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Abstract—Rice, a major global food crop, is severely im-
pacted in terms of yield and quality by leaf diseases. In
view of the issues of high computational complexity and low
detection accuracy due to the complex rice growth environ-
ment in the current rice leaf disease detection model, this
paper proposes a lightweight rice leaf disease detection model
YOLOv8-AMD. Firstly, in real rice growth scenarios, the area
of rice leaves affected by diseases is relatively small, leading
to potential pixel distortion and loss of fine-grained details
during the recognition process. For this reason, we introduce
the lightweight convolutional ADown module to replace the
convolutional Conv module in the original model to enhance
the detection ability of low-resolution images. Secondly, to
better perceive the information about leaf diseases in the
input image and make the model more integrated with the
features related to leaf diseases, we propose the C2f MLCA
module. By introducing a lightweight Mixed Local Channel
Attention mechanism (MLCA) into C2f, the expressive and
detection effects of the algorithm are better improved. Finally,
to reduce the model’s computational burden and training time,
we introduce Dysample, a lightweight dynamic upsampler that
replaces the original upsampling operator, Upsample. This
replacement significantly reduces computational requirements
and training time. the YOLOv8-AMD model achieved an 88.8%
on the precision, 88.7% and 92.5% on the recall and mAP50,
respectively. Experiments conducted on the datasets of corn and
tomato leaf diseases further confirm that the proposed model
not only optimizes parameters and computational load but also
augments the detection performance in multiple dimensions.
This model, serving as a high-performance and lightweight
solution for detecting rice leaf diseases, is capable of furnishing
farmers and researchers with accurate and timely prediction
outcomes.

Index Terms—rice leaf disease, YOLOv8, attention mecha-
nism, lightweight

I. INTRODUCTION

R ICE, a globally crucial food crop, is significantly im-
pacted by foliar diseases in terms of yield and quality.

Foliar diseases such as rice blasts, brown spots, and sheath
blight are caused by the infection of pathogenic microorgan-
isms like fungi, bacteria, and viruses. Traditionally, manual
observation and empirical judgment are employed to identify
and diagnose rice leaf diseases, but this approach is time-
consuming, labor-intensive, and prone to misjudgment. In
recent years, deep learning have attained extraordinary ac-
complishments within the domain of image recognition and
categorization[1], presenting new possibilities for addressing
the problem of rice leaf disease detection and diagnosis. Cur-
rently, in the realm of deep learning, target detection methods
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are mainly divided into one-stage and two-stage categories.
The core concept of the one-stage method is to directly
predict the bounding box and category of the target from the
input image without going through a separate region proposal
step. In contrast, the two-stage method first generates a series
of region proposals (i.e., candidate frames) and then conducts
classification and edge regression on these proposals. In the
one-stage method, a Region Proposal Network (RPN) is
typically used, which slides directly over the entire image and
predicts both the location and category of the target. In the
two-stage approach, the first stage involves generating region
proposals, while the second stage entails further refinement
and processing of these proposals using a detection network.
One-stage methods are more efficient and faster compared
to two-stage methods as they avoid the cumbersome steps
of region proposal generation and processing. However, two-
stage methods may slightly outperform one-stage methods in
terms of accuracy as they have more opportunities to fine-
tune and improve the region proposals.

The automatic identification and diagnosis of rice leaf
diseases through deep learning techniques offer multiple ad-
vantages. Firstly, it can remarkably enhance the accuracy and
efficiency of identification and diagnosis while significantly
reducing the time required for disease detection. Secondly,
the deep learning model can automatically learn and adapt
to the characteristics of different diseases, possessing excel-
lent generalization ability. Consequently, it can also exhibit
good recognition ability when confronted with new disease
types[2], [3]. Additionally, deep learning technology can be
integrated with other sensors and agricultural management
systems to achieve real-time monitoring and early warning
of rice diseases. This enables the implementation of timely
preventive and curative measures, thus lessening the influ-
ence of diseases on the yield and quality of rice[4], [5]. In
conclusion, the utilization of deep learning in the realm of
identifying and diagnosing rice diseases identification and
diagnosis not only improves production efficiency but also
helps ensure the stability and healthy development of the
rice industry. For example, Kumar VS et al. proposed a
multiscale YOLOv5 detection network using DenseNet-201
as the backbone network and Bi-directional Feature Attention
Pyramid Network (Bi-FAPN) utilized for extracting features
from segmented images. The obtained values were 82.8 for
average precision, 94.87 for accuracy, 75.81 for average
recall, 0.71 for IoU, 0.017 for inference time, and 92.45
for F1 score respectively[6]. Li D et al. put forward a
video detection architecture grounded in deep learning. This
architecture features a customized backbone and is specifi-
cally designed for the detection of plant pests and diseases
within videos.[7]. Haque ME et al. proposed a YOLOv5 deep
learning method for the classification and detection of rice
leaf diseases. The YOLOv5 model was trained and evalu-
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ated, achieving key performance metrics with the following
recognition levels: accuracy at 90%, precision at 67%, recall
at 76%, mean Average Precision (mAP) at 81%, and an F1
score of 81%[8]. Jia L et al. presented a rice pest and disease
recognition model. It’s based on the enhanced YOLOv7,
using lightweight MobileNetV3 for feature extraction to cut
down parameters. Also, it integrates the CA and SIoU loss
functions to enhance recognition accuracy. An accuracy of
92.3% was achieved with mAP @.5 reaching 93.7%[9].
Mishra N et al. designed a new Ant lion-based YOLO-V5
(AL-YOLOv5) system to improve the functionality of the
system for detecting rice leaf diseases[10]. Li S et al. utilized
residual feature enhancement to reduce semantic gaps in rice
pest and disease image features and added a convolutional
block attention module to the backbone network, enhancing
pest and disease traits and suppressing the background. The
proposed system permits unattended operation, high detec-
tion precision, objective results, and data traceability[11].
Aziz F et al. employed convolutional neural networks to
predict bounding boxes and recognize objects in rice leaf
disease detection. This scheme achieved a high accuracy
precision of 94% at a detection speed of 0.028 seconds for
1 image[12]. Pan P et al. put forward the Xo-YOLO model.
A specific network is integrated into its backbone for better
UAV-based disease detection. The neck is enhanced via the
GSConv hybrid convolution module, cutting computational
cost and parameter numbers. A rotation angle is appended
to the head layer output to handle the elongated and rotated
appearance of diseases seen from drones. It achieved a mAP
of 94.95%[13]. Bari BS, et al. used a network to conduct real-
time detection of rice leaf diseases. They also incorporated
an advanced Region Proposal Network (RPN) architecture
within the algorithm. This RPN network can precisely pro-
cess target locations, thereby facilitating the generation of
candidate regions[14]. Trinh DC et al. devised a two-stage
approach for recognizing rice leaf diseases using an artificial
intelligence (AI) algorithm. In the initial phase, photographs
of diseases on rice leaves were automatically collected from
the field. During the second step, after training the YOLOv8
model using the proposed image dataset, the trained model
was deployed on Internet of Things (IoT) devices to detect
and recognize rice leaf diseases[15]. Zhu R et al. developed
a loss calculation algorithm that exhibits insensitivity to
sorting, thereby strengthening the model’s robustness. A loss
scaling factor grounded in polygon perimeter was incor-
porated to heighten the discovery of tiny targets[16]. Liu
X et al. incorporated Spatial Pyramid Pooling and Dilated
(SPPD) structures, which possess different gap rates and are
composed of GELU activation functions, into the Backbone
network. This augmentation expanded the receptive field of
the network. Moreover, they integrated Coordinate Attention
(CA) to assist the model in concentrating on the charac-
teristics of rice diseases and enhancing detection accuracy.
The model attained a mean average precision at 0.5 (mAP
@0.5) of 89.3% and reached a Frames Per Second (FPS)
rate of 217[17].Yang Y et al. put forward a novel module.
This particular module was integrated into the tail end of the
YOLOv8n architecture’s backbone, leading to the formation
of a target detection model. The newly introduced model
has the capacity to reach a mAP50 of 93.6%. The network
training weights are limited to 6.7MB, and only 16.8 ms is

