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Abstract—In response to the challenges of data sparsity and
noise interference in multi-modal recommendation systems, this
paper presents a novel multi-modal recommendation model,
AM2HRec, which is based on dual-representation adaptive
noise reduction techniques. The model applies noise reduction
to multi-modal information that is irrelevant to user preferences
by developing an adaptive decision noise reduction module. By
diminishing the interference of extraneous information within
multi-modal messages, the model reduces the propagation of
noise at the nodes of user-item interactions, thereby preventing
the contamination of the final representation. Additionally, the
issue of data sparsity is addressed through the construction
of both heterogeneous and homogeneous graphs for dual
representation learning, which enhances the final user-item
representation. To obtain information regarding each modality,
AM2HRec utilizes adaptive decision-making for multi-modal
fusion by assigning weights to the multi-modal data based
on user preferences, thus facilitating effective integration. The
experimental results demonstrate that AM2HRec outperforms
existing state-of-the-art multi-modal recommendation models.

Index Terms—multi-modal recommendation, dual represen-
tation learning, graph neural network, self-supervised learning

I. INTRODUCTION

PERSONALISED recommendations [1]–[3] are essential
in the context of the information explosion associated

with the Internet and e-commerce. Traditional recommen-
dation systems primarily depend on identification and clas-
sification features to connect users with items. To enhance
the accuracy of these recommendation systems, there is an
increasing prevalence of research focused on utilizing multi-
modal information, including text, visual, and acoustic data
[4], [5]. Multi-modal recommender systems utilize a variety
of information—such as text, images, audio, and video
related to user preferences—to generate recommendations
and enhance user preference modeling, thereby increasing
accuracy. Visual Bayesian Personalized Ranking (VBPR)
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[6] and Cross-modal Knowledge Embedding (CKE) [7]
utilize multi-modal information as supplementary data to
enhance recommendation performance. Furthermore, many
traditional recommendation systems have begun to incor-
porate graph convolution networks (GCN) to capture high-
order connections and improve preference features [8]–[10].
The Multi-Modal Graph Convolutional Network (MMGCN)
learns modality-specific user preferences by constructing a
user-item interaction graph and employing the message pass-
ing mechanism inherent in graph convolution networks to
deliver more accurate recommendations. Based on MMGCN,
GRCN uses multi-modal features to refine the user-item
graph and prune false positive interactions. These GCN-
based methods have achieved significant success and further
performance improvements. To obtain better recommenda-
tion results, researchers utilize auxiliary graph structures to
capture relationships between users and items. For instance,
DualGNN [11] smooths the preferences of users and their
neighbors through Graph Neural Networks (GNN) [12]–[14]
and constructs a relationship graph among users to learn
their multi-modal preferences. LATTICE [15] and FREE-
DOM [16] introduce item-item graphs to extract potential
characteristics of items, integrate project relationships into
representation learning, and improve project representation.
Additionally, there is a growing trend to combine self-
supervised tasks with multi-modal recommendation systems
[17]–[20]. MMSSL [18] has developed a modality-aware
interactive structure learning paradigm that enhances data
through adversarial perturbations.

Current research in multi-modal recommendation pri-
marily emphasizes fusion techniques, frequently neglecting
the challenges associated with raw feature noise and data
sparsity. This paper presents the AM2HRec model, which
addresses noise interference through adaptive decision noise
reduction while simultaneously enhancing user and item
representations via a dual representation learning mechanism.
Experiments conducted on three subsets of the Amazon
Review Dataset illustrate the effectiveness of the proposed
model.

II. RELATED PRINCIPLES

A. Multimedia Recommendation

Multi-modal recommender systems derive information
representations of users and items by integrating multi-modal
features. As illustrated in Fig. 1, the workflow of the system
includes modal feature extraction, the selection of a fusion
method (Early, Intermediate, or Late fusion) for multi-modal
integration [21], and subsequently employing the model to
generate accurate recommendations.
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Fig. 1. Multi-modal Recommended Structure

Feature extraction aims to transform raw data into repre-
sentative and interpretable modal features, which are pre-
sented as low-dimensional, easily comprehensible embed-
dings. The methodology for extracting visual and textual
features is illustrated in Fig. 1 a).

B. User-Item Interaction Grath
The user-item interaction history graph effectively captures

higher-order features of user preferences and interests by rep-
resenting users and items as nodes, with interaction behaviors
denoted as edges [22], [23].

