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Abstract—Graph theory is a fundamental area that explores
the properties and relationships present within graph struc-
tures. This paper explores generalized graph complements
by examining edge partitioning, a novel approach that ex-
tends the traditional graph complement. In analogy to the
vertex partition-based definitions of generalized complements,
two distinct types of generalized complements for a graph
emerge through edge partitioning: k'-complement and k'(i)-
complement of a graph. k'-complement of a graph emerges as
a versatile tool with applications across multiple domains, due
to its maximum edge configuration linked with a Fibonacci poly-
nomial and its role as a maximal outerplanar graph. The paper
systematically examines theorems and fundamental properties
governing the structural relationships between the original
graph and its generalized complements. The characterizations
of cycles and paths are also analysed in this study.

Index Terms—Generalized complement, Graph complement,
Partition, Cycle, Path

I. INTRODUCTION

In graph theory, a graph is a mathematical representation
of a set of objects and the connections between them. The
concept of graph complement has been extensively studied in
graph theory. The graph complement is obtained by removing
the edges of the original graph and adding the edges between
previously not connected vertices.

E. Sampathkumar and L. Pushpalatha introduced the no-
tion of the generalized complement of a graph, which they
termed as k-complement of a graph [1]. Let P be a partition
of the vertex set of G consisting of k partites. To obtain the
k-complement of a graph G, remove the edges between the
partites which are there in G and add the edges between
the partites which are not there in G. The k-complement is
denoted as GP

k .
E. Sampathkumar et al. also found another generalization

of the complement of a graph, termed as k(i)-complement of
a graph [2]. To obtain k(i)-complement of a graph G, remove
the edges inside each partite which are there in G and add
the edges between those vertices which are not there in G.
The k(i)-complement is denoted as GP

k(i). The authors have
extensively worked on k/k(i)-self-complementary graphs.
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Many studies were conducted on the properties, character-
izations and applications of the generalized complements of
graphs based on the vertex partition [3], [4], [5], [6], [7]. This
concept of the generalized complement of a graph is based on
the vertex set partition which extends the notion of defining
the generalized complement of a graph based on the edge
set partition. This new concept has potential applications in
diverse fields.

In this paper, a detailed examination is provided for
the generalized complements of a graph concerning the
partition of edges, exploring its properties, theorems and
applications. The findings presented in this paper offer a
valuable foundation for further research and exploration of
the generalized complement of graphs through edge set parti-
tioning. The Fibonacci sequence continues to be a significant
area of research, with ongoing studies exploring its various
properties [8]. This study explores the significance of k'-
complement of a graph by finding its relation with the
maximal outerplanar graph and Fibonacci polynomial by
its maximum edge configuration. This connection extends
its applicability across diverse fields, encouraging continued
investigation and innovation.

II. GENERALIZED COMPLEMENTS ON EDGE PARTITION

Consider a simple graph G with vertex set V and edge set
E. The k'-complement and k'(i)-complement of a graph are
defined as follows:

Let G be a graph without any isolated vertices and P =
{E1, E2,..., Ek} be a partition of E in which each edge e
is represented by its end vertices u and v as e = uv.

Definition 1: The k'-complement of a graph G is defined
as follows: For all Ei and Ej in P , i̸=j, add the edges
between Ei and Ej which are not in G. It is denoted as GP

k'.
The graph G is k'-self complementary (k'-s.c.) if there

exists a partition P of order k such that GP
k'

∼= G.
The graph G is k'-co-self complementary (k'-co-s.c.) if

there exists a partition P of order k such that GP
k'

∼= G.

Definition 2: The k'(i)-complement of a graph G is de-
fined as follows: For each set Er in P , remove all the edges
of G which are inside Er and add the edges between non-
adjacent vertices inside Er. It is denoted as GP

k'(i).
The graph G is k'(i)-self complementary (k'(i)-s.c.) if

there exists a partition P of order k such that GP
k'(i)

∼= G.
The graph G is k'(i)-co-self complementary (k'(i)-co-s.c.)

if there exists a partition P of order k such that GP
k'(i)

∼= G.

Note 1: The common vertex belonging to different edge
sets in P are considered inside to their respective edge sets.

u is adjacent to v is denoted as u ∼ v.
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Fig. 1. Cycle C6
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Fig. 2. 2'-complement GP
2'
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Fig. 3. 2'(i)-complement GP
2'(i)

Example 1: Consider the cycle C6 (Fig. 1). Let P = {E1,
E2}, where E1 = {ab, bc, af} and E2 = {cd, de, ef}. The
vertices c and f are present in both edge sets. So, they are
considered as inside to both E1 and E2.

