(21), yielding the result shown in (22).

F (M) = (I + P + P 2 + . . .+ PM−1)E (22)

In (22), a geometric series of matrices can be observed.
The sequence {Sn}n≥0 is defined by (23). {Sn}n≥0 is the
geometric series generated by P . The series converges if and
only if |λi| < 1, for each eigenvalue λi of P [12]. If this
condition holds, then I − P is invertible and results in (24).

Sn = I + P + P 2 + . . .+ Pn−1, S0 = I (23)

Sn =
n−1∑
k=0

P k = (I − P)−1(I − Pn) (24)

If the geometric series does not converge, (24) cannot be
applied for computation. In the given problem, the geometric

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

F (1) =

E(X|M = 1, Q = 0) E(X|M = 2, Q = 0) . . . E(X|M = n,Q = 0)
E(X|M = 1, Q = 1) E(X|M = 2, Q = 1) . . . E(X|M = n,Q = 1)

...
...

. . .
...

E(X|M = 1, Q = n− 1) E(X|M = n,Q = n− 1)

 (20)

series generated by P does not converge. Therefore, (24)
cannot be utilized in the given transition matrix model.
Instead, our proposed algorithm can be used with logarithmic
time complexity to efficiently compute the series, known as
the Sum of Powered Matrix algorithm. Let B(x) denotes the
function used to compute the geometric series generated by
P starting from index 1. This function is defined in (25).

B(x) = P + P 2 + . . .+ P x =
x∑

u=1

Pu (25)

If x = 1, then B(1) = P . For x = 2, B(2) = P + P 2.
Similarly, for x = 3, B(3) = P + P 2 + P 3, and so
forth. This function is computed sequentially, meaning B(x)
is calculated before B(x + 1) for x > 1. However, this
sequential approach is not computationally efficient for larger
values of x. For example, if M = 107, calculating B(107) di-
rectly using this method would be computationally expensive
and time-consuming, particularly in a worst-case scenario.
Therefore, a more optimized approach is necessary to handle
such cases efficiently.

To accelerate the computation of B(x) as defined in
(25), a logarithmic approach has been proposed. Instead of
sequentially calculating B(x) from B(1) to B(M − 1), the
proposed method constructs B(x) using logarithmic steps.
This approach optimizes the computation process by em-
ploying efficient iterative calculations, enabling significantly
faster computation, even for large values of x, such as
M = 107.

For B(2), the reversed version of the distributive law of
matrices is applied, as shown in (26). Similarly, for B(3), the
reversed version of the distributive law of matrices is applied,
followed by substituting it with (26). This process continues
for B(4), where the reversed version of the distributive
law of matrices is applied and then substituted using (26).
Consequently, by utilizing (26), (27), and (28), B(x) can
be computed in approximately log2 x steps. Equation (29)
provides the formula to compute B(x) efficiently using
logarithmic steps.

B(2) = P + P 2 = P (I + P) (26)

B(3) = P +P 2+P 3 = P (I+P)+P 3 = B(2)+P 3 (27)

B(4) = P + P 2 + P 3 + P 4

= (P + P 2)(I + P 2)

= P (I + P)(I + P 2)

= B(2)(I + P 2)

(28)

B(x) =

P , x = 1

B(⌊x2 ⌋)(I + P ⌊ x
2 ⌋) , x mod 2 = 0

B(⌊x2 ⌋)(I + P ⌊ x
2 ⌋) + P x

(29)

Require: x
Ensure: B(x) = T

1: factor ← vector()
2: while x > 0 do
3: factor.push back(x)
4: x← x shr 1
5: end while
6: xBef ← 0
7: for i← factor.size− 1 downto 0 do
8: f ← factor[i]
9: if f = 1 then

10: T ← P
11: else
12: halfF ← f shr 1
13: if halfF = 1 then
14: X ← P
15: xBef ← 1
16: else
17: X ← X ×X
18: xBef ← xBef × 2
19: if xBef ̸= halfF then
20: xBef ← xBef + 1
21: X ← X × P
22: end if
23: end if
24: Y ← I +X
25: T ← T × Y
26: if f mod 2 = 1 then
27: Z ← X ×X
28: if xBef × 2 ̸= f then
29: Z ← Z × P
30: end if
31: T ← T + Z
32: end if
33: end if
34: end for

Fig. 14. Sum of powered matrix algorithm

The algorithm presented in Fig. 14 introduces the Sum
of Powered Matrix, a novel approach developed in this
paper as a key performance-enhancing technique. Designed
to solve (29), this algorithm is implemented using a bottom-
up approach, enabling efficient computation of B(x) in a
logarithmic number of steps relative to x. By significantly
reducing computational overhead, this method ensures opti-
mal performance, even for large values of x, and represents
a cornerstone of the performance improvements achieved in
this work.