The initial ID embeddings for the item are denoted as
e0(u,id) ∈ Rd and e0(i,id) ∈ Rd, where d represents the
dimensionality of the embeddings.

Firstly, we construct the user-item interaction matrix R ∈
{0, 1}U×I , where U and I denote the number of users and
items, respectively. The matrix is defined as follows:

R =

{
1, if user u interacted with item i

0, otherwise
(1)

The user-item interaction matrix R can be represented as a
sparse behavior graph G = (V,E), where V = U∪I denotes
the set of nodes and E = {(u, i) | R(u,i) = 1} represents
the set of edges.

Subsequently, based on the user-item interaction matrix R,
we construct the adjacency matrix A. The adjacency matrix
is defined as follows:

A =

[
0 R
RT 0

]
(2)

Finally, we normalize the adjacency matrix A to obtain the
Laplacian matrix Â of the user-item graph, which is defined
by the following formula:

Â = D− 1
2AD− 1

2 (3)

where D denotes the diagonal degree matrix.

C. Multi-modal Feature Fusion

Multi-modal fusion enhances task performance by inte-
grating information from diverse modalities. This process is
classified into three categories: early, intermediate, and late
fusion, as illustrated in Fig. 1. Early fusion combines features
prior to data input; however, this approach may result in the
loss of interaction information. Intermediate fusion integrates
features after extraction, preserving the original information
while requiring the development of appropriate strategies
for combining multi-modal features. In contrast, late fusion
makes final decisions based on the predictions from each
modality, thereby facilitating the learning of complemen-
tary information. Techniques for multi-modal fusion include
element-wise summation, attention-based approaches, and
concatenation. Attention-based methods assign weights to
different modalities to capture their significance, as repre-
sented in the following formula.

u =
∑

m∈{v,a,t}

αmum (4)

In this paper, the model extracts shared features from
each modality while isolating exclusive features through an
attention mechanism. Furthermore, the model employs adap-
tive decision-making to assign weights, effectively merging
shared and exclusive features to optimize feature represen-
tations. Experimental results demonstrate that this approach
surpasses conventional multi-modal fusion techniques.

D. Behavior-aware Fusion

Behavioral perceptual fusion [24] aims to accurately cap-
ture the characteristics of items across multiple modalities.
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By learning both modality-shared and modality-exclusive
features. We can more effectively integrate multi-modal
information, which enhances recommendation performance.

Specifically, the modality preference Pm is initially de-
rived from user behavior features as follows:

Pm = σ(W1Ē(u,i) + b1) (5)

where W1 ∈ Rd×d and b1 ∈ Rd are learnable parameters, σ
denotes the sigmoid nonlinearity that facilitates the learning
of a nonlinear gate to model user modality features. Ēu,i

represents the aggregated high-order neighbor information
as detailed in the method.

All modalities encompass both shared and exclusive fea-
tures. Shared features are extracted from modalities through
the attention mechanism [25], which calculates the modality
attention weights for the final modal features Êm of users
and items as detailed in the method.

αm = softmax(qT1 tanh(W2Êm + b2)) (6)

where αm denotes the attention weight for modality m, q1 ∈
Rd is the attention vector, W2 ∈ Rd×d is the weight matrix,
and b2 ∈ Rd is the bias vector.

By computing attention weights for each modal feature
and applying these weights, the shared modal features Es

are extracted through a weighted summation as follows:

Es =
∑
m∈M

αmÊm (7)

where Es represents the shared features across modalities,
while M is the set of modalities.

By subtracting the shared features Es from the original
features, we obtain the exclusive modality features E′

m for
each modality as follows:

Ém = Êm − Es (8)

III. METHOD

The multi-modal recommendation model presented in
this paper is depicted in Fig. 2. This model consists of
three key components: adaptive decision noise reduction,
bi-representational learning, and multi-modal fusion. It ef-
fectively manages the multi-modal information of projects
by employing adaptive decision noise reduction to minimize
noise interference. Bi-representational learning is achieved
through the construction of heterogeneous and homogeneous
graphs, which enhances the modality representations of both
users and items. Additionally, adaptive fusion techniques are
employed to integrate shared and exclusive modal features
derived from behavioral sensing, thereby facilitating effective
multi-modal fusion and improving the modal features of
users and items for a more accurate modeling of user
preferences.

