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Abstract—Due to the continued exploitation of oil fields,
oil is getting difficult to extract from its source due to the
inefficiency in the available methods that are currently being
used to extract it. This study is aimed at solving the issue
through enabling the oil that remains unexploited by the
existing methods to be exploited. The novelty of this study is
the consideration of microorganisms, hybrid nanoparticles, non-
Newtonian fluids, a power law model and inclined magnetic
fields. The flow is governed by nonlinear partial differential
equations. That are transformed to ordinary differential equa-
tions by using similarity transformation and solved numerically
via the spectral relaxation method using Chebyshev–Gauss–
Lobatto grid points, then implemented in Matlab to obtain
the profiles for the various flow variables: velocity, tempera-
ture, concentration and microorganism density profiles. The
results indicate that the flow parameters significantly influence
the flow behavior. The velocity of the fluid increases with
Reynolds number, Hartman number, Grashof number and
Darcy’s parameter. The temperature of the fluid increases
with Reynolds number, Hartman number, Eckert number,
Unsteadiness parameter, Grashof number, Darcy’s parameter,
Joule heating parameter and decreases with chemical reaction
and Radiaton parameters. Nanoparticle concentration increases
with Reynolds number, Hartman number, Microbial Grashof
number, Joule heating parameter, Prandtl number and Schmidt
number, while it decreases with chemical reaction parameter
and thermophoresis. Microbial density increases with Reynolds
number and Hartmann number and decreases with Lewis
and Peclet number. These insights offer valuable guidance to
improve oil recovery by indicating clearly the parameters that
are essential in facilitating greater oil recovery.

Index Terms—multiphase, hybrid, gyro-tactic, numerical so-
lution, nanofluid, spectral methods

NOMENCLATURES

V- Velocity of the fluid, meters per second (m/s)
t- Time, seconds (s)
P- Pressure, Newtons per square meter (N/m²)
Q- Planar volumetric flow rate, square meters per sec-
ond (m²/s)
K- Constant of thermophoretic diffusivity
Cp- Specific heat capacity, Joules per kilogram per
Kelvin (J · kg−1 · K−1)
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T- Temperature of the fluid, Kelvin (K)
C- Concentration of the fluid, kilograms per cubic meter
(kg/m³)
D- Mass diffusivity, square meters per second (m²/s)
x, y, z- Cartesian coordinate system
r, θ, z- Cylindrical coordinate system
Dnf - Mass diffusivity of nanoparticles, square meters
per second (m²/s)
Snf - Concentration source term of nanoparticles
Dm- Mass diffusivity of microorganisms, square meters
per second (m²/s)
Sm- Concentration source term of microorganisms
T∞- Ambient temperature of the fluid, Kelvin (K)
C∞- Ambient concentration of the fluid, kilograms per
cubic meter (kg/m³)

ABBREVIATIONS

CO2- Carbon dioxide
MEOR- Microbial-Enhanced Oil Recovery
SRM- Spectral relaxation method
MATLAB- Matrix Laboratory
ODEs- Ordinary differential equations
PDEs- Partial differential equations

I. INTRODUCTION

AS the world population is growing, available oil re-
sources are becoming scarce; thus, the need to provide

clean energy without affecting the environment is inevitable.
The primary energy resource in the current decade is still
hydrocarbons. Renewable energy sources are yet to be devel-
oped and therefore cannot meet energy requirements, as they
require a great deal of research and development in terms of
efficiency and cost to make them viable replacements for
hydrocarbons.

Hydrocarbons remain the primary energy source due to un-
derdeveloped renewable alternatives. However, global energy
demand rises amidst unpredictable oil prices. To sustainably
meet this demand, there is a growing focus on improving oil
recovery from mature fields using a cost-effective and eco-
friendly approach. Even a small increase in the recovery per-
centage could produce significant boosts in oil supply, given
the challenge of extracting residues from existing reservoirs
amid the dwindling discoveries of new fields (Nikolova et
al.) [1].