needed for the detection of a single pest image[18].
In the realm of rice disease detection methods, although

existing literature has made significant progress in achieving
accurate detection, most approaches for detecting rice leaf
diseases still have notable deficiencies. These shortcomings
include high computational complexity in current rice leaf
disease detection models and reduced detection accuracy
due to the complexity of the background. To address these
difficulties, we propose a modified form of the YOLOv8
algorithm. The key achievements of this research are detailed
as follows:

(1) In real rice growth scenarios, the area of rice leaves
affected by diseases is relatively small, leading to poten-
tial pixel distortion and loss of fine-grained details during
the recognition process. For this reason, we introduce the
lightweight convolutional ADown module to replace the
convolutional Conv module in the original model to enhance
the detection ability of low-resolution images. The ADown
module offers greater advantages in detection accuracy and
model performance due to its diverse feature extraction and
efficient downsampling approach.

(2) To better perceive the information of leaf diseases
in the input image, improve the detection accuracy of rice
leaf diseases, and make the model more integrated with the
features related to leaf diseases, we propose the C2f MLCA
module. By introducing a lightweight Mixed Local Channel
Attention (MLCA) into C2f, which is capable of integrating
both channel and spatial information, as well as the effect of
localized information expression.

(3) To reduce the computational burden and training
time of the model, we introduce Dysample, a lightweight
dynamic upsampler that replaces the original upsampling
operator, Upsample. This replacement significantly reduces
computational requirements and training time.

(4) In this dataset, we conducted rice leaf disease detection
experiments utilizing the enhanced YOLOv8 algorithm. Our
results demonstrate significant improvements, achieving a
mAP50 of 92.5%, precision of 88.8%, and recall rate of
88.7%. Moreover, greatly reduced computational effort. The
model is simplified to 2.6M, which outperforms most cur-
rent classical detection algorithms, including Faster R-CNN,
YOLOv3-tiny, YOLOv5s, YOLOv6n, and YOLOv8n.

The paper is structured as follows. Section II focuses on
the dataset preparation and an overview of YOLOv8. Section
III pertains to the enhancements made to YOLOv8. Section
IV presents the experimental outcomes. The conclusion is
examined in Section V.

II. MATERIALS AND METHODS

A. Datasets

1) Datasets source: The dataset employed in this re-
search was obtained from the complimentary and open-
source platforms furnished by Roboflow. To ensure the data’s
quality, we manually selected images that featured clear and
complete targets, resulting in a total of 2098 sample images.
As shown in Fig. 1, there are six species of diseases, namely
Rice Bacterial Blight (350 images), Rice Blast (300 images),
Rice Brown Spot (330 images), Rice Sheath Blight (350
images), Rice Leaf Scald (360 images), and Rice Tungro
(408 images).
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(a) Rice Bacterial Blight (b) Rice Blast

(c) Rice Brown Spot (d) Rice Sheath Blight

(e) Rice Leaf Scald (f) Rice Tungro

Fig. 1: Image of rice leaf disease.

2) Data preprocessing: The sample images in the dataset
were labeled using the Labelimg labeling software, resulting
in a labeled sample set[19]. The labeling process involved
using a maximum horizontal rectangular box to encompass
the area of disease occurrence within each image. The
labels were stored in XML files following the VOC format,
with each image having at least one disease label. To
mitigate the risk of overfitting and enhance generalization,
data augmentation techniques were employed to augment
the dataset. Two types of data augmentation techniques were
utilized, namely online data augmentation and offline data
augmentation[11], [20]. In this study, offline enhancement
techniques were employed to modify the image properties
while preserving the image content. Geometric transforma-
tions, including Image Crop (Random Resize Crop), Image
Translation, Image Rotation, etc., were utilized[21]. Content
transformations, including color dithering and adding noise,
were also applied. The combination of geometric and content
transformations facilitated the comprehensive modification
of image properties, thereby enhancing the sturdiness and
universality of the model. Through data augmentation, a total
of 10,490 labeled images were generated from the initial
dataset of 2,098 labeled images. The augmented dataset was
then divided into three parts: the training set, the validation
set, and the test set. The division was performed randomly,
with a ratio of 8:1:1, resulting in 8,392 images for the training
set, 1,049 images for the testing set, and 1,049 images for
the validation set. The number of pictures for the six types of

diseases is shown in Table I, The training set is employed to
train the model by optimizing its parameters and updating its
weights based on the provided training data. The validation
set is utilized to fine-tune the model’s hyperparameters, al-
lowing for adjustment of various settings and configurations
to enhance its performance. Furthermore, the validation set
serves the purpose of conducting a preliminary assessment
of the model’s capabilities, providing valuable insights into
its effectiveness. Conversely, the testing set is exclusively
used to evaluate the model’s detection accuracy and assess
its generalization capabilities. Comprising unseen data, this
set offers a reliable measure of the model’s performance on
new and unfamiliar examples, enabling an evaluation of its
ability to effectively detect rice leaf diseases in real-world
scenarios.