A. Problem Definition
Let U = {u} denote the user set and I = {i} represent

the item set. The embedding of user and item input IDs is
denoted as E ∈ Rd×(|U ||I|), where d signifies the embedding
dimension. The modal feature representation of each item
is represented as Em ∈ Rdm×|I|, where dm represents the
feature dimension and m ∈ M denotes the modal feature.
The set of modalities is defined as M = {v, t}, with v
representing the visual modality and t representing the text
modality.

B. Adaptive Decision-making for Noise Reduction

Research on multi-modal recommender systems has
demonstrated that modal noise issues, such as irrelevant text
or distracting background images, can significantly diminish
the accuracy of recommendation results. In response to this
challenge, this paper proposes a noise reduction module that
employs an adaptive decision-making learning mechanism.
Utilizing a neural network framework. This module regulates
the information flow by learning the weight distribution
among modalities and generating corresponding gating sig-
nals, with the aim of enhancing the system’s noise filtering
capabilities. Specifically, this method assesses the importance
of each modality through two consecutive linear transforma-
tion layers and generates gating parameters to control the
transfer of information accordingly, thereby achieving effec-
tive noise suppression at the feature level. This strategy is
anticipated to improve both the quality of recommendations
and the stability of multimodal recommendation systems in
the presence of modal noise.

The original features are first transformed into higher-order
features. Utilizing a trainable weight matrix w3, relevant
information is extracted from the original features to relevant
information more compact and representative higher-order
features Ĩm as follows:

Ĩm = W3Im + b3 (9)

where W3 ∈ Rd×dm and b3 ∈ Rd denote the learnable weight
matrix and bias vector, respectively.

Utilizing adaptive decision-making learning, the user be-
havioral feature ēu is input into the first fully connected
layer of the adaptive decision-making process. Subsequently,
the ReLU activation function is then applied to obtain a
non-linear, sparse, and feature-selective representation h as
follows:

h = ReLU(W4ēu + b4) (10)

where W4 ∈ Rdn×dm and b4 ∈ Rdn denote the learnable
weight matrix and bias vector, respectively. Additionally, dn
represents the size of the hidden layer.

The learned feature representation h is input into the
second fully connected layer, where the sigmoid activation
function is applied to obtain the parameter gate g as follows:

gate = σ(W5h+ b5) (11)

where W5 ∈ R1×dn and b5 ∈ R denote the learnable
weight matrix and bias vector, respectively. Additionally, dn
represents the size of the hidden layer.

Utilizing the parameter gate gate learned from adaptive
decision-making based on user behavioral characteristics,
modality features are weighted to derive the denoised modal-
ity feature representation Ẽm as follows:

Īm = Im ⊙ gate (12)

where ⊙ denotes element-wise multiplication, employed to
multiply each modal feature by its corresponding parameter.
The weighted modal features Īm represent aspects pertinent
to the user’s preferences, while unweighted or low-weighted
features signify noise that is unrelated to the user.
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Fig. 2. A: The overall Framework B: Homogeneous Graph C: Heterogeneous Graph

C. Dual Representation Learning (DLL)

Learning the representations of users and items is crucial
for the effectiveness of recommender systems. According
to[15], the integration of item-item homogeneous graphs with
user-item heterogeneous graphs can significantly enhance the
performance of multi-modal recommendations.

1) Heterogeneous Graph: We employ graph convolution
operations to propagate the embeddings of user and item
IDs through the historical interaction graphs. The Laplacian
matrix Â of the user-item historical interaction graph is
computed according to equations (3). The output of the
l-th graph convolutional layer, denoted as El

U∪I , can be
expressed as follows:

El
(U∪I) = ReLU(ÂE

(l−1)
(U∪I)w

l + bl) (13)

where El
U∪I denotes the set of user and item embeddings

enhanced by the l-th convolutional layer. E0
U∪I represents the

initial ID embedding for both users and items, while W l and
bl denote the trainable weight matrix and bias term associated
with the l-th layer, respectively. The ReLU function serves
as a non-linear activation mechanism.

Multi-layer graph convolution integrates higher-order
neighborhood information at each layer. The final represen-
tations of user u and item i are obtained by aggregating
information from all layers as follows:

Ē(u,i) =
1

L+ 1

L∑
l=0

Ēl
(u,i) (14)

where L denotes the number of layers in the graph con-
volutional network, and Ē(u,i) represents the high-order
neighborhood representation of user u and item i.