In GP
2', the edges inside E1 and E2 remain the same. The

edges are joined from the vertices of E1 to the vertices of
E2 which are not in E1 as shown in Fig. 2.

In GP
2'(i), the edges inside E1 and E2 are removed. The

edges are then joined between non-adjacent vertices inside
E1 and E2 as shown in Fig. 3.

A. Properties of k'-complement and k'(i)-complement of
graphs

Let G be a simple graph with vertex set V of order n
and edge set E of size m, then the following properties hold:

i) GP
1'

∼= G and GP
1'(i)

∼= G,

ii) GP
m'

∼= Kn and GP
m'(i)

∼= Nn, where P is the partition
of E into singleton sets, Kn is the complete graph of order
n and Nn is the null graph of order n.

The k'-complement and k'(i)-complement are related as
follows:

Proposition 1: For any graph G,

i) GP
k'

∼= GP
k'(i)

ii) GP
k'(i)

∼= GP
k'

Proof: Let u and v be two vertices of G.

i) Then u ∼ v in GP
k'

⇐⇒ u and v belong to the same edge set in P and non-
adjacent in G
⇐⇒ u ∼ v in GP

k'(i).

=⇒ GP
k'

∼= GP
k'(i).

ii) Then u ∼ v in GP
k'(i)

⇐⇒ u and v are in the different edge sets and non-adjacent
in G or they belong to the same edge set and adjacent in G
⇐⇒ u ∼ v in GP

k'.
=⇒ GP

k'(i)
∼= GP

k'.

From Proposition 1, we have

Corollary 0.1: GP
k'

∼= G ⇐⇒ GP
k'(i)

∼= G.
In other words, G is k'-s.c. if and only if G is k'(i)-co.s.c.

Corollary 0.2: GP
k'(i)

∼= G ⇐⇒ GP
k'

∼= G only when
G ∼= G. In other words, G is k'(i)-s.c. if and only if G is
k'-co-s.c. and self-complementary (G is s.c.).

Proof: From the definition, the edges of GP
k' correspond

to the edges of G. So, if GP
k'(i)

∼= G and GP
k'
∼= G, then GP

k'
∼= G. So, G ∼= G.

Remark 1: i). Due to the different edge sets in G and G,
the partitions in G and G are different. So, in general, GP

k'
≇ G

P

k'. Similarly, GP
k'(i) ≇ G

P

k'(i).

ii). Let G and G be graphs without any isolated vertices.
Let P and Q be the partitions of the edge sets in G and G
respectively.

When k = 1, GP
1'

∼= G and G
Q

1'
∼= G.

But GP
1'

∼= G ⇐⇒ GP
1'

∼= G.

=⇒ GP
1'

∼= G
Q

1'

Similarly, GP
1'(i)

∼= G and G
Q

1'(i)
∼= G.

But GP
1'(i)

∼= G ⇐⇒ GP
1'(i)

∼= G.

=⇒ GP
1'(i)

∼= G
Q

1'(i).

Proposition 2: Let G and G be graphs without any iso-
lated vertices. Let P and Q be the partitions of the edge sets
in G and G respectively. If G is not k'-s.c., then GP

k' ≇ G
Q

k'

and GP
k'(i) ≇ G

Q

k'(i), for k > 1.

Proof: Let k > 1.
If G is not k'-s.c., then GP

k' contains all the edges of G and
at least one edge of G. Hence, GP

k' contains at least one edge
less than G. But G

Q

k' has all the edges of G. So, GP
k' ≇ G

Q

k'.
Similarly, GP

k'(i) ≇ G
Q

k'(i).

Proposition 3: Let G and G be graphs without any iso-
lated vertices.Then GP

k'
∼= G

Q

k' and GP
k'(i)

∼= G
Q

k'(i) only when
G and G are k'-s.c. with respect to P and Q respectively.
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Proof: Case 1: Suppose G is not k'-s.c., then the proof
follows from Proposition 2.
Case 2: Suppose G is not k'-s.c. Let G be k'-s.c. Then, GP

k'
only contains the edges of G. Thus, GP

k' only contains the
edges of G.

On the other hand, since G is not k'-s.c. G
Q

k' contains all
the edges of G and at least one edge from G. But GP

k' only
contains the edges of G. In this case, GP

k' ≇ G
Q

k' which is a
contradiction.