TABLE I: Datasets Information.

Disease types The number of pictures

Rice Bacterial Blight 1750
Rice Blast 1500

Rice Brown Spot 1650
Rice Sheath Blight 1750

Rice Leaf Scald 1800
Rice Tungro 2040

B. YOLOv8 networks

The YOLO family comprises a set of deep learning-based
algorithms for real-time target detection. These algorithms
utilize a single forward propagation pass over an image to
directly predict the target’s location and class. YOLOv8,
created by the identical team behind YOLOv5[22], stands
as a state-of-the-art (SOTA) model. It takes advantage of the
triumphs of its antecedent and brings in novel characteristics
and refinements to boost its efficacy and versatility. YOLOv8
excels in its speed, accuracy, and user-friendliness, rendering
it a remarkable option for a diverse range of tasks, including
object detection and tracking, instance segmentation, image
classification, and pose estimation. Within the YOLOv8
framework, different variants, namely n, s, l, m, and x are
available to cater to different usage scenarios. These variants
increase in network depth, leading to improved detection
accuracy. Among them, YOLOv8n fulfills our requirements
in terms of accuracy, inference speed, and lightweight char-
acteristics. Therefore, YOLOv8n is selected as the research
focus for rice leaf disease detection in this project. The
YOLOv8 network consists of four principal elements: Input,
Backbone, Neck, and Head. These components work together
to form the overall model structure, as illustrated in Fig. 2.

III. IMPROVED METHOD FOR RICE LEAF DISEASE
DETECTION

Due to the issues of elevated computational complexity
and diminished detection accuracy resulting from the intri-
cate rice growth environment in existing rice leaf disease de-
tection, this research puts forward a lightweight rice leaf dis-
ease detection approach grounded in the enhanced YOLOv8.
It primarily undertakes optimization and enhancement in the
following three aspects to attain superior detection capabili-
ties and reduced computational expenditure.
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Fig. 2: YOLOv8 structure diagram.

Firstly, in real-world rice growth scenarios, certain images
of rice leaf diseases on the smaller side and might encounter
problems like pixel distortion[23], This leads to the loss of
minute and detailed information and poses challenges for
feature learning during the recognition process. To deal with
this situation, a lightweight convolutional ADown module is
incorporated to substitute the original Conv module within
the model. The ADown module offers significant advantages
in detection accuracy and model performance due to its
diverse feature extraction and effective downsampling tech-
niques. Additionally, the ADown module curtails the quantity
of parameters and computational expenses while effectively
retaining and extracting image features. This lightweight con-
volutional operation improves the model’s accuracy without
increasing computational requirements, enabling faster and
more accurate detection of rice leaf diseases.

Secondly, to improve the feature fusion effect, increase
the target localization accuracy, and suppress the background
interference. In this experiment, a lightweight Mixed Local
Channel Attention (MLCA) module is proposed to enhance
the performance of the object detection network. The MLCA
is incorporated into the C2f of the backbone part to form a
new C2f MLCA module, which is capable of integrating the
channel information and spatial information as well as the
expression effect of local information at the same time. It
has a more enhanced perception of the leaf disease details
within the input image and boosts the precision rate of rice
leaf disease detection, so that the model focuses more on
the features related to leaf disease and reduces the response
to irrelevant information in the background. It contributes to

enhancing the model’s stability and interference resistance.
Finally, to address the computational burden and time con-

straints during the training process, we introduce Dysample,
a lightweight dynamic upsampler that replaces the original
upsampling operator, Upsample. Dysample eliminates the
need for dynamic convolutions and avoids complex dynamic
convolution processing, resulting in a significant reduction
in computational burden and time requirements. In this
research, the enhanced model is designated as the YOLOv8-
AMD network, and its model architecture is illustrated in
Fig. 3.

A. ADown module

During the transmission of images, spatial feature informa-
tion undergoes a conversion process that gradually converts
it into channel information, necessitating the compression of
the height and width dimensions of the feature map. In the
YOLOv8 model, this conversion is facilitated by constructing
a deep network structure via the piling up of multiple
convolutional layers. However, these convolutional layers
often possess a high number of parameters and computational
complexity, which can potentially hinder their efficacy in
extracting features. In particular, when dealing with targets
that exhibit complex texture and shape features, such as
rice leaf diseases, conventional convolutional operations may
struggle to capture intricate details effectively. This limi-
tation can lead to compromised detection performance[24].
Therefore, we introduce a new convolutional module called
ADown. In comparison to traditional convolutional layers,
the ADown module offers significant advantages in terms of
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Fig. 3: YOLOv8-AMD structure diagram.

detection accuracy and model performance[25]. This is pri-
marily attributed to its diverse feature extraction techniques
and efficient down-sampling methods. These advantages hold
particular significance in the context of rice leaf disease
detection, especially in resource-limited environments. By
incorporating the ADown module, the efficiency of modeling
operations can be improved. The lightweight convolutional
operation of the ADown module enhances model accuracy
without imposing additional computational burden, thereby
enabling faster and more accurate detection of rice leaf
diseases. Fig. 4 visually presents the structure of the ADown
lightweight convolutional module.