In the algorithm shown in Fig. 14, the process begins
by storing the value of x in a vector. Subsequently, x
is repeatedly divided by 2 until it becomes zero. This
process continues until the vector’s size reaches log2 x,

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

which corresponds to the number of iterations performed by
the algorithm. As a result, the algorithm achieves a time
complexity of O(log2 N).

By applying (29), the transition matrix model is ultimately
formulated in (30). This formulation encapsulates the itera-
tive accumulation of matrix powers, leveraging the efficient
Sum of Powered Matrix algorithm. This approach ensures
robust and accurate computation of B(x) with logarithmic
complexity, highlighting its efficiency.

F (M) =

{
E ,M = 1

(I +B(M − 1))E ,M > 1
(30)

Once matrix F is constructed, the expected value is
calculated using (19) and (30). To compute F (M) efficiently,
the matrix multiplication in the equation is performed using
the transpose matrix multiplication technique. This approach
optimizes cache management by improving memory access
patterns, reducing cache misses, and significantly accelerat-
ing the computation process. As a result, the expected value
is calculated efficiently, even for large values of M .

E. Converting the Final Equation into Transition Matrix
Model

Equation (19) represents the matrix transition approach for
solving the given problem, while Equation (16) represents the
recurrence function approach. Both equations yield the same
result; however, the key distinction lies in their methodology.
The first equation incorporates a matrix (F) as part of the
solution, whereas the second equation does not involve any
matrices.

E(X) = E(X)

1

M

n∑
j=0

F0,j =
1

M

M∑
m=1

E(X|M = m,Q = 0)

n∑
j=0

E0,j = E(X|M = 1, Q = 0)

n∑
j=0

E0,j =
n∑

j=0

E0,j

(31)

For M = 1, (31) shows that (16) is equivalent to the
sum of the elements in matrix F . Additionally, for M > 1,
(32) demonstrates that (16) is derived from the matrix
multiplication of matrices P and E, resulting in matrix
F . This highlights that converting a linear approach into a
transition matrix approach relies on the specific formulation
of the linear equation. In this process, multiple matrices are
employed to represent the elements of the linear equation.
Due to their interdependence, these elements can be com-
puted efficiently and simultaneously, leveraging the power
of matrix operations.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In the previous section, how the approach of the expecta-
tion value problem using this finite state machine and matrix
transition has been explained. All proposed algorithms in this
paper were implemented using C++ programming language.
In this section, the proposed algorithm will be examined

by using two different platforms suitable for analyzing its
validity and performance.

The first platform is the Sphere Online Judge (SPOJ). It
is a third-party online platform for source code checking. It
uses cube clusters with Intel Xeon E3-1220 v5 CPUs [13].
The validity of the matrix transition algorithm was tested
by submitting the source code on SPOJ. It examined the
submitted source code validity by comparing its result output
to the expected answer provided by the problem originator.

The second platform is a local environment using a
personal computer (PC) with AMD Ryzen™ 5 2500U and
8192MB of memory, running Windows 10 with GCC 4.9.2
compiler. This local environment is used to compare and
analyze the program’s runtime and efficiency.

In Section III.A, the validity check of the matrix transition
algorithm that is used to compute the expected value will
be elaborated. Moreover, in Section III-B, the performance
examination of the proposed method, both time-wise and
space-wise will be further going into detail. Lastly, in Section
III-C, how efficiently the matrix transition method works in
different input sizes will be analyzed.