That is, if G is k'-s.c. with respect to P , then GP
k'

∼= G ⇐⇒ GP
k'

∼= G.
If G is k'-s.c. with respect to Q, then G

Q

k'
∼= G. Thus,

GP
k'

∼= G
Q

k'.

Similarly, GP
k'(i)

∼= G
Q

k'(i).

Corollary 0.3: Let G and G be graphs without any iso-
lated vertices. Then GP

k'(i)
∼= G

Q

k' and GP
k'
∼= G

Q

k'(i) only when
G and G are k'-s.c. with respect to P and Q respectively.

Proposition 4: Every GP
k'(i) is a subgraph of G.

Proof: We know that GP
k' includes all the edges of G.

From Proposition 1, it follows that GP
k'
∼= GP

k'(i). As a result,
the edges in GP

k'(i) correspond to the edges of G. Hence,
GP

k'(i) is a subgraph of G.

Observations:

1. For any graph G free from isolated vertices, GP
k' can

never be a null graph.

2. If G is a complete graph, then GP
k' is also a complete

graph and G is k'-s.c. with respect to any P .

3. If G is a complete graph, then GP
k'(i) is a null graph

and G is k'(i)-co-s.c. with respect to any P .

4. Let G and G be graphs without any isolated vertices.
Then GP

m'
∼= G

Q

m'
∼= Kn and GP

m'(i)
∼= G

Q

m'(i)
∼= Nn, where

m is the number of edges taken as singleton sets in P .

B. Characterization of k'-self complementary graph

Theorem 1: If union of edges in any Ei ∈ P is a spanning
subgraph of G, then G is k'-s.c.
In other words, if any Ei ∈ P is an edge covering set, then
GP

k'
∼= G.

Proof: Let P = {E1, E2,...,Ek} be a partition of E. If
the union of edges in any Ei ∈ P is a spanning subgraph of
G, then all the vertices lie inside Ei and no extra edge can
be added to G. Since k'-complement preserves the original
graph’s connectivity, G will be k'-s.c.

If any Ei ∈ P is an edge covering set, then Ei covers all
the vertices of G and the vertices lie inside Ei. Hence, no
more edges can be added to G. Thus, G is k'-s.c.

Example 2: Consider the Petersen graph G.

Fig. 4. Petersen graph G

Let P = {E1, E2, E3, E4}
E1 = {(1,3), (5,2), (2,4), (6,7), (9,8), (9,10)}
E2 = {(1,4), (3,5), (1,6)}
E3 = {(7,8), (6,10), (2,7)}
E4= {(3,8), (4,9), (5,10)}
Since E1 covers all the vertices of G, it is 4'-s.c.

Here, we can find the smallest edge covering set to obtain
k'-s.c. graph. Let P = {E1, E2}, where E1 = {(1,6), (2,7),
(3,8), (4,9), (5,10)}. The set E1 has five edges covering all
the vertices of G. Hence, it is the smallest edge covering set.
Thus, the Petersen graph is a 2'-self complement.

Remark 2: G is 2'-s.c. if and only if either E1 or E2 in
P is an edge covering set.

The converse of Theorem 1 holds in cycle with k = 2, path
and trees. But the converse need not be true in general.

Example 3: Let G be 3'-s.c. Consider P = {E1, E2, E3},
where Ei, i = 1, 2, 3 is not an edge covering set. That is Ei

fails to cover at least one vertex of G.
Consider the cycle C5 as shown in Fig. 5. Let P =

{E1, E2, E3}, where E1 = {ab, ed} and c /∈ VE1 , E2 = {ae,
bc} and d /∈ VE2 , E3 = {cd}. With respect to the partition
P , it is clear that C5 is 3'-s.c. even when any Ei ∈ P is not
an edge covering set.

b

cd

e

a

Fig. 5. Cycle C5
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C. Characterization of cycle Cn

Theorem 2: Let G = Cn be k'-s.c. If any Ei ∈ P is not
an edge covering set, then k = 3.

Proof: Let Cn be k'-s.c. and each Ei ∈ P be a non-
edge covering set. Then, each Ei does not cover at least one
vertex of G. Since each vertex of a cycle is adjacent to two
vertices, every vertex belongs to at most two edge sets.

Case 1: A vertex of Cn is taken twice in only one edge set.
Suppose vi is taken twice in Ei of P . Let vj /∈ VEi . Since
vj is lying outside Ei and vi is present only in Ei, an edge
will be added between vi and vj . Then the resultant graph is
not k'-s.c. Hence, the adjacent edges cannot lie in only one
edge set.