As oil reserves diminish, extraction methods become more
costly and environmentally risky as a result of chemical us-
age. Traditional extraction techniques, primarily primary and
secondary methods, yield only a fraction of the available oil.
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To enhance extraction, tertiary methods, such as enhanced oil
recovery, are employed. Primary extraction is based on the
rise or pump jacks of natural hydrocarbons, but recovers only
a small portion (around 5–15%) of accessible oil, leaving
significant reserves untapped.

Gas injection, while effective, requires costly compressors
to convert gas to liquid. The use of carbon (IV) oxide
CO2 causes corrosion in pipes, poses long-term economic
challenges. Enhanced oil recovery (EOR) methods offer the
most efficient recovery, targeting changes in oil properties to
enhance extraction. EOR encompasses: thermal recovery, that
is, using heat to reduce viscosity; gas injection, using CO2 to
reduce viscosity; and chemical injection, aimed at reducing
surface tension, which goes a long way in enhancing water
flooding efficiency.

Microbial-Enhanced Oil Recovery (MEOR) involves in-
jecting live microorganisms and nutrients into wells to stim-
ulate oil production, with microbial growth influenced by
factors like pressure, porosity, pH, and salinity. MEOR can
yield up to 50% of residual oil, surpassing other methods.

The study aims at improving oil recovery using thermal
energy, magnetic fields, and gyro-tactic microorganisms,
investigating their impact on density, viscosity, phase behav-
ior, and hybrid nanoparticle behavior to improve recovery
processes.

Ahmad et al. [2] carried out a study on nanofluid flow com-
prising gyro-tactic microorganisms past a porous horizontal
surface. The dispersal of microorganisms was observed to
improve and reinforce thermal efficiency of energy systems.
The porous media improved thermal efficiency significantly.
They employed similarity transformation to transform the
PDEs into ODEs and thereby applied the Successive Over
Relaxation method. The resulting equations were imple-
mented in Matlab. The results showed that bioconvection
peclet number and microorganisms concentration enhances
the density of motile microorganisms.

Alabdulhadi et al. [3] carried out a study on hybrid
nanofluid flow and heat transfer through an inclined sur-
face. The governing equations were solved using MATLAB
Bvp4c. The results from this study showed that an increase in
magnetic parameter substantially improves the heat transfer
and also the skin friction coefficient. It was noted that
increasing nanoparticle volume fraction for gold improves
heat transfer and diminishes the mass transfer.

Armstrong et al. [4] performed an experiment to study
the effects of pore morphology on microbial enhanced oil
recovery. They carried out the study experimentally with a
view of reducing the inter-facial tension. The results showed
that oil recovery was enhanced with an increase in the
amount of biomass.

Azam et al. [5] carried out a study on Bioconvection and
activation energy on radiative sutter by melting nanomaterial
with gyro-tactic microorganisms. They used Runge–Kutta–
Fehlberg as the numerical method of solution. The study
highlighted that microorganisms field and nanoparticle con-
centration are depressed by magnetic parameter. The study
also noted that the rate of heat transfer was improved by
magnetic parameter.

Behlülgil et al. [6] examined the microbial enhanced oil
recovery using experimental conditions to develop a math-
ematical model. Results showed increasing bacterial con-

centration over time as nutrients were consumed, although
some bacteria died during experiments. The model accurately
predicted pressure behavior during shut-in periods, aligning
with experimental data.

Chisholm et al. [7] carried out an investigation on
microbial-enhanced oil recovery. The three-phase study
showed that residual oil saturation can be reduced by in-
troducing gas in a water wet system. The decrease in the
interfacial tension was achieved as a result of metabolic
products.

Devi et al. [8] studied the effect of a three-dimensional
hybrid Cu-Al2O3/water nanofluid flow over a sheet with a
Lorentz force and Newtonian heating. They used similarity
transformations to convert the governing PDEs to ODEs and
solved them using the Nachtsheim–Swigert shooting iter-
ation technique and the Runge–Kutta–Fehlberg integration
method. The results showed that hybrid nanofluid had a
higher heat transfer rate than other nanoparticles.