A. Validity Examination

Fig. 16 shows how the matrix transition approach scored
on Sphere Online Judge (SPOJ). SPOJ’s testing system
will give various response statuses based on its judgment
of the submitted solution. “Accepted” status indicates that
the program runs successfully and gives a correct answer.
“Wrong answer” status means that the program runs suc-
cessfully but it gives different answers than the expected
answer. “Time limit exceeded” shows that the program is
compiled successfully but it runs exceeding the time limit.
“Compilation error” means that the program is not able to
be compiled. Lastly, the “Runtime error” status implies that
the program is compiled successfully but it crashed during
its runtime [14].

The code was tested across 30 submissions to ensure both
accuracy and consistency throughout the validity test. Each
of the 30 submissions received an ”accepted” status, demon-
strating that our approach to computing the expected value
using finite state machines and matrix transitions provides
correct results within the given time and memory constraints.
Each submission was evaluated against multiple hidden test
cases configured by the problem originator. The ”accepted”
status is awarded only when the code passes all test cases,
highlighting the robustness of our solution. Furthermore, Fig.
15 illustrates that only 7 out of 172 submitted solutions were
accepted by Sphere Online Judge, with our matrix transition
solution being one of them. This not only underscores the
complexity of the problem but also the effectiveness of our
proposed solution.

B. Performance Examination

Two factors must be taken into consideration in the perfor-
mance examination. They are program runtime and memory
usage [15]. The first factor, program runtime, will be eval-
uated in two distinct environments: locally, utilizing one’s
personal computer, and in a live environment, facilitated
by the Sphere Online Judge platform. This comprehensive
approach enables a thorough examination of the program’s

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

E(X|M = 2, Q = 0) =
n∑

j=0

E(X|M = 1, Q = j)Pq,j

= E(X|M = 1, Q = 0)P0,0 + E(X|M = 1, Q = 1)P0,1 + . . .+ E(X|M = 1, Q = n)P0,n

= (
n∑

j=0

E0,j)P0,0 + (
n∑

j=0

E1,j)P0,1 + . . .+ (
n∑

j=0

En,j)P0,n

= (E0,0 + E0,1 + . . .+ E0,n)P0,0 + (E1,0 + E1,1 + . . .+ E1,n)P0,1 + . . .+

(En,0 + En,1 + . . .+ En,n)P0,n

= P0,0E0,0 + P0,0E0,1 + . . .+ P0,0E0,n + P0,1E1,0 + P0,1E1,1 + . . .+

P0,1E1,n + P0,nEn,0 + P0,nEn,1 + . . .+ P0,nEn,n

(32)

Fig. 15. Statistics of all previously submitted solutions and list of accepted users examined by Sphere Online Judge

Fig. 16. Validity test evaluated by Sphere Online Judge

performance across different settings. The second factor,
i.e., memory usage will be examined. It will be evaluated
exclusively on the Sphere Online Judge site. By focusing
on this specific platform, how the program manages and
utilizes memory resources can be better understood. This
approach allows us to assess the efficiency and effectiveness
of the program’s memory management in a controlled and

standardized environment.
When evaluating the performance of an algorithm, it is

essential to incorporate worst-case scenarios into the evalu-
ation process. This approach allows us to ascertain whether
the algorithm remains robust and effective even under ad-
verse conditions. By subjecting the algorithm to unfavorable
scenarios, its ability to function optimally can be gauged
and determine its acceptability in real-world applications.
Therefore, to evaluate the program runtime, 9 types of test
cases were used. Each test case has different input M which
are 1,10,102,103,104,105,106,5 × 106, and 107. Input M
denotes how many state transitions. The algorithm should
calculate the expected value after M state transitions. In our
matrix transition model, the number of iterations affects the
computational power. The more it has iteration, the more
it has computational tasks because it is in the form of a
recursive function.

Fig. 18 shows the scatter chart of every thirty trials’
average runtime value for each different input M . It is shown
that the program runtime is logarithmic increasing with the
M . The data were obtained by executing the implemented
approach on the PC 30 times for input shown in Fig. 17.

In the live environment, the algorithm is submitted thirty
times to check on its performance consistency. Fig. 19 shows

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

Fig. 17. Input for local testing on the PC

Fig. 18. Average program runtime in different input M

Fig. 19. Timewise performance measurement by Sphere Online Judge

a bar chart of all thirty submission execution times measured
by the Sphere Online Judge, with an average execution time
of only 0.179 seconds out of 4 seconds, the maximum given
time limit. Only two trials (19th and 27th) took 0.28 seconds
which is ±100 milliseconds longer than the average runtime.
Therefore, these 19th and 27th trials can be considered
outliers caused by the server load inconsistency during a
certain busy time [16].

