
 

  
Abstract—Diabetic Retinopathy (DR) is a common and 

significant complication in patients with diabetes, and severely 
affecting their quality of life. Image segmentation plays a 
crucial role in the early diagnosis and treatment of DR. 
However, traditional methods are limited in terms of 
segmentation accuracy and generalization capability. This 
paper proposes a novel image segmentation method for diabetic 
retinopathy based on the integration of DenseNet and U-Net 
networks. Firstly, DenseNet is utilized to replace the encoder 
part of U-Net. The dense connection mechanism enhances the 
efficiency of feature propagation and improves the feature 
extraction capability of the encoder. Secondly, we introduce 
Omni-Dimensional Dynamic Convolution (ODConv) to replace 
traditional convolutions. ODConv is used to handle diverse 
input features effectively. The model's adaptability and 
segmentation accuracy for various samples is improved. Finally, 
we integrate the Convolutional Block Attention Module (CBAM) 
into the decoder. By leveraging channel and spatial attention, 
the ability to capture key features is enhanced, and the 
segmentation accuracy and boundary recognition capabilities 
are improved. To validate the effectiveness and feasibility of the 
model. This paper conducts experiments on the DDR dataset 
and the IDRID dataset. The experimental results show that the 
proposed method improved the mDice score by 0.53% 
compared to traditional methods. It also increased the mIoU 
score by 1.12% over traditional methods. This indicates that the 
proposed method has better performance in segmenting 
diabetic retinopathy images. It also demonstrates better 
generalization ability. 
 

Index Terms—Diabetic retinopathy, DenseNet, U-Net, 
ODconv Dynamic convolution, CBAM attention mechanism 
 

I. INTRODUCTION 
ITH the advancement of national economies, 
improvements in living standards, and changes in 
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dietary patterns, the incidence of diabetes has risen 
significantly in recent years. Diabetic Retinopathy (DR) is a 
leading cause of vision impairment and blindness among 
diabetic patients, severely impacting their quality of life. The 
primary cause of DR is microvascular damage to the retina 
due to prolonged high blood sugar, leading to retinal 
hemorrhages, edema, and neovascularization [1]. If diabetic 
retinopathy is not treated in time, it can lead to severe vision 
loss or even blindness. Therefore, early and accurate 
diagnosis and effective treatment of diabetic retinopathy are 
very important [2]. In the diagnosis of diabetic retinopathy, 
image segmentation technology can help doctors quickly and 
accurately identify and quantify lesion areas, providing 
important references for treatment plans [3]. 

However, DR image segmentation faces significant 
challenges due to factors such as complex textures, uneven 
brightness and contrast, as well as subtle differences between 
lesion areas and normal tissues [4]. Thus, how to observe 
diabetic retinopathy in DR Images while saving doctors' time 
and effort is still an urgent need for computer-aided diagnosis 
in clinical practice. 

Traditional methods for DR image segmentation usually 
rely on manually designed features and rules, leading to 
unstable segmentation results and poor generalization ability. 
These methods often fail to achieve the desired accuracy and 
robustness when dealing with complex DR images. In recent 
years, the rapid development of deep learning, particularly 
Convolutional Neural Networks (CNNs), has led to 
widespread applications in medical image segmentation, 
significantly improving DR image segmentation [5]. Deep 
learning-based methods make significant progress in the 
segmentation of diabetic retinopathy images. 

Among these methods, U-Net [6] and its variations are 
widely used for image segmentation tasks. U-Net, with its 
encoder-decoder architecture, automatically learns features 
through end-to-end learning, overcoming many limitations of 
traditional methods and offering stronger image processing 
and segmentation capabilities [7]. However, despite the 
excellent performance of the U-Net network in medical 
image segmentation, it still has some shortcomings. For 
example, the bottleneck between the encoder and decoder in 
the U-Net network can limit its ability to handle the 
relationship between global and local features. The skip 
connections in U-Net, while preserving information, can also 
transfer a large amount of redundant information and noise to 
the decoder, leading to excessive information transfer and 
high memory consumption when processing large-scale 
images. Additionally, U-Net is not accurate enough in 
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handling image edges and details, which may result in 
blurred or incomplete segmentation results. To address these 
limitations, DenseNet [8] has been proposed, which improves 
network efficiency and feature representation through dense 
connections, feature reuse, and reduced parameters, leading 
to enhanced segmentation performance. Furthermore, the 
CBAM attention mechanism [9] combines channel attention 
and spatial attention. It can effectively regulate attention in 
both channel and spatial dimensions, and helping the network 
better capture important information and improving 
segmentation results. Based on this, this paper proposes a 
U-Net network (DenseCUNet) that integrates DenseNet and 
CBAM attention mechanisms for DR image segmentation. 

The DenseCUNet model integrates the feature extraction 
capabilities of DenseNet with the image segmentation 
characteristics of U-Net, thereby enhancing the perception of 
target boundaries and details through the incorporation of the 
CBAM module. During training, we further improved the 
clarity of lesion area boundaries by modifying the loss 
function. This paper verifies the effectiveness of the 
DenseCUNet model on the DDR and IDRID datasets [10]. 
The experimental results show that the DenseCUNet model 
performs significantly better than other similar models. This 
result demonstrates the effectiveness and practicality of our 
model [11]. 