B. C2f MLCA module

The C2f module serves as a channel attention mechanism
module, assigning weights based on the correlation among
different channels. However, It should be emphasized that
the C2f module solely considers the interdependence among
channel dimensions and overlooks the spatial dimensions in
its calculations. To address the problems that most channel
attention mechanisms disregard spatial feature details, which
leads to inferior model representation or target detection
performance[26], along with the issue of the spatial atten-
tion module having a high computational expense and the
YOLOv8 model being inadequate for the rice leaf disease
detection assignment, we propose the C2f MLCA module.
This module introduces a lightweight Mixed Local Channel
Attention (MLCA) mechanism to better enhance the repre-
sentation and detection capabilities of the target detection
algorithm. The main idea of its MLCA attention mechanism
is to aggregate contextual information at different levels and
scales and use attention weights to adjust the importance of
this information. It has the capacity to concurrently integrate
channel and spatial details, along with both local and global
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Fig. 4: Structure of ADown lightweight convolution
Module.

aspects, thereby enhancing the network’s representational
capabilities[26]. At the same time, it does not significantly
expand the number of parameters or computational volume of
the network and maintains its original real-time performance.
The MLCA module is shown in Fig. 5.

The C2f MLCA module is designed to analyze channel
information, spatial details, and both local and global ele-
ments simultaneously by integrating local geographic data
into the channel attention mechanism. It employs a two-step
pooling process along with one-dimensional convolution.
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This approach not only improves processing speed but also
prevents the accuracy loss typically associated with reducing
channel dimensions. Additionally, this method enhances the
expandability of the attention mechanism[26]. Fig. 6 illus-
trates the structure of the C2f MLCA module.
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Fig. 6: Structure of C2f MLCA module.

It is capable of addressing the subsequent issues associated
with the YOLOv8 model.

(1) The YOLOv8 model demands extensive annotated data
for training. Nevertheless, rice leaf disease datasets within
intricate natural settings are frequently arduous to amass.
This constraint restricts the model’s capacity to generalize
and adapt;

(2) The YOLOv8 employs an anchorless detector that di-
rectly predicts the location and dimensions of the target. Al-
though this design curtails the quantity of model parameters,
it might give rise to erratic detection outcomes, especially

when dealing with leaf diseases exhibiting irregular forms
and diverse sizes;

(3) The backbone network of YOLOv8 utilizes a cross-
stage partial connectivity method. This strategy strikes a
balance between the network’s depth and width and aug-
ments the efficiency of feature extraction. However, it could
potentially result in an inadequate flow of information among
feature maps, thereby impinging on the capture of minute
details of rice leaf diseases[27].

C. Dysample module

When it comes to target detection tasks, the utilization of
upsampling operations is crucial for resizing the input feature
mapping to match the dimensions of the original image.
This allows the model to efficiently recognize targets with
varying sizes and at different distances. Nevertheless, con-
ventional upsampling techniques typically depend on bilinear
interpolation[28], which has some constraints and might lead
to the omission of essential image details. Additionally, these
conventional kernel-based upsampling approaches demand
substantial computational resources and parameter overhead,
making them unsuitable for implementing lightweight net-
work architectures[29].

To reduce a significant computational burden and time,
this paper introduces Dysample[30], an innovative dynamic
upsampler. Dysample primarily employs a point-sampling
approach instead of the traditional kernel-based approach,
which improves resource efficiency. Dysample can remark-
ably cut down the computational cost and latency as it
doesn’t require time-consuming dynamic convolution and
extra sub-networks for generating dynamic kernels. Its
lightweight nature, along with fewer parameters and lower
GPU memory requirements, makes it highly efficient. No-
tably, Dysample outperforms other upsamplers in several
intensive prediction tasks, including semantic segmentation
and target detection, demonstrating its versatility and effec-
tiveness in diverse applications.
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Its advantages:
(1) Avoiding dynamic convolution: Dysample does not use

complex dynamic convolution processing, which reduces a
lot of computational burden and time.

(2) Point sampling method: It implements upsampling
by point sampling instead of the traditional kernel method,
which is simpler and more efficient.

(3) Fewer parameters and memory requirements: Com-
pared to previous methods, Dysample requires fewer parame-
ters and reduces the memory requirements of the GPU, which
means it is lighter and runs faster. With its innovative point
sampling method, Dysample improves processing speed and
application range while maintaining high efficiency.

Fig. 7 illustrates the network structure of Dysample. The
sampling set S consists of the original sampling grid (O) and
generated offsets (G). Offsets are created via the “linear +
pixel shuffle” method. For instance, in static factor sampling
with a c × h × w feature map and upsampling factor s,
the map passes through a linear layer (input c, output 2s2

channels), then reshaped by pixel shuffle to 2×sh×sw (for
x and y coords). Finally, an upsampled c× sh× sw map is
generated[31]. Here, x is input, x′ up-sampled features, G
offsets, O original grid, σ is sigmoid, sh is sampling height,
sw sampling width, and gs2 channels after linear layer.

IV. TEST AND ANALYSIS

A. Test environment and parameter configuration

All experiments in this paper were conducted using Py-
torch, a deep learning framework, on an Ubuntu 22.04
system equipped with a 12th Gen Intel(R) Core(TM) i5-
12400F CPU@2.5GHz and an NVIDIA GeForce RTX 3090
GPU. The Python version used was 3.9, and the Pytorch
version was 2.2.1. The specific configuration details of the
experimental environment are provided in Table II. For
training and inference, a single GPU was utilized, and
all networks were trained with a batch size of 16. Other
hyperparameters, including the learning rate, weight decay,
and data augmentation, were set to their default values, which
are specified in Table III.

TABLE II: The configuration of environment parameters.

Environmental parameter Configuration

CPU 12th Gen Intel(R) Core(TM) i5-12400F
GPU NVIDIA GeForce RTX 3090

Operating system Ubuntu22.04
Programming language Python3.9

Deep learning framework Pytorch2.2.1

TABLE III: The configuration of hyperparameters.

Hyperparameter Configuration

Learning Rate 0.01
Image Size 640*640 640*640

Momentum 0.937
Optimizer SGD
Batch Size 16

Epoch 100
Weight Decay 0.0005S
close mosaic 10
Learning rate 0.01

B. Model evaluation indexes

In this study, several evaluation metrics were employed
to assess the efficacy of the YOLOv8-AMD network model
in rice leaf disease detection. These metrics include Preci-
sion (P), Recall (R), and mean Average Precision (mAP).
Additionally, the number of model Parameters (Parameters),
Giga Floating-point Operations Per Second (GFLOPs), and
the processing capacity in terms of Frames Per Second (FPS)
were chosen as evaluation indices for the target detection
model[32].