Case 2: Each vertex of Cn is taken in two edge sets.
Let v1 belong to E1 and E2. Suppose v2 is lying outside of
both E1 and E2. Then in k'-complement, an edge is added
between v1 and v2. So, no vertex should lie outside of both
E1 and E2. Thus, E1 and E2 should cover all the vertices in
G. This means both E1 and E2 together contain each vertex
at least once and those vertices can be considered again at
most once. Since, E1 and E2 together cover all vertices of
G, the vertices lying outside E1 will be there in E2 and vice
versa. So, those vertices can be taken again once in another
edge set.

Suppose the vertices lying outside E1 and E2 are taken
in different edge sets, then an edge will be added between
them. In order to avoid the addition of edges to the graph, the
vertices lying outside E1 and E2 should be present together
in one edge set E3. Hence, the maximum possible number
of partitions to obtain k'-s.c. is 3 when P does not contain
an edge covering set.

Corollary 2.1: Let Cn be 3'-s.c. If any Ei ∈ P is not an
edge covering set, then the union of any two Ei is an edge
covering set.

Example 4: Let P = {E1, E2, E3} in C7, where E1 = {ab,
cd}, E2 = {ag, ef} and E3 = {bc, de, fg}. So, C7 is 3'-s.c.

E1 ∪ E2 = {ab, cd, ag, ef} is an edge covering set
E2 ∪ E3 ={ag, ef, bc, de, fg} is an edge covering set.

E1 ∪ E3 = {bc, de, fg, ab, cd} is also an edge covering set.

b

c

de

f

g

a

Fig. 6. Cycle C7

Corollary 2.2: Let each Ei ∈ P be a non-edge covering
set. For k > 3, Cn is k'-s.c. only when Cn contains chords.

Proof: If Cn contains a chord, then there is an increased
possibility of selecting vertices for each edge set in a

partition. This happens because the adjacent vertices of the
chord can be taken more than twice.

Example 5: In the graph shown below, let P =
{E1, E2, E3, E4}, where E1 = {ad}, E2 = {ab, ac, ae}, E3=
{de, ef}, E4 = {af, bc, cd}. Here, each vertex is related to
every other vertex of the graph within the edge sets, ensuring
all vertices are contained within and no further edge can be
added to the graph in k'-complement. So, the graph is 4'-s.c.
with respect to P .

c

de

f

a b

Fig. 7. C6 with 3 chords

Theorem 3: For G = Cn, the bounds for m(GP
2'), where

m(GP
2') is the size of GP

2' are given by,

n ≤ m(GP
2') ≤

n2 + 3

4
, if n is odd,

n ≤ m(GP
2') ≤

n2

4
+ 1, if n is even.

Proof: The edges of Cn remain unchanged in k'-
complement. Hence, 2'-complement will have at least n
edges.

For an odd cycle, the maximum number of edges possible
in 2'-complement is (n−1

2 )(n−1
2 − 1) = (n

2−4n+3
4 ).

Thus, the number of edges in an odd cycle is at most n +
(n

2−4n+3
4 ) = n2+3

4 .

For an even cycle, the maximum number of edges possible
in 2'-complement is (n2 − 1)

2.
Thus, the number of edges in an even cycle is at most n +
(n2 − 1)

2 = n2

4 + 1.

Corollary 3.1: For G = Cn, the bounds for m(GP
2'(i)) are

given by,

(n− 3)(n+ 1)

4
≤ m(GP

2'(i)) ≤
n(n− 3)

2
, if n is odd,

n2 − 2n− 4

4
≤ m(GP

2'(i)) ≤
n(n− 3)

2
, if n is even.

Proof: In Cn, the number of edges in 2'(i)-complement
is at most n(n−1)

2 − n = n2−3n
2 = n(n−3)

2 .

Case 1: Let n be odd in Cn.
From Theorem 3, 2'-complement graph can have at
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most n2+3
4 edges. Hence, the number of edges in 2'(i)-

complement is at least n(n−1)
2 − (n

2+3
4 ) = n2−2n−3

4 =
(n−3)(n+1)

4 .

Case 2: Let n be even in Cn.
From Theorem 3, 2'-complement graph can have at most
n2

4 + 1 edges. Hence, the number of edges in 2'(i)-
complement is at least n(n−1)

2 − (n
2

4 + 1) = n2−2n−4
4 .