In summary, the main contributions and innovations of this 
paper are as follows: 
1) A novel diabetic retinopathy image segmentation 

network model, termed DenseCUNet, is proposed. This 
model enhances prediction accuracy while 
simultaneously reducing prediction time. 

2) The ODconv dynamic convolution network [12] is used 
to replace the traditional convolutional neural network, 
enabling it to dynamically select suitable convolution 
kernels according to the input content, further addressing 
the issue of differences among DR fundus images from 
different samples. 

3) The CBAM attention mechanism (channel attention 
mechanism and spatial attention mechanism) is added to 
the original model to focus on important information and 
suppress irrelevant information. 

4) The feasibility and effectiveness of the DenseCUNet 
model are verified through extensive experiments. 

The following content will proceed as follows: The second 
part will provide an overview of other frameworks similar to 
the one proposed in this paper. The third part will explain the 
proposed model, including its structure and parameters. The 
fourth part will design experiments and conduct experiments 
on two real datasets to compare with other semantic 
segmentation models to verify the practical effectiveness and 
feasibility of the proposed method. Finally, the fifth part will 
summarize the work and look forward to future research 
directions and goals, especially in the field of diabetic 
retinopathy image segmentation. 
 

II. MATERIALS AND METHODS 

A. Deep Learning-Based Diabetic Retinopathy Image 
Segmentation Methods 

Deep learning-based methods for diabetic retinopathy 
image segmentation typically rely on data-driven supervised 
learning techniques. These methods can automatically learn 
features and predict vessel locations to some extent. In 2006, 
Hinton and his team [16] introduced the concept of deep 
learning and proposed several deep learning models. 
Compared to traditional algorithms, deep learning models 
possess the ability to autonomously learn and extract features, 
eliminating the subjectivity and instability associated with 
manual operations, while improving the robustness and 
accuracy of vessel image segmentation. In 2015, Wang et al. 
[17] proposed a method for retinal layer segmentation, which 
integrates image preprocessing, convolutional neural 
network (CNN)-based feature extraction, and random forest 
ensemble classification. That same year, Ronneberger et al. 
proposed the U-Net model, a fully convolutional network 
(FCN) specifically designed for image segmentation tasks. 

U-Net consists of an encoder and a decoder. Its innovation 
lies in the introduction of skip connections, which link 
high-resolution feature maps from the encoder to 
low-resolution feature maps in the decoder. This allows 
U-Net to integrate information across multiple scales [18]. 

 
Fig. 1.  U-Net Structure 
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The encoder progressively reduces the size of feature maps 
while extracting high-level features from the image. The 
encoder is composed of multiple convolutional and pooling 
layers. The convolutional layers capture local features of the 
image, while the pooling layers perform downsampling to 
reduce the size of the feature maps. The decoder maps these 
high-level features back to the original image size, aiming to 
recover as much detail as possible. U-Net employs skip 
connections to link feature maps from the encoder to 
corresponding feature maps in the decoder, which helps 
integrate information and recover fine details. The decoder 
typically consists of transposed convolutional layers (also 
known as deconvolution layers) and additional convolutional 
layers. The transposed convolutional layers are used to 
upsample the feature maps, while the skip connections merge 
the upsampled feature maps with their corresponding encoder 
maps, enhancing the integration of information and 
improving detail recovery. As shown in Figure 1, the 
architecture is symmetrical, with both the encoding and 
decoding paths forming a U-shaped structure, hence the name 
U-Net. 

This structural design effectively integrates information 
across different scales, addressing the issues faced by 
traditional CNNs, such as the need for a large volume of 
labeled data for training and the high cost associated with 
annotating medical image data. By establishing feature 
fusion channels at different scales between the encoder and 
decoder, U-Net better captures both global and local features 

of the image. As such, it is particularly well-suited for 
medical image segmentation tasks with limited data 
annotation. 

Despite its straightforward architecture and widespread 
use in medical image segmentation, U-Net may face 
challenges related to information loss when processing 
complex images. This issue stems from the traditional U-Net 
structure's insufficient mechanisms within the decoder to 
recover detailed information, particularly in images with 
intricate structures or textures. As a result, the accuracy of 
segmentation results may be compromised in such cases. 

 

III. THE PROPOSED METHODS 
In order to improve the performance of U-Net, address the 

issue of gradient vanishing, and enhance segmentation 
accuracy, this study focuses on two primary optimizations: 
optimizing the backbone network and adjusting the loss 
function. 