Precision, denoted as P, is a metric that quantifies the
ratio of samples accurately categorized as positive classes
by the classifier in relation to the overall quantity of samples
designated as positive classes. Eq. (1) presents the calculation
formula for precision.

P =
TP

TP + FP
(1)

Where TP stands for the quantity of true positive samples
(that is, positive samples that have been correctly classified),
while FP stands for the number of false positive samples
(namely, samples that are wrongly classified as positive
despite actually being negative).

Recall, denoted as R, is a metric that measures the propor-
tion of positive class samples that are correctly recognized
as positive by the classifier compared to the entire number
of positive class samples. Eq. (2) presents the calculation
formula for the Recall.

R =
TP

TP + FN
(2)

Where TP stands for the quantity of true positive samples
(that is, positive samples that have been correctly classified),
and FN stands for the count of false negative samples (that
is, samples which are wrongly categorized as negative while
they are in fact positive).

mAP is a metric that is employed to gauge the average
precision of a detection model among different categories.
In the target detection task, the average precision (AP) is
initially computed for each category, and subsequently, the
AP values are averaged over all categories to derive the mAP
score. Eq. (3) shows the calculation formula for mAP.

mAP =
1

n

n∑
i=1

APi (3)

Where n indicates the overall number of categories, and
APi represents the average precision for category i. The mAP
value offers a comprehensive evaluation of the detection
model’s efficacy across numerous categories.

Parameters denote the overall quantity of trainable param-
eters that make up the deep learning model. A higher pa-
rameter count often indicates a more intricate model. While
a greater quantity of parameters can potentially increase
the model’s learning capacity[33], it also carries the risk of
overfitting and can result in increased computational require-
ments. It is crucial to maintain an equilibrium between model
complexity and efficiency for the purpose of guaranteeing
optimal performance.

FPS serves as a metric for gauging the processing speed of
the target detection model. It reflects the quantity of images
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Fig. 7: Dysample network structure.

that the model is capable of analyzing within one second. A
greater FPS value implies a quicker detection speed. Eq. (4)
shows the calculation formula for FPS.

FPS =
1

Ttotal
=

1

Tpre + Tdet + Tpost
(4)

where Ttotal is the total process time; Tpre is the pre-
processing time; Tdet is the detection time; and Tpost is the
post-processing time.

C. Comparison experiment of adding different attention
mechanisms in C2f

In order to assess the impact of the MLCA attention
mechanism when added to the C2f module, we conducted
experiments using A-C2f as the base model. While keeping
other parameters unchanged, we integrated six different
attention mechanisms, namely Cascaded Group Attention
(CGA)[34], Sea-Attention (Sea)[35], Inverted Residual Mo-
bile Block (iRMB)[36], Spatial Attention (SA)[37], Iterative
Attention Feature Fusion (iAFF)[38], and Efficient Channel
Attention (ECA)[39], into the same position of the C2f
module. This resulted in six optimized models: A-C2f CGA,
A-C2f Sea, A-C2f iRMB, A-C2f SA, A-C2f iAFF, and A-
C2f ECA. After training and testing the six optimized
models, along with the base model A-C2f, employing the
identical dataset[40], evaluation metrics, and experimental

environment, we compare and analyze their performance.
Table IV presents the results of these comparisons. where
A is the Yolov8-ADown-Dysample model.

TABLE IV: Integration of diverse attention mechanisms
within C2f

Models P R mAP50 Params(M) GFLOPs FPS

A-C2f 87.0 87.3 92.1 2.60 7.3 200
A-C2f CGA 87.4 87.9 92.4 2.65 7.5 143
A-C2f Sea 87.5 87.5 92.4 2.65 7.3 130

A-C2f iRMB 88.2 87.7 92.8 2.72 10.7 50
A-C2f SA 87.9 88.2 92.3 2.65 7.3 208

A-C2f iAFF 87.5 89.3 92.2 2.71 7.5 208
A-C2f ECA 87.6 87.7 92.4 2.70 7.3 188

A-C2f MLCA 88.8 88.7 92.5 2.60 7.3 250

In Table IV, we observe that the models with the at-
tention mechanism added in the C2f module (A-C2f CGA,
A-C2f Sea, A-C2f iRMB, A-C2f SA, A-C2f iAFF, A-
C2f ECA, A-C2f MLCA) exhibit higher values of precision,
recall rate, and mAP50 in comparison to the base model
(A), denoting that the attention mechanism enhances feature
fusion and boosts the performance and precision in detecting
rice leaf diseases. This verifies the effectiveness of the
attention mechanism in augmenting the model’s precision
regarding the detection and categorization of rice leaf dis-
eases.

Among the attention mechanisms evaluated in Table IV,
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C2f MLCA stands out with a higher accuracy rate of 88.8%.
Additionally, its number of parameters is smaller than the
other attention mechanisms at 2.6 M. Notably, C2f MLCA
also demonstrates a significantly faster detection speed at
250 FPS compared to the other mechanisms. Although
C2f iRMB achieves the highest mAP50 of 92.8%, its detec-
tion speed is much lower at 50 FPS compared to C2f MLCA.
On the other hand, C2f iAFF exhibits the highest recall
rate at 89.3%. However, C2f MLCA surpasses C2f iAFF
in respect of precision, mAP50, quantity of parameters,
GFLOPs and FPS, indicating superior overall performance.

In a word, C2f MLCA succeeds in attaining a harmony
between precision and rapidity, all the while diminishing the
computational load and inference duration of the model. It
boosts the model’s capacity to perceive leaf disease-related
information in input images, improves the precision of rice
leaf disease detection, and emphasizes features relevant to
leaf diseases while reducing responses to irrelevant back-
ground information.

D. Ablation Experiments
In the ablation experiments, we aimed to ensure a fair

and reasonable comparison by training all models using the
same dataset and under the same parameter environment.
The objective was to evaluate the enhancement in the per-
formance of the YOLOv8 model following the integration
of the enhanced ADown lightweight convolution module and
the dynamic upsampler Dysample, and the C2f MLCA mod-
ule. To conduct the ablation experiments, we systematically
removed or replaced these components and evaluated the
resulting models. Table V shows the comparison outcomes of
these ablation experiments, which provides insights into the
performance impact of each component and their combined
effect on the YOLOv8 model[41].