D. Construction of k'-s.c. of cycle Cn

The k'-s.c. graph can be obtained by finding the edge
covering set of the graph (Theorem 1). The size of the
smallest edge covering set (edge covering number β′(G))
gives the minimum possible number of edges that can be
taken in an edge set to obtain k'-s.c. graph.

Theorem 4: Let G = Cn be k'-s.c. If Ei is an edge
covering set in P , then Ei will have at least

⌈
n
2

⌉
edges.

Proof: Let G be k'-s.c. and Ei be the smallest edge
covering set in P .
When n is even, β′(Cn) = n

2 and when n is odd, β′(Cn) =
n+1
2 .

Therefore, the size of the smallest edge covering set Ei is⌈
n
2

⌉
.

Corollary 4.1: Let G = Cn be 2'-s.c. and suppose P
contains the smallest edge covering set. Then the bounds
for cardinality of the edge sets are given by,

when n is odd,
n+ 1

2
≤ |E1| ≤ n− 1,

1 ≤ |E2| ≤
n− 1

2
,

when n is even,
n

2
≤ |E1| ≤ n− 1,

1 ≤ |E2| ≤
n

2
.

Proposition 5: If P = {E1, E2} is a partition of Cn such
that |E1| = 1 and |E2| = m− 1, then Cn is 2'-s.c.

Proof: Given |E1| = 1. Let E1 = {e}, where e = uv.
The remaining m − 1 edges are taken in E2 in which the
remaining path starts with u and ends with v. Hence, E2 is
an edge covering set. Thus, G is 2'-s.c.

Observations:

1. In Cn, if |E1| = 1 and |E2| = m − 1, then GP
2'(i)

∼=
G.

2. In Cn, if |E1| = 2 with two non-adjacent edges and
|E2| = m− 2, then G is 2'-s.c.

3. In Cn, GP
2' obtained from the edge sets |E1| = 2 with two

adjacent edges and |E2| = m− 2, is similar to GP
3' obtained

from the edge sets |E1| = 1, |E2| = 1 (the edges in E1 and
E2 are adjacent) and |E3| = m− 2.

E. Characterization of path Pn

Theorem 5: Pn is k'-s.c. if and only if one of the edge
sets in P is an edge covering set.

Proof: Let Pn be k'-s.c. and v ∈ VEi be a pendant
vertex. Since v is adjacent to only one vertex, all the vertices
should lie in Ei. Otherwise, the vertices which are not in Ei

will be outside to v. As a result, the edges are added between
them resulting in a non-k'-s.c. graph. Hence, Ei should cover
all the vertices which is an edge covering set.

Conversely, if one of the edge sets in P is an edge covering
set, then Pn is k'-s.c. (Theorem 1).

Corollary 5.1: Tree is k'-s.c. if and only if one of the edge
sets in P is an edge covering set.

Corollary 5.2: A forest is k'-s.c. if and only if one of the
edge sets in P is an edge covering set.

Corollary 5.3: A star K1,n is k'-s.c. if and only if all of
its edges lie in only one edge set in P (k = 1).

Theorem 6: For G = Pn, the bounds for m(GP
2'), n > 2

are given by,

n− 1 ≤ m(GP
2') ≤ n− 1 +

n(n− 2)

4
, if n is even,

n− 1 ≤ m(GP
2') ≤ n− 1 +

(
n− 1

2

)2

, if n is odd.

Proof: Let P = {E1, E2}. The edges of Pn remain
unchanged in 2'-complement and the number of edges in Pn

is n−1. Hence, 2'-complement graph will have at least n−1
edges.

Case 1: Let n be even. The maximum number of edges
is obtained when the edges are divided into two partitions
where one edge set contains Pn

2 +1 path and another contains
the remaining Pn

2
path. Then only one vertex say u is present

in both E1 and E2. The cardinality of one edge set is n
2 and

another edge set is n
2 − 1. In 2'-complement, the edges are

joined from each vertex of E1 to each vertex of E2 except
u.
Thus, 2'-complement can have at most (n − 1) + n(n−2)

4
edges when n is even in Pn.

Case 2: Let n be odd. The maximum number of edges
is obtained when the edges are evenly divided into two
partitions where each edge set contains Pn+1

2
path. Then

only one vertex say u is present in both E1 and E2. The
cardinality of each edge set is n−1

2 . In 2'-complement, the
edges are joined from each vertex of E1 to each vertex of
E2 except u.
Thus, 2'-complement can have at most (n − 1) +

(
n−1
2

)2
edges when n is odd in Pn.