Despite U-Net's excellent performance in image 
segmentation tasks, it tends to overfit when data is 
insufficient or classes are imbalanced (referenced from 
U-Net applications and challenges). And U-Net's 
downsampling and upsampling processes may lead to 
resolution loss and information loss. DenseNet effectively 
utilizes features through dense connections, enhancing

 

Densenet 
block1

ODConv

BN

ReLu

(a)

Densenet 
block3

BN

ReLu

(c)

Densenet 
block2

BN

ReLu

(b)
Fig. 2.  DenseCUNet Structure
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information flow and capturing subtle features in images. 
Therefore, it performs well on complex images and large 
datasets. However, DenseNet has issues with too many 
parameters and high computational costs. It increases 
training time and resource requirements. Therefore, this 
paper introduces DenseNet dense connections into the U-Net 
encoder to balance data volume and training time. 

Part one is optimization the backbone network. The 
backbone network as the foundation of computer vision tasks, 
and its main function is to extract and output the essential 
features. The proposed model integrates parts of DenseNet 
and U-Net architectures. Each layer in DenseNet's dense 
blocks connects to all previous layers, ensuring better 
information flow and smoother gradient propagation. 
Additionally, using Omni-Dimensional Dynamic 
Convolution (ODConv) instead of traditional convolution 
dynamically selects convolution kernels based on input 
content, addressing the variability in DR fundus image 
samples and enhancing segmentation and detection accuracy. 
To improve focus on identifying lesion areas and suppress 
irrelevant information, this paper introduces an enhanced 
channel and spatial attention mechanism (CBAM) module 
after the dense blocks. Channel attention weights feature 
channels via global pooling, while spatial attention applies 
attention at different feature positions, improving long-term 
dependency capture and prediction accuracy. 

Part two is adjustment the loss function. The loss function 
is adjusted to a hybrid loss function combining Dice loss, 
Weighted Binary Cross-Entropy, Structural Similarity 
(SSIM), and Shape-aware Loss. This adjustment effectively 
enhances the boundary clarity of lesion areas. 

The improved DenseCUNet structure is shown in Figure 2, 
where (a), (b), and (c) are dense encoding modules Dense 
block n (n=1, 2, 3). ODConv represents dynamic convolution 
layers, BN represents batch normalization layers, and ReLU 
represents activation layers. 

A. Optimizing the Backbone Network 
1) DenseNet Network: DenseNet is a deep learning neural 

network structure initially. It is used for image classification 
tasks, but later it is also successfully applied to medical image 
segmentation tasks. In previous studies, when dealing with 
complex situations such as blurred lesion boundaries and 
uneven illumination. Gao Huang et al. proposed a network 
architecture called DenseNet in 2017. It utilizes a densely 
connected design that enables full utilization of feature reuse, 
thereby enhancing the model's feature extraction capabilities. 

As shown in Figure 3, DenseNet121 achieves feature reuse 
through dense connections. In traditional convolutional 
neural networks, each layer only connects to the next layer. In 
DenseNet121, each layer connects to all subsequent layers. 
This dense connection structure allows each layer to receive 
feature information from all previous layers, enhancing 
feature propagation and utilization, as well as the 
representation of complex images, thereby improving 
network performance and accuracy. DenseNet121's dense 
connections allow features to be reused multiple times. It 
alleviates gradient vanishing and making the network easier 
to train. The dense connections also promote parameter 
sharing, reducing the network's parameter count and 
overfitting risk, particularly when data is insufficient, thus 
improving generalization ability. 

 
Fig. 3.  DenseNet121 Structure 

 
The advantage of the DenseNet network is its excellent 

performance in handling features at different scales. It can 
captures both local details and global structures in images. 
Therefore, this paper chooses to integrate the DenseNet 
network with the U-Net network as our backbone network for 
feature extraction. 

2) ODConv Module: ODConv (OMNI-DIMENSIONAL 
DYNAMIC CONVOLUTION) was introduced by Chao Li et 
al. in 2022. This dynamic convolution algorithm adjusts 
convolution kernel parameters based on the content of input 
features. This dynamic tuning mechanism enables the 
network to generate a unique convolution kernel for each 
input sample. Therefore, it can extract more important 
features in the segmentation task with higher precision. The 
ODConv module first uses a lightweight neural network, 
often called the "kernel generator". It can be used to analyze 
the global information of the input feature maps, and generate 
specific kernel parameters based on this information. These 
dynamically generated kernel parameters are then used for 
convolution operations to extract richer and more targeted 
feature representations. The dynamic convolution formula 
can be expressed as: 

 1

K
k kK

y W xα
=

= ×∑  (1) 
Where y  is the feature map obtained through the dynamic 

convolution operation, kα  represents the weights assigned to 
each convolution kernel by the kernel generator, 

kW represents the specific convolution kernels generated for 
each input sample by the "kernel generator" neural network, 
K represents the number of convolution kernels, and 
x represents the original feature map entering the ODConv 
module. 

As shown in Figure 4, iW  is the convolution kernel, siα  is 
the convolution parameters of each filter in the spatial 
position, ciα  represents assigning different scalars to the inc  
channels of each convolution filter m

iW , fiα  is to assign 

different scalars to the convolution filter, wiα  assigns scalars 
to the entire convolution kernel.  