Table V presents the preliminary experimental results of
the base model YOLOv8, serving as a reference for the
subsequent eight experimental sets. The outcomes consist of
a precision value of 86.3%, a recall level of 85.5%, a mAP50
figure of 91.3%, a parameter magnitude of 3.00 million, a
floating-point volume of 8.1 G, and an FPS rate of 222.

In the second experimental group, when compared to
the base model YOLOv8, the lightweight convolutional
ADown module yields notable enhancements in precision
(1.4%), recall rate (1.3%), and mAP50 (1.0%). Furthermore,
there is a reduction in computation by 0.8 G, a decrease
in parameter count by 0.41 million, and an improvement
in processing speed by 56 FPS. These results imply that
the lightweight convolutional ADown module enhances the
model’s proficiency in detecting rice leaf diseases within
low-resolution images or smaller targets, and at the same
time, decreases the incidences of false positives and false
negatives. Consequently, rice leaf disease detection has be-
come faster and more accurate. In the third experimental
group, the incorporation of the dynamic upsampler Dysample
leads to improvements in precision, recall rate, and mAP50
by 0.7%, 1.1%, and 0.4%, respectively. Additionally, the
computational GFLOPs are reduced from 8.1 G to 7.5 G.
These results indicate that Dysample effectively reduces
computational workloads and processing delays.

In the fourth experimental group, the introduction of C2f-
MLCA resulted in improvements in precision (0.5%), recall

rate (1.4%), and FPS (41), while the mAP50, computational
effort, and number of parameters remained unchanged. This
indicates that C2f-MLCA enhances the representation and
detection of target detection algorithms for rice leaf diseases,
leading to more accurate and efficient detection of such
diseases.

The eighth experimental group showcases the results of in-
corporating all the proposed improvements. In comparison to
the base model YOLOv8, the YOLOv8-AMD model demon-
strates significant enhancements. Precision is improved by
2.5%, while the recall rate and mAP50 metrics show im-
provements of 3.2% and 1.2%, respectively. Moreover, the
FPS is increased by 28. Notably, the computational complex-
ity is substantially reduced, with the computational GFLOPs
dropping from 8.1 G to 7.3 G. Additionally,the quantity of
parameters is reduced from 3.00 M to 2.60 M, with reduction
percentages of 9.88% and 13.33% respectively.

The method proposed in this paper surpasses the base
model YOLOv8n in terms of performance, achieving
lightweight characteristics and enhancing the accuracy of
the model for faster and more precise detection of rice
leaf diseases. Fig. 8 illustrates the results of the ablation
experiments, showcasing precision, recall rate, and mAP50
through the Linear graphs.

E. Comparison Experiments of Different Models

To assess the efficacy of the proposed improved algorithms
in this research, we conducted comparative experiments
with Faster R-CNN, YOLOv3-tiny, YOLOv5s, YOLOv6n,
and YOLOv8n. These experiments were conducted under
identical settings, utilizing the same equipment, datasets,
and data augmentation methods, while ensuring an equal
distribution between the training and test sets[42]. The exper-
iments were carried out for 100 iterations. Table VI presents
a comparison of the performance metrics, including P, R,
mAP50, Parameters, GFLOP and FPS.

Table VI exhibits the outstanding performance of the
algorithm proposed in this research, particularly in terms of
mAP50. Specifically, YOLOV8-AMD achieves an impressive
mAP50 of 92.5% under the same experimental conditions.
In comparison, significant differences in mAP50 are ob-
served with Faster R-CNN (66.5%), YOLOv3-tiny (83.6%),
YOLOv5s (90.6%), YOLOv6n (87.9%), and the standard
YOLOv8n (91.3%). Notably, YOLOV8-AMD achieves a de-
tection rate of 250, surpassing other one-stage and two-stage
algorithms. Furthermore, the detection performance metrics
exhibit substantial improvements, with Precision and Recall
rates reaching 88.8% and 88.7%, respectively. These findings
are effectively visualized in the radar plot depicted in Fig.
9, This evidently demonstrates the method’s preeminence
in detection accuracy and dependability. Overall, the model
surpasses other algorithms within the target detection field,
thereby further highlighting its efficacy.

F. Model generalizability experiment

To evaluate the universality of the enhanced YOLOv8-
AMD algorithm model, random samples from the traffic
signs dataset and blood cells dataset were selected for model
generalization experiments using Roboflow’s public dataset.
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(a) Linear graphs on Precision

(b) Linear graphs on Recall

(c) Linear graphs on mAP50

Fig. 8: Linear graphs
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TABLE V: Ablation experiments.

Yolov8 ADown Dysample C2f MLCA P R mAP50 Params(M) GFLOPs FPS

✓ 86.3 85.5 91.3 3.00 8.1 222
✓ ✓ 87.7 86.8 92.3 2.59 7.3 278
✓ ✓ 87.0 86.6 91.7 3.02 7.5 189
✓ ✓ 86.8 86.9 91.3 3.00 8.2 263
✓ ✓ ✓ 87.0 87.3 92.1 2.60 7.3 200
✓ ✓ ✓ 88.4 86.7 92.1 2.59 7.3 278
✓ ✓ ✓ 87.0 86.6 92.0 3.02 8.2 312
✓ ✓ ✓ ✓ 88.8 88.7 92.5 2.60 7.3 250

TABLE VI: Comparison experiments of different target detection algorithms.

Models P R mAP50 Params(M) GFLOPs FPS

Faster R-CNN 70.9 58.6 66.5 68.47 122.7 73
YOLOv3-tiny 79.4 77.3 83.6 103.69 283.0 103

YOLOv5s 85.2 85.1 90.6 2.54 7.1 244
YOLOv6n 84.8 83.0 87.9 4.23 11.8 233
YOLOv8n 86.3 85.5 91.3 3.00 8.1 222

YOLOv8-AMD 88.8 88.7 92.5 2.60 7.3 250

 Faster R-CNNFPS

YOLOv8-AMD(ours)

YOLOv8n

YOLOv5s

YOLOv6n

YOLOv3-tinyFaster R-CNN

Fig. 9: Radar chart.