As mentioned at the beginning of this section, the proposed
approach to memory usage examination is done by the
Sphere Online Judge. It shows how many resources were
used when executing the submitted program. On average, our
proposed approach only needs 5.63MB of resources which is
only 0.36% of the memory limit (1536MB). Fig. 20. shows
the memory usage on each of the trials. In conclusion, our
matrix transition approach is indeed efficient space-wise.

Fig. 20. Space-wise performance measurement by Sphere Online Judge

C. Matrix Transition Method Examination

In this section, the efficiency of our matrix transition
algorithm in solving the finite state machine in different
numbers of iterations (M) will be analyzed. Our matrix
transition algorithm uses bottom-up loops to compute the
expected value in each iteration. The more iterations it needs,
the longer the runtime will be.

Calculating the expected value using only the dynamic
programming (DP) solution involves n+M × n2 iterations,
where n represents the number of states. The complexity
of the DP solution, as described in Equation (33), is derived
from the total number of iterations required for the computa-
tion. Here, zdp denotes the approximate number of iterations,
as implemented in the algorithm presented in Fig. 10.

zdp = n+M × n2 (33)

Calculating the expected value using the matrix transition
solution requires fewer iterations compared to the dynamic
programming solution. To compute the final matrix F (M),
the process involves a single matrix addition operation and
one matrix multiplication operation, as shown in (30). The
matrix addition requires n2 iterations, where n is the size
of the matrix, while the matrix multiplication requires n3

iterations.
Additionally, the computation of F (M) includes the calcu-

lation of B(M − 1). This calculation involves log2 (M − 1)
iterations. During each of these iterations, as detailed in
the algorithm presented in Fig. 14, the worst-case sce-
nario requires performing two matrix addition operations
and six matrix multiplication operations. Thus, the total
number of iterations for calculating B(M − 1) is given
by (log2 (M − 1))(2n2 + 6n3). Consequently, the total
number of iterations to compute F (M) is n2 + n3 +
(log2 (M − 1))(2n2 + 6n3).

Furthermore, deriving the expected value also involves
solving (13), which requires M iterations. Therefore, the
computational complexity of the matrix transition solution
is expressed in (34), where ztr denotes the approximate
number of iterations required to solve the problem using
matrix transition.

ztr = n2 + n3 + (log2 (M − 1))(2n2 + 6n3) +M (34)

In the given problem, based on the input constraints, the
maximum number of states is 210. Therefore, n = 210 is
used to represent the worst-case scenario input. Equation (35)

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

Fig. 21. Comparison of 2D plot complexity between the matrix transition
solution and the dynamic programming solution

and (36) illustrate the result of substituting n = 210 into
equations (33) and (34), respectively.

zdp = 210 +M × 44100 (35)

ztr = 9305100 + 55654200(log2 (M − 1)) +M (36)

Subsequently, (35) and (36) are plotted in a 2D graph,
where the X-axis represents the value of M , and the Y-
axis represents the value of ztr and zdp. Fig. 21 presents
this 2D visualization. In this context, a lower value of z
indicates improved performance, as z directly corresponds to
the number of computational iterations required. The matrix
transition approach demonstrates consistently lower iteration
counts compared to the dynamic programming (DP) ap-
proach, highlighting its computational advantage for solving
this problem.

The plot also identifies a crossover point, representing
the value of M at which both methods exhibit identical
computational performance in terms of iterations required.
It is important to note that this crossover point is derived
through mathematical observation and may slightly differ
in practical implementations due to factors such as system-
specific overheads or execution nuances. Beyond this thresh-
old, the matrix transition method significantly outperforms
the DP approach, requiring fewer computations as the value
of M increases. This further underscores the scalability and
efficiency of the matrix transition approach for larger state
spaces.

The matrix transition method achieves this advantage
by leveraging the logarithmic nature of its computations,
effectively reducing the complexity compared to the linear
growth of the DP approach. As M increases, the iterative
multiplications required in the DP approach grow linearly,
while the matrix method confines the required operations
to approximately log2 M steps. This difference becomes
increasingly pronounced for larger M , making the matrix
transition method more suitable for applications involving
large-scale state spaces or computational constraints.