2) Homogeneous Graph: Based on the features of item
modality, the relationships between items are evaluated using
cosine similarity, which leads to the creation of an item-item
similarity matrix S:

Sij =
fTi · fj
∥fi∥∥fj∥

(15)

where fi and fj denote the feature vectors of items i and j,
respectively, and Sij signifies the similarity between fi and
fj .

Graph convolution operations are utilized to extract shared
features among items. The item-item matrix S̃ij is sparsified
using the k-nearest neighbors (KNN) method, retaining only
the top-k most similar items. The matrix S̃ij is presented
below:

S̃ij =

{
Sij , if j ∈ KNNk(i)

0, otherwise
(16)

where KNNk(i) represents the set of k nearest neighbors
associated with item i.

To address the issue of gradient explosion, the item-item
similarity matrix S̃ij is normalized in the following manner:

S̃ = D−1/2
m SijD

−1/2
m (17)

where, Dm denotes the diagonal degree matrix.
We perform a graph convolution operation on the normal-

ized item-item similarity matrix Ŝij to propagate the modal
features of all items Îm:

Îm = S̃Īm (18)

where Īm represents the modal signature of the item fol-
lowing noise reduction, while Îm denotes the updated modal
signature of the item.
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Develop a user model feature representation by aggregat-
ing multi-modal features generated from user interactions
with items. This representation can elucidate the common
characteristics shared between users and the items they
engage with, thereby effectively capturing the personalized
preferences of users:

ûm =
∑
i∈Nu

1√
(|Nu||Ni|)

îm (19)

where ûm represents the modal feature of user u, while îm,
derived from equations (18), denotes the modal feature of
item i. Define Nu as the set of all item nodes interacted by
user u, and Ni as the set of neighboring item nodes associ-
ated with item i. The quantities |Nu| and |Ni| respectively
indicate the number of item nodes that have been interacted
with by user u and the number of neighboring item nodes
related to item i.

By concatenating the user modal feature Ûm with the item
modal feature Îm, we obtain the final modal feature Êm

for users and items. This resultant feature is represented in
Rd×(|U |+|I|).

D. Multi-modal Fusion

The shared modal features Es and the exclusive modal
features Ēm are derived from equations (7) and (8) within the
framework of behavioral perception fusion. The model pre-
sented in this paper employs an applicability fusion method
to adaptively adjust the weights of various modal features
based on the modal preferences Pm, which are extracted from
user behavioral characteristics. The fused features are then
integrated with the common modal features Ēm to generate
the final feature representation E(U∪I),m:

E(U∪I),m = Es +
1

|M |
∑
m∈M

Ém ⊙ Pm (20)

where E(U∪I),m denotes the fused modal feature represen-
tation for users and items, and ⊙ signifies element-wise
multiplication.

To facilitate the exploration of the relationship be-
tween behavioral features and multi-modal information, self-
supervised auxiliary tasks have been developed. The objec-
tive is to maximize the mutual information between behav-
ioral features and the fused multi-modal features. Mutual
Information (MI) quantifies the interdependence between
two random variables and measures the extent of shared
information across different features. The loss function is
defined as follows:

LC =
∑
u1∈U

(
− log

(
exp

( eu1,mul·ēu1

τ

)∑
u2∈U exp

( eu2,mul·ēu2

τ

)))

+
∑
i1∈I

(
− log

(
exp

( ei1,mul·ēi
τ

)∑
i2∈I exp

( ei2,mul·ēi
τ

))) (21)

where ēu and ēi denote the behavioral features of user
u and item i, respectively. The terms e(u,mul) and e(i,mul)
represent the multi-modal features that are integrated from
the modalities associated with user u and item i, respectively.
The parameter τ denotes the temperature of the softmax
function, controls the degree of smoothing in the distribution.

E. Dual Representation Integration

User and item representations derived from heterogeneous
(user interaction) and homogeneous (item-item) graphs are
integrated to from a comprehensive representation that en-
capsulates both user interactions and item semantics. The
final user and item representations are generated by aggre-
gating the behavioral and multi-modal features, as detailed
in the following formula:

eu = ûm + eu,mul (22)

ei = îm + ei,mul (23)

where eu and ei denote the final representation of user u and
item i, respectively. The symbols ûm and îm represent the
behavioral characteristics of the user and the item, respec-
tively. e(u,mul) and e(i,mul) refer to the modal characteristics
of the user and the item, which are derived from behavioral
perception and multi-modal fusion.