Guzei et al. [9] studied thermophysical properties of
nanofluid in two-phase fluid flow through a porous rect-
angular medium for enhanced oil recovery. The study re-
vealed that greater volume of oil maybe recovered by using
nanofluid flooding. The results showed that adding nanoparti-
cles to a base fluid enhanced the oil recovery. They also noted
that increasing the inlet temperature enhanced oil recovery
due to changes in the viscosity and density of oil.

Md Basir et al. [10] examined nanofluid slip flow over a
cylinder, employing the Runge–Kutta–Fehlberg fourth-order
numerical method within Maple 18 symbolic software. Their
findings indicated that elevating the bioconvection Schmidt
number led to a reduction in the density function of motile
microorganisms.

Mehryan et al. [11] carried out a study on fluid flow
and heat transfer analysis of a nanofluid over a stretching
vertical surface. They used similarity transformation to con-
vert the PDEs into ODEs. The arising equations were then
discretized using the finite difference method and linearized
by employing Newton’s Linearization technique, and were
then solved by the Thomas algorithm. The study showed that
the density of the microorganisms increases with the increase
in magnetic parameter.

Morel [12] investigated the hydrodynamic modelling of
oil–water stratified smooth turbulent flow in horizontal cir-
cular pipes. They considered a two-dimensional numerical
simulation by focusing on pressure gradient, flow-field and
oil–water interface height. The finite volume method accu-
rately predicted velocity field of the pipeline cross section,
which is helpful for controlling flow assurance issues, such
as wax deposition, hydrate formation and pipeline corrosion.

Muhammad et al. [13] carried out a study on heat transfer
analysis in the slip flow of hybrid nanomaterial with Newto-
nian heating. They carried out flow analysis by considering
slip boundary and stagnation point. They considered Bvp4c
to solve the model. They noticed that the Nusselt number
shows the best performance in terms of increasing in the
presence of hybrid nanomaterial. The study considered heat
transport through Newtonian heating and thermal radiation.
The study was aimed at enhancing the efficiency of the
industry by basically improving heat transport rate and
reducing surface friction coefficient.

Mutuku & Makinde [14] carried out research on the hydro-
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magnetic bioconvection of nanofluid over a vertical plate due
to microorganisms. They incorporated both Brownian motion
and thermophoresis effects in the model. The equations
were solved using appropriate similarity transformation and
shooting quadrature coupled with a Runge–Kutta–Fehberg
integration scheme. The heating as a result of viscous dissi-
pation and nanoparticles interaction aggravated by Brownian
motion and thermophoresis reduces the viscosity of the fluid,
hence increasing its mobility.

Nima et al. [15] studied the melting effect on non-
Newtonian fluid flow in gyro-tactic microorganism-saturated
non-Darcy porous media with variable fluid properties. The
governing equations were transformed using a similarity
transformation and solved using Bvp4c. The results indicated
that velocity profiles decreased while the temperature rose for
mixed convection and decreased for melting.

Raees et al. [16] investigated mixed convection in gravity-
driven nano-liquid film containing both nanoparticles and
gyro-tactic microorganisms. They used the Buongiorno
model to come up with the model and solved the resulting
equations using the finite difference technique. They noted
that bioconvection in nanofluids has great potential in en-
hancing mass and heat transport, mixing and improving the
stability of nanofluids.

Shaw et al. [17] carried out an investigation into the
magnetic field and viscous dissipation effect on bioconvec-
tion in a permeable sphere embedded in a porous medium
with a nanofluid containing gyro-tactic microorganisms. The
results showed that the introduction of magnetic fields in
the system decreases the skin friction, local nanoparticle
Sherwood number and local density of microorganisms.