These experiments were conducted under consistent param-
eter settings for both YOLOv8 and YOLOv8-AMD. The
results of the traffic sign identification by the YOLOv8-AMD
model are presented in Table VII, where A is the YOLOv8-
AMD model and B is the YOLOv8 model, while the
comparative experiments between YOLOv8 and YOLOv8-
AMD for traffic sign detection are displayed in Table VIII.
Additionally, Table IX showcases the identification results
of blood cell detection using YOLOv8-AMD, where A is
the YOLOv8-AMD model and B is the YOLOv8 model,
and Table X presents the comparative experiments between
YOLOv8 and YOLOv8-AMD for blood cell detection.

Table VII demonstrates the detection results of traffic signs
using both YOLOv8 and YOLOv8-AMD models. YOLOv8-
AMD achieves improved accuracy in detecting traffic signs
compared to YOLOv8. Specifically, YOLOv8-AMD achieves
a remarkable accuracy of 100% for Speed Limit 120 and
Speed Limit 50, while also achieving a 100% recall rate
for Speed Limit 110 and Stop. Moreover, both YOLOv8 and

YOLOv8-AMD achieve a high mAP50 of 99.5% for the Stop
traffic sign.

Table VIII presents the comparison between the base
model YOLOv8 and YOLOv8-AMD under the same pa-
rameter settings. YOLOv8 achieves precision, recall rate,
and mAP50 of 94.7%, 85.9%, and 93.5%, respectively.
In contrast, YOLOv8-AMD demonstrates improvements in
precision by 1.2%, recall rate by 0.7%, and mAP50 by
0.1%. Additionally, YOLOv8-AMD exhibits a remarkable
growth in FPS by 23. Notably, the computational GFLOPs
are reduced from 8.1 G to 7.3 G, and the model parameters
decrease from 3.00 M to 2.61 M, indicating reductions of
9.88% and 13.33%, respectively. These findings suggest that
the YOLOv8-AMD module effectively reduces computa-
tional requirements and inference time while achieving a
balance between model accuracy and speed.

Table IX illustrates the precision of YOLOv8-AMD out-
performing YOLOv8 for all three cell types. Notably, both
YOLOv8 and YOLOv8-AMD achieved a perfect recall rate
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TABLE VII: YOLOv8 and YOLOv8-AMD traffic sign identification results.

P R mAP50
Classes

A B A B A B

Green Light 89.2 92.1 60.5 68.0 75.7 80.6
Red Light 90.6 91.7 60.7 61.1 78.4 79.8

Speed Limit of 100 94.0 96.0 92.3 90.4 96.9 97.2
Speed Limit of 110 89.5 84.5 94.1 100 98.5 96.6
Speed Limit of 120 99.0 100 92.3 92.1 99.2 98.7
Speed Limit of 20 99.0 99.1 97.5 98.2 98.6 98.6
Speed Limit of 30 97.0 95.3 94.6 93.2 96.7 97.0
Speed Limit of 40 96.9 97.0 86.8 89.1 97.3 96.4
Speed Limit of 50 93.6 100 81.7 80.0 95.0 94.2
Speed Limit of 60 94.4 98.9 85.5 86.8 94.2 94.8
Speed Limit of 70 97.3 99.2 96.2 94.9 97.9 97.8
Speed Limit of 80 95.1 95.2 87.5 92.9 96.1 96.5
Speed Limit of 90 92.7 95.9 73.7 65.8 85.5 83.0

Stop 97.8 98.4 98.9 100 99.5 99.5

TABLE VIII: YOLOv8 and YOLOv8-AMD traffic sign comparison experiments.

Data set Models P R mAP50 Params(M) GFLOPs FPS

traffic signs YOLOv8 94.7 85.9 93.5 3.00 8.1 67
YOLOV8-AMD 95.9 86.6 93.6 2.60 7.3 80

TABLE IX: YOLOv8 and YOLOv8-AMD hemocyte identification results.

P R mAP50
Classes

A B A B A B

Platelets 78.4 81.2 89.5 94.7 90.7 91.1
RBC 74.8 75.6 88.6 86.8 88.5 88.7
WBC 94.6 96.1 100 100 98.4 98.5

of 100% for WBC.
Table X demonstrates remarkable improvements in preci-

sion (1.7%), recall rate (1.2%), and mAP50 (0.3%) achieved
by YOLOv8-AMD compared to the base model YOLOv8.
Moreover, YOLOv8-AMD exhibits reductions in computa-
tional GFLOPs from 8.1 G to 7.3 G and in parameters from
3.00 M to 2.61 M, representing reductions of 9.88% and
13.33%, respectively. Notably, YOLOv8-AMD achieves a
significantly higher FPS of 263 compared to YOLOv8’s 119,
resulting in a substantial improvement of 144 FPS.

In conclusion, YOLOv8-AMD demonstrates superior per-
formance compared to YOLOv8 under the same parameter
settings for different datasets. It exhibits improvements in P,
R, mAP50, and FPS. It should be noted that the parameter
quantity of the enhanced YOLOV8 model remains at 2.60M,
and the size of the computational volume of GFLOPs is kept
at 7.3G, which achieves a lighter weight and faster detection
speed. lightweight and accelerated detection speed, which
illustrates the superiority of the improved YOLOv8 method
proposed in this paper in terms of detection accuracy and
reliability.

G. Multi-crop disease detection experiments
To comprehensively evaluate the performance and applica-

bility of the model proposed in this paper on different crops,
we selected the corn disease dataset and the tomato leaf dis-
ease dataset from the Roboflow open-source platform. This
kind of selection is intended to guarantee the dependability
and variety of the datasets, in order to assess the model’s
capabilities in a more thorough manner. Among them, corn
includes six categories of diseases such as Brow Spot, Corn
Rust, Corn Smut, Downy Mildew, Grey Leaf Spot, Leaf
Blight, as shown in Fig. 10. In addition, tomato also includes

six types of diseases such as Bacterical Spot, Early Blight,
Healthy, Late Blight, Leaf Miner, and Spider Mites, as shown
in Fig. 11.