Where (a) means the different attention values are assigned 
to convolution parameters in spatial position, (b) means that 
different attention values are assigned to convolution filters 
in different input channels, (c) means that different attention 
values are assigned to convolution filters in different output 
channels, and (d) means that different values are assigned to n 
global convolution kernels. 
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Fig. 4.  ODConv Diagram 

 
In the DenseCUNet model, the ODConv module is 

integrated into each dense block of DenseNet. The input 
feature map for each dense block is initially processed by the 
ODConv module, which performs feature extraction using a 
dynamically adjusted convolution kernel. Subsequently, the 
extracted features are fused with the original features to 
produce the output of the dense block. This design not only 
capitalizes on DenseNet's strengths in feature reuse and 
information flow but also significantly enhances the model's 
capability to discern subtle differences between lesion areas 
and normal tissue in diabetic retinopathy images through 
ODConv's dynamic feature extraction mechanism. 

On one hand, the introduction of the ODConv module 
enhances the model's adaptability to the diverse range of 
input images, thereby enabling it to more effectively process 
DR images captured under varying conditions and from 
different devices. On the other hand, the dynamic nature of 
ODConv allows the model to adjust its behavior adaptively in 
response to task requirements and data characteristics. 
Consequently, the ODConv module achieves significant 
performance improvements without imposing an excessive 
computational burden. 

3) CBAM Attention Mechanism: The Convolutional Block 
Attention Module (CBAM), introduced by Jeonghee Choo et 
al. in 2018, has garnered considerable attention within the 
deep learning community. Distinct from prior attention 
mechanism models, CBAM sequentially integrates channel 
attention (CAM) and spatial attention (SAM) modules. This 
sequential integration enables the model to concentrate more 
effectively on pertinent regions of interest while 
simultaneously suppressing irrelevant information. 
 

 
Fig. 5.  CBAM Attention Mechanism Diagram 

 

The CBAM attention mechanism is employed to enhance 
data prediction, particularly by emphasizing the significance 
of both channel and spatial dimensions in information 
processing. The integration of CBAM markedly improves the 
model's capacity to capture long-term dependencies, thereby 
increasing the accuracy of predictions. The computation 
process of CBAM sequentially generates a one-dimensional 
channel attention map and a two-dimensional spatial 
attention map from the input feature map, as illustrated in 
Figure 5: 

CBAM first receives a given intermediate feature map as 
input. Then it is sequentially derives to obtain attention 

1 1L
cA × ×∈  and spatial attention maps 1 W C

sA × ×∈ . The 
calculations are as follows: 

 ' ( )cF A F F= ⊗  (2) 
 '' ( ') 'cF T F F= ⊗  (3) 

In this process, ⊗  denotes element-wise multiplication, 
and the necessary attention values are replicated as required: 
channel attention values are extended across spatial 
dimensions and vice versa. Furthermore, represents the final 
refinement calculation. The detailed procedure for each 
computational step is illustrated in Figure 6. 

 

 

 
Fig. 6.  Channel and Spatial Attention Mechanism Diagram 

 
First, two distinct spatial context descriptors are generated 

by applying average pooling and max pooling operations to 
the feature map: one descriptor is derived from the features 
obtained through average pooling, while the other is based on 
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those acquired via max pooling. These descriptors are then 
fed into a shared network for the generation of the channel 
attention map. The shared network consists of a multi-layer 
perceptron (MLP) with a single hidden layer. To minimize 
the parameter count, the spatial dimensions of the input 
feature map are compressed using pooling operations. The 
calculation of channel attention is performed as follows: 

( ) ( ( ( )) ( ( )))cA F MLP AvgPool F MLP MaxPool Fλ= +  

 1 0 1 0 max( ( ( )) ( ( )))c c
avgK K F K K Fλ= +  (4) 

Where λ  represents the function sigmoid , c
avgF  

represents the feature after average pooling, and max
cF  

represents the feature after maximum pooling, 
/

0
L LK α ×∈ , /

1
L LK α×∈ . Note that the MLP  weights 0K  

and 1K  are shared for both inputs. 
We perform two types of pooling operations on the 

aggregated feature map, two 2D maps are generated: one 
representing the average pooled features in the channel 

1
avg
s W CF × ×∈  and the other representing the max pooled 

features in the channel s 1
max

W CF × ×∈ . Based on these, a 2D 

spatial attention map is produced. The spatial attention 
calculation process is as follows: 

7 7
s ( ) ( ([ ( ); ( )]))A F p AvgPool F MaxPool Fλ ×=  

 
7 7

max( ([ ; ]))s s
avgp F Fλ ×=  (5) 

Where s ( ) W CA F R ×∈ ， λ  represents a function of 

sigmoid  and 7 7p ×  represents a convolution operation with 
filter size 7 7× . 

The implementation of this method significantly improves 
the effectiveness of the application of attention mechanisms 
in deep learning models. This method enhances the ability of 
the model to identify and utilize key features through more 
precise information screening. 