Zhang et al. [18] examined the impact of magnetic
Reynolds number on the swimming behavior of gyro-tactic
microorganisms between rotating circular plates filled with
nanofluids. They used Pade approximation to solve the
resulting differential equations and found that increasing
the thermophoresis parameter raised temperature. The Peclet
number reduced microorganism density, while the Schmidt
number increased it.

Hussaini et al. [19] examined the effects of various factors
on unsteady viscoelastic periodic flow through a porous
medium channel under specific conditions, including the
presence of slip conditions, radiation, and constant heat
and mass flux. The governing non-linear partial differential
equations were solved using the perturbation method. The
findings indicated that the diffusive thermo effect enhances
velocity while reducing skin friction, particularly for larger
values. The angle of inclination and heat source parameter
also contribute to increased velocity, although the viscoelastic
parameter reduces it.

Sharma &Prabhakar [20] explored the numerical simu-
lation of the generalized FitzHugh-Nagumo equation using
the shifted Chebyshev spectral collocation method. This
approach employed shifted Chebyshev polynomials to ap-
proximate the spatial variable and its derivatives, while
Chebyshev-Gauss-Lobatto points were used for the collo-
cation process. By applying this method, the FitzHugh-
Nagumo equation were transformed into a system of nonlin-
ear ordinary differential equations, which were then solved
using the fourth-order Runge-Kutta scheme. The numerical
solutions obtained were presented in both graphical and

tabular formats, illustrating the convergence of the method.
A comparison with exact and approximate solutions derived
from other methods reveals that this method provides im-
proved accuracy, underscoring its effectiveness in solving
such equations.

Buzuzi et al. [21] carried out a numerical investigation of
the influence of the effective Prandtl number on the steady
magnetohydrodynamic Williamson nanofluid flow over an
inclined stretching surface, taking into account the effects
of an aligned magnetic field, heat generation, and chemi-
cal reactions. The equations were solved numerically using
the MATLAB software package, specifically utilizing the
boundary value problem solver. The findings revealed that
an increase in the effective Prandtl number reduces the con-
centration profile near the wall, along with the temperature
and velocity profiles. The velocity is observed to be highest
when both the slope of the channel and the inclination angle
of the magnetic field are at their lowest.

Buzuzi et al. [22] conducted a numerical analysis of
steady magnetohydrodynamic convective flow in a viscous,
incompressible, electrically conducting fluid over an in-
clined stretching surface. The partial differential equations
governing the flow were converted into a system of non-
linear ordinary differential equations, which were then solved
numerically using the MATLAB software package. The
findings suggested that to achieve an optimal velocity profile,
both the inclination of the magnetic field and the stretching
surface should be minimized. Furthermore, for a given effec-
tive Prandtl number, the Prandtl number should exceed the
radiation parameter to enhance the flow properties.

Nithya & Vennila [23] examined how thermal radiation
and the presence of heat sources or sinks affect the flow of a
hybrid nanofluid composed of aluminum oxide and titanium
dioxide nanoparticles dispersed in water. The governing
equations are solved using the bvp4c algorithm, and the in-
fluence of different parameters on velocity and temperature is
analyzed through graphical results. The findings indicate that
an increase in the magnetic parameter raises the temperature
and influences the velocity distribution.

Buzuzi [24] examined how channel slope, magnetic field
alignment, and effective Prandtl number influence the flow
of a magnetohydrodynamic Maxwell fluid with heat gen-
eration and thermophoresis. They found that a higher ef-
fective Prandtl number raises the fluid’s temperature and
concentration but lowers its velocity. The fluid’s concen-
tration peaks when the channel slope and magnetic field
angle are both minimal or both maximal, depending on the
Prandtl number. The temperature is highest with a maximum
channel slope and minimal magnetic field angle. Increasing
the thermophoretic parameter reduces skin friction and mass
transfer but improves heat transfer.