Let GP
2' have the maximum number of edges and n > 2

in Pn.

Corollary 6.1: m(GP
2') in Pn = m(GP

2') in Pn−1 +
⌈
n
2

⌉
.

Corollary 6.2: m(GP
2') in Pn = m(GP

2') in Pn−2 + n.

From Corollaries 6.1 and 6.2, we have
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Corollary 6.3: m(GP
2') in Pn−1−m(GP

2') in Pn−2 =
⌊
n
2

⌋
.

Note 2: i) Let n be even in Pn and n > 2. The maximum
number of edges possible in GP

2' is n−1+ n(n−2)
4 (Theorem

6). A few terms of this sequence are listed below.

TABLE I
MAXIMUM POSSIBLE NUMBER OF EDGES IN GP

2'

n m(GP
2') n m(GP

2') n m(GP
2')

4 5 20 109 36 341
6 11 22 131 38 379
8 19 24 155 40 419

10 29 26 181 42 461
12 41 28 209 44 505
14 55 30 239 46 551
16 71 32 271 48 599
18 89 34 305 50 649

ii) Upon analysis of the sequence when n is even in Pn,
it becomes evident that a considerable number of terms are
prime. However, as n increases, the occurrence of prime
terms becomes less frequent.

iii) It is observed that when n is even and n > 2 in Pn,
the sequence of terms in n− 1 + n(n−2)

4 follows one of the
Fibonacci polynomials n2 − n− 1 [9].

Corollary 6.4: When n is even in Pn, GP
2' can have at

most (n − 1) + n(n−2)
4 edges. When n = 2(n − 1), the

pattern follows Fibonacci polynomial n2 − n− 1.

Proof: Let n be even in Pn and n > 2. The maximum
number of edges possible in GP

2' is n−1+ n(n−2)
4 (Theorem

6).

Put n = 2(n− 1).

Then,

n− 1 +
n(n− 2)

4
= 2n− 2− 1 +

(2n− 2)(2n− 4)

4

= 2n− 3 +
4n2 − 8n− 4n+ 8

4
= 2n− 3 + n2 − 2n− n+ 2

= n2 − n− 1

which is a Fibonacci polynomial.

Note 3: The above sequence is also similar to the se-
quences n+ (n+ 1)2 and |1− n− n2|.

Corollary 6.5: The sequence of the maximum number of
edges of Pn in GP

2' is similar to the sequence of the maximum
number of edges of Cn in GP

2'(i).

Corollary 6.6: For G = Pn, n > 2, the bounds for
m(GP

2'(i)) are given by,

(n− 2)2

4
≤ m(GP

2'(i)) ≤
(n− 2)(n− 1)

2
, if n is even,

(n− 3)(n− 1)

4
≤ m(GP

2'(i)) ≤
(n− 2)(n− 1)

2
, if n is odd.

Proof: In Pn, the number of edges in 2'(i)-complement
graph is at most n(n−1)

2 −(n−1) = n2−3n+2
2 = (n−2)(n−1)

2 .

Case 1: Let n be even.
From Theorem 6, 2'-complement graph can have at most
(n−1)+ n(n−2)

4 edges. Hence, the number of edges in 2'(i)-
complement is at least n(n−1)

2 − (n
2+2n−4

4 ) = n2−4n+4
4 =

(n−2)2

4 .

Case 2: Let n be odd.
From Theorem 6, 2'-complement graph can have at most
(n−1)+

(
n−1
2

)2
edges. Hence, the number of edges in 2'(i)-

complement is at least n(n−1)
2 − (n

2+2n−3
4 ) = n2−4n+3

4 =
(n−3)(n−1)

4 .

Note 4: i) When n is odd in Pn, the sequence (n−3)(n−1)
4

follows the sequence generated by adding consecutive even
numbers starting from 2.

ii) When n is even in Pn, the sequence (n−2)2

4 follows the
sequence generated by squaring the natural numbers.

Theorem 7: In Pn (n > 2), if E1 = {e}, where e is a
pendant edge, then m(GP

2') = 2n− 3.

Proof: Let P = {E1, E2} and E1 = {e}, where e = uv
be a pendant edge and v be a pendant vertex. Then, u ∈ VE1

and u ∈ VE2
. The edges are added from v to the remaining

vertices in Pn except u and the number of edges in Pn is
n − 1 which remains in k'-complement. Thus, the number
of edges in GP

2' is n− 1 + n− 2 = 2n− 3.