B. Optimizing the Loss Function 
Currently, the majority of loss functions employed in 

medical image segmentation are based on the Dice loss 
function. However, it has been observed that the Dice loss 
function is sensitive to class imbalance, prone to boundary 
blurring, neglects structural information within images, and 
lacks shape constraints during the training process. To 
enhance both the accuracy and robustness of image 
segmentation, we propose a transition from traditional 
cross-entropy loss to a mixed loss function. This new 
approach integrates the Dice Loss function with Weighted 
Binary Cross-Entropy loss, Structural Similarity Index 
(SSIM), and Shape-aware loss. 

1) Dice Coefficient Loss: The Dice loss function is 
extensively utilized to assess the similarity between the 
predicted segmentation map and the ground truth labels. It is 
particularly effective in addressing issues related to class 
imbalance. 

In this paper, A and B are used to represent the prediction 
graph and label, respectively, and , ,r x y  is used to 
represent the channel, horizontal coordinate, and vertical 
coordinate of the pixel, respectively. The number of 
categories is represented by R , 1 r R≤ ≤ . H and W are 
represented as the height and width of the output image, 

respectively. Then the Dice loss function can be expressed by 
equation 6: 

 

ice
,

, 1
, ,2 2

1
, 1 , 1

( , )

2 , , , ,

, , , ,

D
H W

R
x y

H W H W
r

x y i j

L A B

A r x y B r x y
R

A r i j B r i j
=

=
= =

< > < >
= −

< > + < >

∑
∑

∑ ∑
 (6) 

2) Weighted Binary Cross-Entropy Loss: The weighted 
cross-entropy loss function builds upon the standard 
cross-entropy loss function by incorporating class-specific 
weights. This approach addresses issues arising from the 
uneven distribution of classes within the dataset. By 
assigning different weights to samples from various 
categories, this study enhances the ability to adjust the loss 
function's weight, thereby enabling the model to focus more 
on underrepresented classes. Consequently, this leads to an 
overall improvement in segmentation performance. 

In this paper, iy  is used to represent the real label of the 

i  category, and iP  is used to represent the probability of the 

i  category predicted by the model, then the weighted cross 
entropy loss function can be expressed by equation 7: 

 log( )wce i iL y P= − ×∑  (7) 
3) Structural Similarity Loss (SSIM Loss) : To thoroughly 

address the structural information inherent in images, this 
paper incorporates Structural Similarity (SSIM) as an 
additional loss function. SSIM operates by maximizing the 
structural similarity between the predicted outcomes and the 
actual image. By evaluating the structural similarity between 
two images, SSIM aids in preserving both the structural 
integrity and spatial consistency of segmentation results. 

In this paper, x  and y  are used to represent the 

prediction graph and label respectively, N  represents the 
number of pixels, 1K   is a constant, L  represents the 

dynamic range of gray level, and ix  and iy  represent the 

average pixel value of position i  respectively. Then the 
structural similarity loss function can be expressed by 
equation 8: 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 2
1 2

1
2

22 2 2 2
1 2

1

12
1

1
1

SSIM

N

i i i i i i
i

N

i i i i i i
i

L

x y K L x x y y K L
N

x y K L x x y y K L
N

=

=

=

  + − − +   − 
  + + − − +    −  

∑

∑

 (8) 

4) Shape-aware Loss : To enhance the accuracy of shape 
details in segmentation results, we incorporate a Shape-aware 
Loss function. This loss function specifically targets the 
optimization of segmentation contours and edge clarity. By 
aligning these contours more closely with the actual shape 
characteristics of the target, Shape-aware Loss significantly 
improves the model's ability to accurately recognize lesion 
boundaries. 

In this paper, x  and y  are used to represent prediction 
graphs and labels respectively, N  is used to represent the 
number of feature layers. ( )iF x  and ( )iF y  are used to 
represent the feature representation of layer i  respectively. 
Then the shape perception loss function can be represented 
by equation 9: 
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 ( ) ( )( )2

1

1 N
Shape i ii

L F x F y
N =

= −∑  (9) 
Based on the above discussion, our loss function 

effectively improves the performance and quality of DR 
image segmentation by integrating the advantages of multiple 
loss functions through proper weighting and adjustment. 
Therefore, the hybrid loss function in this paper can be 
expressed as Equation 10: 

 Dice wce SSIM ShapeL L L L L= + + +  (10) 

IV. EXPERIMENT 
This experiment evaluates the segmentation performance 

of the enhanced DenseCUNet model on diabetic retinopathy 
(DR) fundus images. First, we compare the enhanced model 
with the original U-Net to assess the improvements made in 
DenseCUNet. Then, we conduct a comparison between 
DenseCUNet and other well-known deep learning-based 
semantic segmentation models. Finally, we present a 
comprehensive set of experimental results. 

A. Datasets 
In this experiment, two publicly available fundus image 

datasets, namely IDRID and DDR, have been selected to 
evaluate the performance of the proposed model. The 
detailed annotation information for both datasets is presented 
in Table I. 