The novelty of this study is to break new ground by
adopting a comprehensive approach to modeling multiphase
flow in oil recovery, addressing complexities often neglected
in previous research such as; integrating elements like hybrid
gyro-tactic nanofluids, microorganisms, suction and injec-
tion, variable viscosity and thermal conductivity, and thermal
radiation. The consideration of a convergent pipe domain
adds realism to the model, while the consideration of flow
unsteadiness bridges the gap between theory and real-world
conditions, offering valuable insights for engineers tackling
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oil recovery challenges. This consideration was not consid-
ered by the previous researchers.

II. MATHEMATICAL FORMULATION

This research analyzes the flow dynamics in a porous
convergent pipe. It focuses on a stratified two-layer flow
scenario, featuring an incompressible fluid and gyro-tactic
microorganisms through an inclined pipe, as shown in Fig-
ure 1. The oil phase is placed at the upper half of the
pipe, while the water phase is at the bottom. The fluid flow
is laminar and unsteady. Viscosity is a non-linear function
of temperature and is in a tangential direction in both
phases. The source of energy for the fluid flow is viscous
dissipation, thermal radiation and chemical reaction. Thermal
conductivity changes with temperature.

Fig. 1. Flow Geometry

This study adopts the assumption of laminar flow, treating
the fluid as incompressible. Additionally, it considers an
unsteady flow regime and a constant magnetic field.

A. The effective properties of hybrid nanofluid
The hybrid nanofluid considered in this study is Cu-

Al2O3-H2O/OIL. We adopt the pseudo-single-phase method-
ology in which the composite two-phase amalgamation of
water and oil is regarded as a unified fluidic entity. The
characteristic attributes of this pseudofluid are ascertained by
averaging pertinent physical properties associated with water
and oil. The dynamic viscosity, density, heat capacity, ther-
mal expansion coefficient, thermal conductivity and electrical
conductivity, as used by many researchers such as (Othman
et al.) [25], are given, respectively, as follows:

µhnf = µf (1− ϕ1)
−2.5(1− ϕ2)

−2.5 (1)

ρhnf

ρf
= (1− ϕ2)

[
(1− ϕ1) + ϕ1

ρ1
ρf

]
+ ϕ2

ρ2
ρf

(2)

(ρCp)hnf

(ρCp)f
= (1−ϕ2)

[
(1− ϕ1) + ϕ1

(ρCp)1
(ρCp)f

]
+ϕ2

(ρCp)2
(ρCp)f

(3)

(ρβ)hnf

(ρβ)f
= (1− ϕ2)

[
(1− ϕ1) + ϕ1

(ρβ)1
(ρβ)f

]
+ ϕ2

(ρβ)2
(ρβ)f

(4)

khnf

kbf
=

k2 + 2kbf − 2ϕ2(kbf − k2)

k2 + 2kbf + ϕ2(kbf − k2)
(5)

kbf
kf

=
k1 + 2kf − 2ϕ1(kf − k1)

k1 + 2kf + ϕ1(kf − k1)
(6)

σhnf

σbf
=

σ2 + 2σbf − 2ϕ2(σbf − σ2)

σ2 + 2σbf + ϕ2(σbf − σ2)
(7)

σbf

σf
=

σ1 + 2σf − 2ϕ1(σf − σ1)

σ1 + 2σf + ϕ1(σf − σ1)
(8)

where the subscript 1 represents the Al2O3 component and
subscript 2 represents Cu solid component, hnf symbolize hybrid
nanofluid, bf symbolize base fluid and f symbolize the fluid.

The thermophysical properties of density, heat capacity, thermal
conductivity, viscosity, electrical conductivity and thermal expan-
sion are provided as documented in (Akhavan-Behabadi et al.) [26]
in Table I.