Corollary 7.1: In Pn, if E1 = {e}, where e is a pendant
edge, then GP

2' is a maximal outerplanar graph.

Proof: Let E1 = {e}, where e is a pendant edge in
Pn. From Theorem 7, the edges are added from a pendant
vertex to the remaining vertices in Pn, except to its adjacent
vertex. Then in GP

2', all its vertices lie on the same face and
each face is bounded by a triangle. Hence, GP

2' is a maximal
outerplanar graph.

Note 5: Every maximal outerplanar graph G with n points
has 2n− 3 edges [10].

Note 6: GP
2' is plane triangulation since each face is

triangular.

Example 6: Let P = {E1, E2}, where E1 contains a
pendant edge and E2 contains the remaining edges of P5

as shown in Fig. 8. In 2'-complement, the edges are joined
from the pendant vertex in E1 to all the remaining vertices
in E2 as shown in Fig. 9. The number of edges in GP

2' of
P5 is 2n− 3 = 7. The graph in Fig. 9 can also be drawn as
the graph in Fig. 10 since both are isomorphic. The graph
in Fig. 10 is a maximal outerplanar graph and it shows that
each face is bounded by a triangle (plane triangulation).

Fig. 8. P5
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Fig. 9. GP
2'

Fig. 10. Maximal outerplanar graph

Corollary 7.2: In Pn, if E1 = {e}, where e is a pendant
edge, then m(GP

2'(i)) =
(n−3)(n−2)

2 .

Proof: We know that the number of edges in a complete
graph is n(n−1)

2 . When E1 = {e}, where e is a pendant edge
in Pn, the number of edges in GP

2' is 2n − 3. Hence, the
number of edges in GP

2'(i) is n(n−1)
2 −(2n−3) = n2−5n+6

2 =
(n−3)(n−2)

2 .

Example 7: Consider the partitions of P5 as shown in Fig.
8. In 2'(i)-complement of P5, the edges of P5 are removed
and the edges are added between non-adjacent vertices inside
E2 as shown in Fig. 11. The number of edges in GP

2'(i) of

P5 is (n−3)(n−2)
2 = 3.

Fig. 11. GP
2'(i)

Corollary 7.3: Let n > 3 in Pn. If E1 = {e}, where e

is a pendant edge, then the sequence (n−3)(n−2)
2 of edges in

GP
2'(i) follows the sequence n(n+1)

2 which is the sum of first
n natural numbers.

Proof: Let m = (n−3)(n−2)
2 in GP

2'(i). Since P1 contains
a single point and P2 contains a single edge, it is impossi-
ble to consider the partitions in 2'-complement. Since P3

contains two edges, GP
2'(i) is a null graph.

Put n = n + 3 in (n−3)(n−2)
2 for n > 3 in Pn. Then it

follows the sequence n(n+1)
2 .

F. Construction of k'-s.c. of path Pn

Theorem 8: Let G = Pn be k'-s.c. If Ei is an edge
covering set in P , then Ei will have at least

⌈
n
2

⌉
edges.

Proof: Let G be k'-s.c. and Ei be the smallest edge
covering set in P .
When n is even, β′(Pn) = n

2 and when n is odd, β′(Pn) =
n+1
2 .

Therefore, the size of the smallest edge covering set Ei is⌈
n
2

⌉
.

Corollary 8.1: Let G = Pn be 2'-s.c. and suppose P
contains the smallest edge covering set. Then the bounds
for cardinality of the edge sets are given by,

when n is odd,
n+ 1

2
≤ |E1| ≤ n− 2

2 ≤ |E2| ≤
n− 3

2
,

when n is even,
n

2
≤ |E1| ≤ n− 2

2 ≤ |E2| ≤
n− 2

2
.

Proof: Case 1: Let n be odd.
From Theorem 8, E1 in P has at least n+1

2 edges. Then
the number of edges in E2 is at most m − n+1

2 . In Pn,
m = n− 1.
Thus, m− n+1

2 = n− 1− (n+1
2 ) = n−3

2 .

Case 2: Let n be even.
From Theorem 8, E1 in P has at least n

2 edges. Then the
number of edges in E2 is at most m− n

2 . In Pn, m = n−1.
Thus, m− n

2 = n− 1− n
2 = n−2

2 .

Proposition 6: In Pn, if |E1| = 1 and |E2| = m− 1, then
G is 2'-s.c. only when E1 contains a middle edge.