 
TABLE I 

DSTASET STATISTICS 
Dataset Training set Validation set Test set total 
IDRID 40 14 27 81 
DDR 383 149 225 757 

 
The Indian Diabetic Retinopathy Image Dataset (IDRID) 

was acquired using a Kowa VX-10 alpha fundus camera, 
featuring a 50° field of view (FOV). This dataset contains 
fundus images specifically collected for the Indian 
population [13]. It is designed for various challenges, 
organized into three sub-tasks: segmentation, grading, and 
localization. The IDRID segmentation data subset consists of 
81 images, each with a resolution of 4288 × 4288 pixels, 
annotated with pixel-level labels for Hard Exudates (HE), 
Soft Exudates (SE), Microaneurysms (MA), and Exudates 
(EX). Of these, 54 images are used for training, while 27 
images are allocated for testing. 

The DDR dataset, collected in China, contains 757 color 
fundus images obtained from various fundus cameras with a 
45° FOV. The dataset provides extensive data with 
international standard annotations. Image resolutions range 

from 1380×1382 to 2736×1824 pixels, and lesion labels are 
provided for each image. Among these images, 383 are used 
for training, 149 for validation, and 225 for testing. 

From the data presented in Table I, it is evident that the 
DDR dataset offers more annotated images than the IDRID 
dataset. However, the IDRID dataset has more uniform 
characteristics, with all images having the same resolution 
(4288 × 4288 pixels), while the DDR dataset features images 
with varying resolutions. Nevertheless, the DDR dataset 
provides a wider range of lesion severities, offering better 
diversity for training. 

B. Experimental Platform 
The experiment was conducted on a server with the 

following specifications: Intel Core i7-11700 CPU, NVIDIA 
GeForce GTX 3070 GPU, and 8 GB of RAM. 

The deep learning framework used is TensorFlow. The 
model was trained and evaluated on the two datasets without 
any pre-initialization. Prior to input into the model, all images 
underwent preprocessing. The Adam optimizer was 
employed to facilitate rapid convergence during model 
training. A vector-based adaptive adjustment strategy was 
implemented based on the batch size, with a maximum 
iteration limit set at 100. The initial learning rate was set to 
1e-3, dynamically adjusted via LearningRateScheduler. The 
momentum parameters for the Adam optimizer were 
configured at 0.9 and 0.999 via beta_1 and beta_2, 
respectively. A weight decay parameter of 1e-6 was applied 
to prevent overfitting. 

C. Evaluation Metrics 
To assess the segmentation performance of the model 

proposed in this paper on the IDRID and DDR datasets, we 
employ the most commonly utilized evaluation metrics in the 
domain of semantic segmentation: Dice coefficient and 
Intersection over Union (IoU). The definitions of these 
metrics are as follows: 

 
2

2
TPDice

TP FP FN
=

+ +  (11) 

 
TPIoU

TP FN FP
=

+ +  (12) 
Where TP, FP, and FN represent the counts of true 

positives, false positives, and false negatives, respectively. It 
is important to note that some test images may not contain 
specific lesions. For evaluation, we consider each pixel as an 
individual case and treat the entire test set as a comprehensive 
dataset of pixels. The evaluation metrics were computed for 
all pixels in the dataset.. 

 
TABLE II 

CO 
MPARISON OF ABLATION EXPERIMENTAL DATA 

Methods Dice IoU% 
UNet[5] Densenet ODConv CBAM Loss EX HE SE MA mDice EX HE SE MA mIoU 

√ × × × × 76.19 59.23 62.19 40.51 59.23 65.15 50.37 47.25 28.71 47.87 
√ √ × × × 78.75 65.81 66.06 47.62 64.56 67.05 50.36 50.88 29.11 49.35 
√ √ × × × 78.97 65.35 65.97 48.27 64.64 67.13 51.15 51.07 32.77 50.53 
√ √ √ √ √ 80.19 65.99 67.66 48.88 65.68 67.69 50.55 51.27 32.41 50.48 
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Fig. 7.  Comparison of ablation results 

 

D. Ablation Study 
To validate the effectiveness of the DenseCUNet model 

and the optimized loss function, we conduct an ablation study. 
Table 2 presents the results comparing the contributions of 
various components, including the DenseNet backbone, 
ODConv dynamic convolution, and the CBAM module. And 
then shows the comparison between the experimental results 
and the segmentation renderings of other models. In order to 
investigate the individual contributions of the DenseNet 
backbone, ODConv module, and CBAM module to the 
segmentation performance of DR lesions, we evaluat key 
metrics—Dice and IoU—across four lesion types: 
microaneurysm (MA), hemorrhage (HE), hard exudate (EX), 
and soft exudate (SE). Each component is incrementally 
integrated into the model to assess its impact on segmentation 
accuracy. We conduct experiments by progressively adding 
each component to the baseline model. The results indicate 
that each module—DenseNet, ODConv, and 
CBAM—contribut significantly to the model's overall 
segmentation ability, improving performance to varying 
extents. The detailed comparison of segmentation 
performance for each component is summarized in Table II. 
This table highlights how the inclusion of each module 
improved both Dice and IoU scores for all lesion types : 

The results presented in Table II indicate that the 
integration of DenseNet into the U-Net architecture 
significantly enhanced segmentation accuracy across all 
lesion types, particularly in addressing complex structures 
such as hard exudates (EX). The incorporation of ODConv 
further improved the model's adaptability to diverse lesion 
shapes and sizes by dynamically adjusting convolutional 
kernels. Additionally, the CBAM module provided notable 
advancements in boundary detection, especially for small and 
faint lesions, by refining attention mechanisms on both 

spatial and channel dimensions. Collectively, these 
enhancements resulted in an increase of 1.12% and 0.98% in 
mean Dice and IoU scores, respectively, when compared to 
the baseline U-Net model. 