F. Predictor and Optimization

During the prediction phase, the preference score of user
u for item i is calculated by taking the inner product of their
final feature representations:

ŷui = (eu)
T ei (24)

The use of the Bayesian Personalized Ranking (BPR)
loss function promotes the model’s capability to prioritize
items that user have previously clicked on, as opposed to
those they have not interacted with. To facilitate this, we
construct a triplet set R, where each triplet (u, i, i′) satisfies
the conditions yui = 1 and yui′ = 0. The BPR loss is defined
as follows:

LBPR =
∑

(u,i,i′)∈R

(− log σ(ŷui − ŷui′)) (25)

where ŷui′ represents the user rating for the negative sample
i′. The function σ(·) denotes the logistic sigmoid function,
which is defined as σ(x) = 1

1+e−x .
By integrating the loss from the self-supervised auxiliary

task, the Bayesian Personalized Ranking (BPR) loss, and a
regularization term, we derive the final loss function:

L = LBPR + λCLC + λE∥E∥2 (26)

where E denotes the set of model parameters, while λC and
λE are hyperparameters that control the impact of the self-
supervised task and L2 regularization, respectively.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the performance of the proposed model, AM2HRes,
across three public datasets.

A. Experimental Settings

1) Dataset: The experiments utilize three datasets—baby,
sports, and clothing—from the Amazon Review Dataset.
This dataset encompasses product descriptions and image
information, which serve as textual and visual features. To
ensure robust analysis, five core users and projects were
retained, each exhibiting a minimum of five interactions, a

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 382-393

 
______________________________________________________________________________________ 



TABLE II
THE GENERAL PERFORMANCE OF VARIOUS RECOMMENDATION APPROACHES REGARDING RECALL AND NDCG

Datasets Metrics BPR LightGCN VBPR MMGCN GRCN MMSSL MICRO FREEDOM MGCN Ours

baby

Recall@10 0.0357 0.0479 0.0423 0.0421 0.0532 0.0613 0.0584 0.0627 0.0620 0.0628
Recall@20 0.0575 0.0754 0.0663 0.0660 0.0824 0.0971 0.0929 0.0992 0.0964 0.0980
NDCG@10 0.0192 0.0257 0.0223 0.0220 0.0282 0.0326 0.0318 0.0330 0.0339 0.0339
NDCG@20 0.0249 0.0328 0.0284 0.0282 0.0358 0.0420 0.0407 0.0424 0.0427 0.0431

sports

Recall@10 0.0432 0.0569 0.0558 0.0401 0.0599 0.0673 0.0679 0.0717 0.0729 0.0754
Recall@20 0.0653 0.0864 0.0856 0.0636 0.0919 0.1013 0.1050 0.1089 0.1106 0.1133
NDCG@10 0.0241 0.0311 0.0307 0.0209 0.0330 0.0380 0.0367 0.0385 0.0394 0.0410
NDCG@20 0.0298 0.0387 0.0384 0.0270 0.0413 0.0474 0.0463 0.0481 0.0496 0.0508

clothing

Recall@10 0.0206 0.0361 0.0281 0.0227 0.0421 0.0531 0.0521 0.0629 0.0641 0.0645
Recall@20 0.0303 0.0544 0.0544 0.0361 0.0657 0.0797 0.0772 0.0941 0.0945 0.0958
NDCG@10 0.0114 0.0197 0.0197 0.0120 0.0224 0.0291 0.0283 0.0341 0.0347 0.0354
NDCG@20 0.0138 0.0243 0.0243 0.0154 0.0284 0.0359 0.0347 0.0420 0.0428 0.0434

methodology commonly employed in existing studies. For
the text modality, text embeddings with a dimensionality
of 384 were extracted by integrating the title, description,
category, and brand of each item using a sentence trans-
former. Visual features, with a dimensionality of 4096, were
derived from a pre-trained convolutional neural network.
These features have been documented in the literature [26].
Table 1 provides a summary of the dataset statistics, where
data sparsity is calculated as the number of interactions
divided by the total number of user-item pairs.