Proof: Let G be 2'-s.c. and E1 = {e}, where e = uv.
The remaining m − 1 edges are taken in E2. Suppose e
is a pendant edge and v is a pendant vertex lying outside
E2. So, the edges are joined from v to its non-adjacent
vertices in G. Hence, G is not 2'-s.c. which is a contradiction.

Proposition 7: Every GP
k' of Pn contains a cycle except

k'-s.c graphs.

Proof: If G is not k'-s.c., then k'-complement has at
least one edge more than G. Initially, Pn has exactly one
path between each pair of vertices. Thus, when an edge is
joined between non-adjacent vertices in Pn, creates a cycle.

G. k'-s.c. of a unicyclic graph

Theorem 9: Let G be a unicyclic graph having exactly
one cycle and the remaining edges forming a tree structure
extending from the cycle. Then G is k'-s.c. if and only if P
contains an edge covering set of G.

Proof: Given that G contains a pendant vertex, any
edge set Ei in P containing the pendant edge must cover
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all vertices to obtain k'-s.c. of G. This makes Ei an edge
covering set.

The converse follows directly from Theorem 1.

Theorem 10: The minimum possible number of edges in
an edge set to obtain k'-s.c. of a unicyclic graph G is

⌈
n
2

⌉
.

Proof: Let G be k'-s.c. and Ei in P be the smallest edge
covering set. Since a unicyclic graph G with n vertices has
exactly n edges, the edge covering number of G is β′(G) =⌈
n
2

⌉
.

Example 8: Consider the unicyclic graph G as shown in
Fig. 12. Let Ei = {ae, bf, ch, dg} in P . Then Ei is the
smallest edge covering set of G and the cardinality of Ei is
4.

Fig. 12. Unicyclic graph G

H. Cardinality of the edge partition P containing a smallest
edge cover

Theorem 11: If one of the edge sets in P is the smallest
edge covering set, then P can have at most m −

⌈
n
2

⌉
+ 1

edge sets, where n is the order of G and m is the size of G.
Proof: In any graph not having isolated vertices, the sum

of the matching number and the edge covering number equals
the number of vertices in a graph. Therefore, the size of the
smallest edge cover β′(G) = n−|M |, where n is the number
of vertices in a graph and M is a maximum matching. Also,
the size of a maximum matching is less than or equal to
the edge covering number. Therefore, |M | ≤ β′(G). That
implies, β′(G) ≥ n

2 .
Let P = {E1, E2,...,Ek} be a partition of E and Ei

be the smallest edge covering set. Then, |Ei| ≥
⌈
n
2

⌉
and

the remaining edges are taken as singleton sets in P . Then
cardinality of P is at most m−

⌈
n
2

⌉
+ 1.

Corollary 11.1: If Ei in P is a smallest edge covering set
and M is a perfect matching, then |P | = m− n

2 + 1.

Proof: A graph G can contain a perfect matching only
when it has an even number of vertices such that all vertices
of G are matched. Then, |M | = n

2 and |Ei| = n
2 . This

implies, |P | = m− n
2 + 1.

Corollary 11.2: If Ei in P is a smallest edge covering set
and M is a near-perfect matching, then |P | = m−

⌈
n
2

⌉
+1.

Proof: A graph G can contain a near-perfect matching
only when it has an odd number of vertices such that only
one vertex is unmatched. Then, |Ei| =

⌈
n
2

⌉
. This implies,

|P | = m−
⌈
n
2

⌉
+ 1.

III. CONCLUSION

This study introduces novel types of generalized comple-
ments based on the edge set partitions. These new definitions
allow multiple selections of vertices. This unique approach
helps to specifically deal with each vertex and its connec-
tions. The study outlines the properties, theorems and rela-
tionships between the generalized complements concerning
edge partitions, contributing to a deeper understanding of
graph structures. The characterizations of cycle, path and
unicyclic graphs are obtained in this study.

Moreover, k'-complement of a graph, interconnected with
a Fibonacci polynomial and maximal outerplanar graph high-
lights its interplay with fundamental mathematical concepts
and its connection to graph theory. Its ability to bridge
various fields of study not only enriches our understanding
of graph theory but also stimulates innovation and advance-
ments in diverse domains.

Additionally, the comprehensive analysis presented in this
research establishes the groundwork for designing novel
algorithms and techniques for graph manipulation and opti-
mization. Overall, this study provides a foundation for further
research endeavours in this domain.
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