TABLE I
THERMOPHYSICAL PROPERTIES

Physical Properties ρ (Kg/m3)2 Cp (J/KgK) K (W/mK) σ (S/m) β × 10−5

Al2O3 3970 765 40 1.0× 10−10 0.65
Cu 8933 385 401 58× 106 1.67

H2O 997.1 4184 0.613 0.055 20.7
Crude Oil 881 2300 0.2 1.0× 10−9 120

III. GOVERNING EQUATIONS

The equations that govern the flow of oil, water, hybrid nanopar-
ticles and microorganisms include the equations of continuity,
conservation of momentum, energy, concentration and the density
of microorganisms. The equation of continuity is given as (Mehryan
et al.) [11]

∂

∂r
(rur) = 0 (9)

The equation of continuity shows that the fluid flow is possible.
The equation of conservation of momentum is given as (Mehryan

et al.) [11]

ρhnf

(
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
− u2

θ

r

)
= −∂p

∂r

+
(
1

r

∂

∂r
(rτrr) +

1

r

∂

∂θ
(rτθr)−

τθθ
r

)
+ ρhnf F⃗r (10)

ρhnf

(
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uruθ

r
+ uz

∂uθ

∂z

)
=

− 1

r

∂p

∂θ
+
(

1

r2
∂

∂r

(
r2τrθ

)
+

1

r

∂

∂θ
(τθθ)

+
∂

∂z
(τzθ) +

τθr − τrθ
r

+ ρhnf F⃗θ (11)

The shear stress is a function of the velocity gradient, that is

τ = µhnf

[
∇⃗u⃗+ (∇⃗u⃗)T

]
− 2

3
µhnf (∇⃗ · u⃗)δij (12)

Where δij is the kronecker delta function defined as

δij =

{
1 if i = j

0 if i ̸= j
(13)

In cylindrical coordinate system

∇⃗u⃗ = {er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
}{erur + eθuθ + ezuz} (14)

∇⃗u⃗+
(
∇⃗u⃗
)T

− 2

3

(
∇⃗ · u⃗

)
= 2 ∂ur

∂r
− 2

3

(
∇⃗ · u⃗

)
∂uθ
∂r

+
(
1
r

∂ur
∂θ

− uθ
r

)
∂uz
∂r

+ ∂uz
∂z(

1
r

∂ur
∂θ

− uθ
r

)
+ ∂uθ

∂r
2
(
1
r

∂uθ
∂θ

+ ur
r

)
− 2

3

(
∇⃗ · u⃗

)
∂uz
∂θ

+ ∂uθ
∂z

∂uz
∂z

+ ∂uz
∂r

∂uθ
∂z

+ ∂uz
∂θ

2 ∂uz
∂z

− 2
3

(
∇⃗ · u⃗

)


(15)
Using the condition that the velocity uθ is constant suction/injection
and the flow is two dimensional in radial and θ directions, the
shear stress components are given as

τrr = 2µhnf
∂ur

∂r
, τrθ = µhnf

[
∂uθ

∂r
+
(
1

r

∂ur

∂θ
− uθ

r

)]
(16)
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τθθ = µhnf

[
2
(
1

r

∂uθ

∂θ
+

ur

r

)]
(17)

τθr = µhnf

[
∂uθ

∂r
+
(
1

r

∂ur

∂θ
− uθ

r

)]
(18)

A. Buoyancy Forces
The buoyancy forces in the flow are influenced by temperature

differences, concentration gradients, and variations in microorgan-
ism density. These factors affect the fluid’s density universally,
impacting flow dynamics broadly rather than solely in buoyancy
calculations. The density is given as

ρhnf = ρ∞hnf +
(
∂ρhnf

∂T

)
p
(T − T∞) +

(
∂ρhnf

∂C

)
p
(C − C∞)

(19)

+
(
∂ρhnf

∂N

)
p
(N −N∞)

(20)

Therefore, buoyancy force in the r-direction is given by

Fr = ρhnfg sinβ1[βT (T −T∞)+βC(C−C∞)+βN (N −N∞)]
(21)

The buoyancy force in the θ direction is given as

Fθ = ρhnfg cosβ1[βT (T −T∞)+βC(C−C∞)+βN (N −N∞)]
(22)