TABLE I
STATISTICS OF THE EXPERIMENTAL DATA SET

Dataset Users Items Interaction Sparsity

baby 19,445 7,050 160,792 99.88%
sports 35,598 18,357 296,337 99.95%

clothing 39,387 23,033 278,677 99.97%

2) Baseline model: To evaluate the performance of the
proposed model, we conducted a comprehensive analysis.
The results were compared with those of several representa-
tive models, which can be classified into two primary cate-
gories: traditional recommendation methods and multimedia
recommendation methods.

General model: BPR [27] is a classic collaborative filtering
method that employs a matrix factorization framework to
learn representations of users and items. LightGCN [28]: As
the most widely adopted GCN-based collaborative filtering
method, simplifies the design of GCN while enhancing its
applicability for recommendation tasks.

Multimedia Models: MMGCN [8] constructs modality-
specific graphs to learn distinct modal features, integrating
these features to obtain a unified representation of users or
items for prediction. GRCN [9] enhances previous GCN-
based models by refining the user-item interaction graph; it
leverages multi-modal features to identify and mitigate false
positive interactions. MMSSL [18] employs self-supervised
tasks and adversarial networks to capture information-guided
user preferences in sparse interaction scenarios, thereby im-
proving the effectiveness of recommendations. MICRO [29],
an extension of the state-of-the-art LATTICE [15], enhances
item representations by learning a item-item graph from

multi-modal item features, thus exploring potential structures
among items. FREEDOM [16] introduces a degree-sensitive
edge pruning method that denoises the user-item graph by
removing noise from unintended interactions. MGCN [24]
designs a behavior perceptron to capture user behavioral
characteristics, thereby enhancing the efficacy of modality
fusion.

3) Evaluation Indicators: For a fair comparison, we fol-
low the same evaluation setting of [15] with a random
data splitting 8:1:1 on the interaction history of each user
for training, validation, and testing. Besides, we follow the
all-ranking protocol to evaluate the top-K recommendation
performance and report the average metrics for all users in
the test set: Recall@K and NDCG@K.

4) Implementation Details: In this experiment, the model
was implemented using PyTorch version 1.11.0 and Python
version 3.8.0. The Xavier initialization method was employed
for parameter initialization, and the Adam optimizer was uti-
lized for optimization. The embedding dimension was set to
64. For hyperparameter tuning, a grid search was conducted
to identify the optimal learning rate and regularization loss
weights from the set 0.0001, 0.001, 0.01, 0.1, with an initial
learning rate established at 0.001. The sparsity levels for
KNN neighbor counts ranged from 5 to 30. The coefficients
for auxiliary loss in the self-supervised task varied between
0.001 and 0.1. An early stopping strategy was implemented,
with a maximum epoch limit of 1,000; thus, training ceases
when Recall@20 on the validation set does not improve over
a span of 20 consecutive epochs.

B. Performance Comparison

Table 2 shows the performance comparison of the pro-
posed AM2HRec and other baseline methods on three
datasets. By analyzing the data in the table, we made several
key observations:

While AM2HRec showed sub-optimal performance for the
Recall@20 metric on the baby dataset, it outperformed all
baseline models across all evaluation metrics—specifically
Recall@10, Recall@20, NDCG@10, and NDCG@20—on
both the sports and clothing datasets. Notably, AM2HRec
achieved a significant performance improvement of 4.06%
compared to the best baseline model in the sports dataset.
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TABLE III
COMPARISON OF DATA FOR ABLATION STUDY OF KEY COMPONENTS IN AM2HREC

Variants AM2HRec(−A) AM2HRec(−U) AM2HRec(−I) AM2HRec(−2H) AM2HRec(−F ) AM2HRec

Metrics R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

Dataset
baby 0.0963 0.0428 0.0650 0.0285 0.0689 0.0298 0.0427 0.0186 0.0917 0.0410 0.0980 0.0431
sports 0.1104 0.0497 0.0911 0.0406 0.0837 0.0378 0.0655 0.0298 0.1119 0.0498 0.1133 0.0508

clothing 0.0935 0.0422 0.0760 0.0346 0.0465 0.0215 0.0282 0.0128 0.0884 0.0401 0.0958 0.0434

Fig. 3. Ablation Study of Key Components in AM2HRec Under the Recall@20 Metric

These results strongly support the effectiveness of the
AM2HRec model, especially within the context of multi-
modal recommendation tasks.