We ensure that experiments are performed on YOLOv8
and YOLOv8-AMD under the same parameter environment.
The experiment is shown in Table XI. Detailed records of
the experimental indices and results of different models on
diverse datasets facilitate in-depth analysis and comparison
of the performance of the two models in detecting maize
and tomato leaf diseases, thereby furnishing solid data sup-
port and theoretical foundation for subsequent research and
application. The comparison outcomes of corn and tomato
diseases are presented in Fig. 12 and Fig. 13 respectively.

From the data shown in Table 11, firstly, YOLOv8-
AMD is able to maintain the parameter at 2.6M and the
computation volume at 7.3G on both tomato and corn
datasets.Secondly,YOLOv8-AMD has a significant advan-
tage over YOLOv8, especially in tomato disease detection,
with a P improvement of 20.3%, and notably, significant
improvements in R (11.4%) and FPS (32).Finally, for the
corn dataset, despite a slight decrease in recall, there was
a significant improvement in accuracy (8.1%) and mAP50
(0.9%). In summary, YOLOv8-AMD presents multiple ad-
vantages. It optimizes model parameters and computational
complexity, simultaneously boosting the detection precision
and retaining excellent real-time detection capabilities, thus
furnishing more efficient technical assistance for disease
surveillance and management in the agricultural sector.

H. Analysis of YOLOV8-AMD experiment results
The confusion matrix acts as a significant instrument for

evaluating the performance of a classification model[43]. It
presents the classification outcomes of the model in a tabular
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TABLE X: YOLOv8 and YOLOv8-AMD blood cell comparison experiments.

Data set Models P R mAP50 Params(M) GFLOPs FPS

BCCD YOLOv8 82.6 92.7 92.5 3.00 8.1 119
YOLOV8-AMD 84.3 93.9 92.8 2.60 7.3 263

(a) Brow Spot (b) Corn Rust (c) Corn Smut

(d) Downy Mildew (e) Grey Leaf Spot (f) Leaf Blight

Fig. 10: Image of corn disease.

(a) Bacterical Spot (b) Early Blight (c) Healthy

(d) Late Blight (e) Leaf Miner (f) Spider Mites

Fig. 11: Image of tomato disease.

TABLE XI: Tomato and corn disease experiments.

Data set Models P R mAP50 Params(M) GFLOPs FPS

Tomato YOLOv8 65.3 33.1 41.1 3.00 8.1 87
YOLOV8-AMD 85.9 42.5 41.5 2.60 7.3 119

Corn YOLOv8 78.9 84.1 85.2 3.00 8.1 149
YOLOV8-AMD 87.0 79.5 86.1 2.60 7.3 154
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(a) Original image (b) YOLOv8 (c) YOLOv8-AMD

Fig. 12: Corn disease detection.

(a) Original image (b) YOLOv8 (c) YOLOv8-AMD

Fig. 13: Tomato disease detection.

format, enabling a comprehensive understanding of its per-
formance across different categories. In this experiment, the
confusion matrix is employed to evaluate the effectiveness
of the YOLOv8-AMD detection algorithm. Constructed as a
two-dimensional matrix, it represents the actual categories
in the rows and the predicted categories in the columns.
By examining the prediction results within different cate-
gories, various metrics including accuracy, recall, and false
positive rate can be derived. Fig. 14 displays the confusion
matrix, while Table 11 presents the recognition outcomes of
YOLOv8-AMD for each category.

Based on the analysis of the confusion matrix presented
in Fig. 14, this experiment categorized rice leaf diseases
into six distinct classes: Bacterial Blight, Blast, Brown Spot,
Sheath Blight, Leaf Scald, and Tungro. Through repeated
experiments, the YOLOv8-AMD model achieved impressive
detection accuracy for these six rice leaf diseases. Notably,
the accuracy for leaf disease detection was as high as
98% for Tungro. Taking Blast as an example, the model
exhibited a recognition accuracy of 90%. The false negative
rate, indicating instances where rice blast was incorrectly
predicted as the background, was 10%. Meanwhile, the false
positive rate, representing cases where background diseases
were wrongly identified as Blast, was 31%.

Upon analyzing Table XII, it becomes evident that the
YOLOv8-AMD model achieved the highest P, R, and mAP50
scores for Tungro, with values of 92.6%, 97.5%, and 98.4,
respectively. However, the accuracy of identifying Bacterial
Blight was slightly lower at 81.5%. The recall rate and
mAP50 scores were the lowest for Brown Spot, measuring
70.6% and 82.0%, respectively.

TABLE XII: Identification effect of YOLOv8-AMD on rice
leaf diseases.

Classes P R mAP50

Bacterial Blight 81.5 91.4 92.8
Blast 85.2 85.5 90.4

Brown Spot 90.8 70.6 82.0
Sheath Blight 91.0 90.8 93.7

Leaf Scald 91.7 96.3 98.0
Tungro 92.6 97.5 98.4

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we investigate the problem of detecting leaf
diseases in rice in complex natural environments and propose
an improved YOLOv8 lightweight detection algorithm called
YOLOv8-AMD. Specifically, the lightweight convolutional
ADown module is used to replace the convolutional Conv
module in YOLOv8. The ADown module has a greater
advantage in detection accuracy and model performance
due to its diverse feature extraction and effective down-
sampling approach;In addition, a lightweight hybrid local
channel attention mechanism, MLCA, is introduced into C2f,
called C2f MLCA, which is able to simultaneously integrate
channel information and spatial information, as well as the
representation effect of local information. It better perceives
the information of leaf disease in the input image, improves
the accuracy of rice leaf disease, and makes the model
pay more attention to the features related to leaf disease
and reduces the response to irrelevant information in the
background. In addition, a lightweight dynamic upsampler,
Dysample, is used instead of the original Upsample upsam-
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Fig. 14: confusion matrix.

pling operator to reduce the model size and improve the
model accuracy while reducing the number of model param-
eters and floating-point computations. The YOLOv8-AMD
algorithm exhibits excellent performance and considerable
competitiveness, achieving an accuracy of 88.8%, a recall
rate of 88.7%, and an mAP of 92.5% on the rice dataset.

In our future research, we will explore new and advanced
techniques to further improve the accuracy of disease de-
tection. For example, we will study the super-resolution
technique to improve the detection of rice diseases with very
small size and complex background interference, and strive
to find better solutions.
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