IV. CONCLUSION

This paper addresses the problem of calculating the ex-
pected value of a random variable associated with an object

whose states exhibit interdependence. These states are mod-
eled using a finite state machine, where each state is assigned
specific value properties essential for accurate computation.
To enhance computational efficiency and scalability, a matrix
representation is utilized. The expected value is determined
through matrix transitions, supported by an algorithm with
logarithmic complexity that accelerates the computation of
geometric series of matrices, resulting in significant perfor-
mance improvements.

Experimental results demonstrate that the proposed ap-
proach, combining finite state machines with matrix transi-
tions, consistently produces accurate results while optimizing
computational resources, including time and memory. The
method achieves exceptional efficiency, making it well-suited
for large-scale or resource-constrained scenarios. Future
work should focus on enhancing this approach to tackle more
complex problems and expanding its applicability to diverse
domains, addressing the growing demand for efficient and
scalable computational techniques.

REFERENCES

[1] E. W. Ronald, H. M. Raymond, L. M. Sharon, and K. Ye, “Probability
& Statistics for Engineers & Scientists,” Prentice Hall, no. 9th ed., pp.
111-142, 2012.

[2] F. Schaposnik, “Perfect Packing”. [Online]. Available:
https://www.spoj.com/problems/TAP2015E

[3] G. Micheli, S. Schraven, and V. Weger, “A local to global principle
for expected values,” Journal of Number Theory, vol. 238, pp. 1–16,
2022.

[4] M. Baron, “Probability and statistics for computer scientists,” Chap-
man and Hall/CRC, 2018.

[5] D. A. Bini, G. Latouche, and B. Meini, “Numerical Methods for
Structured Markov Chains,” Oxford University Press, pp. 3-21, 2005.

[6] A. Katz, W. Pakornrat, A. Kau, and E. Ross, “Law of Iterated Expec-
tation”. [Online]. Available: https://brilliant.org/wiki/law-of-iterated-
expectation

[7] H. Anton and C. Rorres, “Elementary Linear Algebra, Applications
Version,” Wiley , pp. 25-52, 2014.

[8] S. Djanali, “Sistem Digital (Digital System),” ITS Press Surabaya ,
no. 3rd ed., 2015.

[9] N. Kalicharan, “Data Structures in C,” Createspace Independent
Publishing Platform , 2008.

[10] S. Halim and F. Halim, “Breadth First Search (BFS),“ Lulu.com, no.
v. 3, pp. 123-124, 2013.

[11] W. Stallings, “Operating systems: Internals and design principles,”
Prentice Hall , no. 7th ed., pp. 24-31, 2012.

[12] E. Kani, “Geometric Series of Matrices”. [Online]. Available:
https://mast.queensu.ca/ math211/m211oh/m211oh96.pdf

[13] ——, “Clusters”. [Online]. Available: https://www.spoj.com/clusters
[14] ——, “How to cope with SPOJ?”. [Online]. Available:

https://www.spoj.com/tutorials/USERS.
[15] S. Yendri, R. Soelaiman, U. L. Yuhana, and S. Yendri, “Dynamic

Programming Approach for Solving Rectangle Partitioning Problem,”
IAENG International Journal of Computer Science, vol. 49, no. 2, pp.
410–419, 2022.

[16] S. S. Mopuri, “System Design — Online Judge with Data Modelling“.
[Online]. Available: https://medium.com/@saisandeepmopuri/system-
design-online-judge- with-data-modelling-40cb2b53bfeb

[17] S. Yendri, R. Soelaiman, and Y. Purwananto, ”Hybrid Algorithm to
Find Minimum Expected Escape Time From a Maze,” Engineering
Letters, vol. 31, no.1, pp. 346-357, 2023

[18] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. “Intro-
duction to Algorithms (3rd ed.),” MIT Press, 2009.

[19] J. Shi, S. Li, Y. Xu, R. Fu, X. Wang, and T. Wu, ”FlashSparse:
Minimizing Computation Redundancy for Fast Sparse Matrix Multi-
plications on Tensor Cores,” arXiv preprint, arXiv:2412.11007, 2024.

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 429-441

__