The enhanced performance of AM2HRec can be primarily
attributed to two key innovations: adaptive decision noise
reduction and dual representation learning. Unlike methods
that simply fuse multi-modal information, AM2HRec first
employs an adaptive decision noise reduction technique to
effectively mitigate noise from multi-modal inputs, thereby
minimizing modal interference. Furthermore, by integrating
dual representation learning through both heterogeneous and
homogeneous graphs, AM2HRec improves the representa-
tions of users and items, resulting in a significant enhance-
ment in overall model performance.

Models such as BPR and LightGCN can significantly
benefit from the integration of multi-modal information. For

instance, VBPR achieves an average performance improve-
ment of 27.63% over traditional BPR by incorporating visual
features alongside ID embeddings. However, MMGCN often
underperforms compared to LightGCN, primarily due to the
introduction of noise during message propagation in Graph
Convolutional Networks (GCNs), which can compromise the
final representations of users and items. While models like
FREEDOM and MMSSL attempt to address noise through
structural noise reduction and self-supervised learning, they
do not fully resolve this issue. In contrast, the adaptive
decision-making approach proposed in this paper effectively
minimizes multi-modal noise.

In this study, GRCN enhances user preference extraction
by refining user-item graphs and utilizing graph convolu-
tional layers. In contrast, MICRO constructs auxiliary item-
item graphs to enhance item information. However, both
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Fig. 4. Ablation Study of Key Components in AM2HRec Under the NDCG@20 Metric

methods are limited by single-representation learning, which
constrains their capacity to capture a more comprehensive
feature representation. This paper proposes a novel approach
that optimizes user and item representations through adaptive
noise reduction and bi-graph representation learning. Per-
formance comparisons demonstrate the effectiveness of the
proposed method.

C. Ablation Study

In this section, we conduct exhaustive experiments to eval-
uate the effectiveness of different components of AM2HRec.

1) Effect of Different Components of the Model: To
quantitatively evaluate the contribution of each compo-
nent in the AM2HRec model, this study designed a se-
ries of model variants, each omitting a specific module.
Specifically:AM2HRec(−A) removes the adaptive decision-
making denoising module, allowing modal features without
denoising to be directly input into the model.AM2HRec(−U)

eliminates the user-item interaction graph, propagating
modal features solely on the item-item interaction graph.
AM2HRec(−I) excludes the item-item interaction graph,
limiting the propagation of modal features to the user-item
interaction graph. AM2HRec(−2H) omits the dual represen-
tation learning module, using the denoised modal features
directly for modal fusion. Finally, AM2HRec(−F ) removes

the adaptive modal fusion module, employing a simple modal
splicing method to integrate modal information. By compar-
ing the performance differences between these variants and
the original AM2HRec model, this study aims to provide
an in-depth analysis of the specific impact of each module
on the model’s overall performance, thereby offering guiding
insights for model optimization.

Based on the data presented in Table 3 and the bar charts
illustrated in Figures 3 and 4, we can conduct a compre-
hensive analysis comparing the performance of the three
datasets. The experimental findings indicate a significant
improvement in performance when employing dual represen-
tation learning compared to single representation learning.
Concurrently learning representations from both the user-
item heterogeneous graph and the item-item homogeneous
graph facilitates a more holistic understanding of user-item
relationships. This methodology enables the extraction of
richer features, ultimately leading to more accurate recom-
mendations.

Experimental data for the AM2HRec(−F ) variant indicate
that the dynamic fusion strategy, which adjusts modal feature
weights based on user behavior, outperforms the straightfor-
ward method of merging modal features. This validates the
effectiveness of the adaptive fusion approach in integrating
multi-modal information and enhancing the performance of
recommender system.
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(a) baby-Recall@20 (b) baby-NDCG@20

(c) sports-Recall@20 (d) sports-NDCG@20

(e) clothing-Recall@20 (f) clothing-NDCG@20

Fig. 5. Performance of AM2HRec at Different Learning Rates and Regularization Loss Weight Values. Darker Colors
Indicate Higher Performance Metrics

In the AM2HRec(−A) variant, the use of raw features with-
out adaptive decision denoising leads to a decline in model
performance. This suggests that noise in the raw modal infor-
mation interferes with user-item representation, thereby re-

ducing the model’s effectiveness. Adaptive decision-making
noise reduction techniques process raw modal information
to effectively eliminate noise and enhance overall model
performance.
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(a) baby-Recall@k (b) baby-NDCG@k