As shown in Figure 7, (a) is the input image, (b) is the 
ground truth image, (c) is the result of U-Net, (d) is the result 
of DenseNet integration in the backbone network, (e) is the 
result of adding the ODConv module in the integrated 
network, and ours are the result of adding the CBAM 
attention mechanism in the network. From the results in (b), it 
can be clearly seen that the segmentation performance after 
integrating DenseNet with U-Net is not very good. This is 
because the skip connection of DenseNet network introduces 
too many parameters, so that the detail information is not well 
recovered. However, in terms of the effect comparison of (c), 
(d), (e), and ours, DenseCUNet has effectively solved this 
problem. In the images of segmented lesion areas, we utilize 
blue to indicate MA lesions, green for HE lesions, red for EX 
lesions, and yellow for SE lesions. This method of color 
coding can assist medical professionals and researchers in 
distinguishing between different types of lesions more easily, 
thus aiding in further analysis and diagnosis. Through the 
labeling and categorization of these images, a more precise 
understanding of the patient's condition can be obtained, 
providing valuable references for personalized treatment 
plans. Additionally, employing color coding in medical 
imaging is advantageous for data visualization and 
communication as it allows for quick comprehension of 
image content and effective communication among 
professionals. In summary, utilizing specific colors to 
represent various types of lesions in segmented lesion area 
images is a common yet effective practice that equips doctors, 
researchers, and patients with essential information to 
intuitively comprehend the patient's condition and make 
informed treatment decisions clearly. 

 
TABLE III 

PERFORMANCE COMPARISON OF METHODS ON IDRID DATA SET 

Methods 
Dice IoU% 

EX HE SE MA mDice EX HE SE MA mIoU 
UNet++[23] 79.12 50.37 57.98 41.47 57.23 65.46 33.67 40.83 26.16 41.53 

Deeplabv3+[24] 76.25 57.36 65.57 39.62 58.17 61.14 36.68 46.55 24.71 42.27 
UNeXt[25] 73.67 51.53 58.96 30.41 53.64 58.32 34.71 41.81 17.93 38.19 

TransUnet[26] 80.04 62.81 68.82 45.82 64.37 65.67 48.17 54.09 27.44 48.84 
Swin-base[27] 79.71 65.19 68.19 48.79 64.53 67.26 48.36 48.54 30.86 48.76 
M2MRF-D[28] 79.97 64.88 67.50 48.26 65.15 66.62 48.04 50.98 31.81 49.36 

Ours 80.19 65.99 67.66 48.88 65.68 67.69 50.55 51.27 32.41 50.48 
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TABLE IV 
PERFORMANCE COMPARISON OF METHODS ON DDR DATA SET 

Methods 
Dice IoU% 

EX HE SE MA mDice EX HE SE MA mIoU 
UNet++[23] 47.31 29.54 37.72 25.19 34.94 29.64 16.62 21.37 14.83 21.62 

Deeplabv3+[24] 58.59 37.97 41.83 25.40 40.95 41.44 23.44 26.46 14.55 26.47 
UNeXt[25] 50.69 28.93 31.42 14.90 31.48 33.98 16.93 18.62 8.09 19.40 

TransUnet[26] 56.62 47.81 40.45 24.56 42.36 39.50 31.42 25.35 14.01 27.57 
Swin-base[27] 59.79 50.53 46.77 23.31 45.10 42.64 33.82 30.62 13.19 30.07 
M2MRF-D[28] 61.15 45.29 48.02 27.81 45.57 44.04 29.28 31.60 16.15 30.27 

Ours 59.43 49.25 46.46 28.98 46.03 41.81 31.81 30.66 17.36 30.41 

 

E. Comparative Experiments 
To assess the effectiveness of the method proposed in this 

paper, we conducte a comparative analysis between our 
model and several mainstream semantic segmentation 
models using the DDR dataset and IDRID dataset. The 
results of the comparison for the IDRID dataset are presented 
in Table III, while those for the DDR dataset are shown in 
Table IV. The best-performing results within each table are 
highlighted in bold: 

In contrast, based on the results from the IDRID dataset, 
the model struggles to fully learn the features of SE lesions 
due to their limited sample size and relatively low 
representation within the dataset. This limitation has led to 
insufficient emphasis being placed on this category by the 
model. Consequently, although our model does not achieve 
optimal performance for SE lesions, it still outperforms the 
second-best network—the M2MRF network—demonstrating 
improvements in Dice and IoU scores of 0.16% and 0.29%, 
respectively.  