(c) sports-Recall@k (d) sports-NDCG@k

(e) clothing-Recall@k (f) clothing-NDCG@k

Fig. 6. Comparative Analysis of Various KNN-k Values Based on the Recall@K Metric

D. Hyper-parameter Sensitivity Study

1) The Pair of Hyper-parameters Learning Rate and
Regularization Loss Weight: To conduct a comprehensive
exploration of the hyperparameter settings for the AM2HRec

model, we performed sensitivity analyses on the evaluation
metrics Recall@20 and NDCG@20. We varied the learning
rate and regularization loss weight values within the ranges
of 0.0001, 0.001, 0.01, 0.1. Fig. 5 illustrates the performance
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(a) λC -baby (b) λC -sports

(c) λC -clothing

Fig. 7. Weights of Self-supervised Task λC

of the AM2HRec model across the baby, sports, and clothing
datasets, showcasing various combinations of learning rates
and regularization weights.

The experimental results demonstrate that, for the baby
dataset, the model attains optimal performance with a learn-
ing rate of 0.01 and a regularization loss weight of 1e-4.
Additionally, when the learning rate is maintained within
the range of 1e-3, 1e-2, the model exhibits stable perfor-
mance, further validating the effectiveness and stability of the
AM2HRec model. These findings provide clear guidance for
hyperparameter selection aimed at optimizing the AM2HRec
model.

2) Effects of the Number of Item Neighbor K: In con-
structing the item-item homogeneity graph, we investigated
the impact of varying the number of item neighbors, denoted
as k, on model performance. The objective is to minimize
interference from unrelated items by selecting the k most
similar items. We employed Recall@20 and NDCG@20 as
evaluation metrics across different values of k. Fig. 6 (g)-
(l) illustrates the variations in performance metrics across
three distinct datasets as a function of different k values. A
comprehensive analysis of these experimental results reveals

that the optimal value of k is dependent on the dataset.
Specifically, the model achieves peak performance on the
baby dataset when k is set to 20. In contrast, optimal perfor-
mance is observed with k values of 10 and 15 for the sports
and clothing datasets, respectively. This finding highlights
the importance of adjusting the number of item neighbors
based on the characteristics of each dataset to maximize rec-
ommendation performance. Through meticulous parameter
tuning, we can construct more effective homogeneous graphs,
thereby enhancing the accuracy and relevance of multi-modal
recommendations.

3) Effects of the Weight of Self-Supervised Task λC: We
explore the impact of the self-supervised task weight λC on
model performance. Analyzing three different datasets, we
obtained consistent findings, which are presented in Fig. 7
We have observed that combining the optimization of self-
supervised auxiliary tasks with core recommendation tasks
can improve the overall performance of the model.

Specifically, we determined that the optimal value of λC

is approximately 0.01, and when λC exceeds this threshold,
the performance of the model is significantly reduced. This
implies that a moderate λC helps to enhance the learning
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effect of the main recommendation task. On the contrary,
if λC is set too high, the model may place too much
emphasis on auxiliary tasks, thereby affecting the guidance
of self-supervised tasks and resulting in compromised model
performance.

Therefore, choosing an appropriate weight for the self-
supervised loss term is critical to ensure the effectiveness of
the model’s recommendation capabilities.

V. CONCLUSION

In this paper, we propose the AM2HRec model, a
multi-modal recommendation framework that utilizes dual-
representation adaptive denoising. Initially, the framework
preprocesses the original multi-modal data features through
an adaptive decision-making denoising module, which al-
leviates the detrimental effects of noise features on infor-
mation nodes. Subsequently, the model engages in dual
representation learning on heterogeneous and isomorphic
graphs to capture high-order modal features and the intricate
semantic relationships between items, thereby improving
the representation of both users and items. Furthermore,
the AM2HRec model employs an adaptive decision-making
method to integrate multi-modal data and optimize the modal
fusion process. Experimental results across three datasets
demonstrate that the AM2HRec model significantly enhances
the performance of recommendation systems. Looking ahead,
we intend to incorporate self-supervised tasks and large
language models to further improve the capabilities of multi-
modal data processing, thereby addressing issues related to
data sparsity and cold start problems.
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