Similarly, the results obtained from the DDR dataset 
further substantiate the superior segmentation performance of 
outcomes for MA lesions, demonstrating improvements of 
1.17% and 1.21% in Dice and IoU scores, respectively, when 
compared to the second-best network—the M2MRF network. 
This enhancement underscores the model's capability to 
effectively capture small and subtle characteristics of lesions. 

Moreover, despite the inherent challenges posed by 
exudate (EX), hemorrhage (HE), and soft exudate (SE) 
lesions—characterized by their limited sample sizes and 
uneven distribution within the DDR dataset—our model 
consistently maintains superior segmentation performance 
across all lesion categories. In particular, it exhibits robust 
generalization capabilities, achieving an average Dice score 
of 46.03% and an IoU score of 30.41% for EX, HE, SE, and 
MA lesions combined. These findings highlight the model's 

adaptability and precision, especially in addressing more 
complex and underrepresented types of lesions. 

To demonstrate the superiority of DenseCUNet, Figure 8 
provides a typical example for visual comparison with 
alternative semantic segmentation models. In this example, 
microaneurysms (MA) are represented in blue, exudates (EX) 
in red, hemorrhages (HE) in green, and soft exudates (SE) in 
yellow. It is clear that DenseCUNet excels in detecting lesion 
areas, capturing complex details, and producing clear 
boundaries. Comparative analysis shows that our model 
performs significantly better than other models in identifying 
and segmenting minor lesions. 

V. SUMMARY AND PROSPECT 
In this paper, we propose an enhanced U-Net architecture 

for the segmentation of diabetic retinopathy (DR) lesions. DR 
is one of the most prevalent complications for diabetic 
patients, severely affecting their quality of life. Early and 
accurate diagnosis of DR lesions is crucial for preventing 
vision loss and providing effective treatment. Despite 
significant advancements in deep learning-based DR lesion 
segmentation, challenges remain, such as considerable 
variation in lesion shape and size across samples, as well as 
the presence of numerous small lesions that are difficult to 
segment accurately. 

To overcome these challenges, we have developed an 
improved model that incorporates several advanced 
techniques: the ODConv dynamic convolution replaces 
traditional convolutions, DenseNet is integrated as the 
backbone network for enhanced feature extraction, and a 
novel residual structure is introduced to improve information 
flow and gradient propagation. Additionally, the 
Convolutional Block Attention Module (CBAM) is 
employed to reduce information loss, especially in small 
lesions, by applying attention mechanisms to both channel 
and spatial dimensions. 

 

 
Fig. 8.  Comparison of experimental results 
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Our experimental results demonstrate that the proposed 
DenseCUNet model significantly improves the segmentation 
accuracy of DR lesions compared to existing methods. 
Specifically, the model effectively handles complex lesions, 
small lesions, and images with varying resolutions. The 
combination of DenseNet, ODConv, and CBAM provides a 
robust solution for segmentation tasks, showing a marked 
improvement in both Dice coefficient and Intersection over 
Union (IoU) scores across multiple datasets, including 
IDRID and DDR. 

While our method significantly advances the state of DR 
lesion segmentation, there are several avenues for future 
research. Firstly, further validation studies are essential to 
confirm the robustness and generalizability of the 
DenseCUNet model across a broader range of datasets and 
clinical environments. It will be important to test the model 
on other fundus image datasets that include diverse 
populations, varying levels of DR severity, and images 
captured with different imaging devices. 

Additionally, addressing the issue of class imbalance and 
improving segmentation performance on underrepresented 
lesion categories, such as Soft Exudates (SE), will be crucial 
for refining the model's ability to handle diverse lesion types. 
Techniques such as class-weighted loss functions, data 
augmentation, or semi-supervised learning could be explored 
to improve performance on such cases. 

Another interesting research direction is extending the use 
of DenseCUNet to other medical imaging tasks. The 
methodologies implemented in this paper could potentially 
be adapted to segment lesions in other types of medical 
images, such as lung nodules in chest X-rays, brain tumors in 
MRI scans, or skin lesions in dermoscopic images. The 
flexibility of the DenseCUNet architecture, especially with 
its attention mechanisms and dynamic convolutions, makes it 
a promising candidate for a range of medical image 
segmentation challenges. 

Furthermore, integrating multi-modal imaging data, such 
as combining optical coherence tomography (OCT) images 
with fundus photography, could enhance segmentation 
accuracy and provide a more comprehensive diagnosis of DR 
and other retinal diseases. Exploring the use of multi-task 
learning frameworks, where multiple tasks (such as 
segmentation, classification, and lesion detection) are 
performed simultaneously, could also further improve the 
model's performance and generalization across different 
clinical settings. 

Finally, real-time segmentation for clinical application 
remains a critical challenge. Optimization techniques, such as 
model quantization, pruning, or hardware acceleration (e.g., 
using FPGAs or TPUs), could be explored to improve 
inference speed without compromising accuracy. This would 
make the model more suitable for practical use in medical 
environments, enabling faster diagnosis and treatment 
planning for diabetic retinopathy patients. 
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