Substituting (18),(17), (21) and (22) in (10) and (11), we have

ρhnf

(
∂ur

∂t
+ ur

∂ur

∂r

)
= −∂p

∂r
+
(
1

r

∂

∂r

(
2rµhnf

∂ur

∂r

))
+
[
1

r

∂

∂θ

(
rµhnf

[(
1

r

∂ur

∂θ

)])
−µhnf

[
2
(
ur

r

)]]
+ ρhnf [gβT (T − T∞) sinβ1 + gβC(C − C∞) sinβ1]

+ ρhnf [gβN (N −N∞) sinβ1] + ρhnf F⃗r (23)

Equation (23) is the equation of conservation of momentum in
the radial direction.

ρhnf

(
uruθ

r

)
= −1

r

∂p

∂θ
+

1

r2
∂

∂r

(
r2µhnf

[(
1

r

∂ur

∂θ
− uθ

r

)])
+

1

r

∂

∂θ

(
µhnf

[
2
ur

r

])
+ ρhnf [gβT (T − T∞) cosβ1]

+ρhnf

[
gβC(C − C∞) cosβ1 + gβN (N −N∞) cosβ1 + F⃗θ

]
(24)

Equation (24) is the equation of conservation of momentum in
the θ direction

Ampere’s law combines Ampere’s circuital law with Maxwell’s
addition to account for the displacement current. It is mathemati-
cally expressed as ∇⃗ × B⃗ = µ0J⃗ + µ0ϵ0

∂E⃗
∂t

. The first term (µ0J⃗)

represents the magnetic field B⃗ produced by the electric current
density J⃗ . The second term (µ0ϵ0

∂E⃗
∂t

) describes how a time-varying
electric field can also produce a magnetic field.

From Ohm’s law, J⃗ = σhnf (E⃗ + V⃗ × B⃗). The total elec-
tromagnetic force also known as Lorentz force is given by J⃗ ×
B⃗, since there is no externally applied electric field; thus, E⃗
is negligible.

The inclined magnetic field components are given as
(Br, Bθ, Bz) = (B0 cosα,B0 sinα, 0)

So,

J⃗ = σhnf (V⃗ × B⃗) = σhnf

∣∣∣∣∣ r̂ θ̂ k̂
ur 0 0

B0 cosα B0 sinα 0

∣∣∣∣∣ (25)

J = σhnfB0ur sinαk̂ (26)

The cumulative electromotive force is therefore given as

J⃗ × B⃗ =

∣∣∣∣∣ r̂ θ̂ k̂
0 0 σhnfB0ur sinα

B0 cosα B0 sinα 0

∣∣∣∣∣ (27)

j⃗×B⃗ = (−σhnfB
2
0ur sin

2 α)r⃗ + (σhnfB
2
0ur cosα sinα)θ̂ (28)

Substituting the Lorentz force Equation (28) into Equations (23)
and (24), the equations in the radial and θ directions are given,
respectively, as

ρhnf

(
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
− u2

θ

r

)
= −∂p

∂r

+
1

r

∂

∂r

(
2rµhnf

∂ur

∂r

)
+

1

r

∂

∂θ

(
rµhnf

[
1

r

∂ur

∂θ
− uθ

r

])
−µhnf

[
2
ur

r2

]
+ρhnf [gβT (T − T∞) sinβ1 + gβC(C − C∞) sinβ1]

+ρhnf [gβN (N −N∞) sinβ1]−ρhnfσhnfB
2
0ur sin

2 α+ρhnf F⃗r

(29)

ρhnf

(
uruθ

r

)
= −1

r

∂p

∂θ
+

1

r2
∂

∂r

(
r2µhnf

[
1

r

∂ur

∂θ
− uθ

r

])
+
1

r

∂

∂θ

(
µhnf

[
2
(
1

r

∂uθ

∂θ
+

ur

r

)])
+ρhnf [gβT (T − T∞) cosβ1]

+ ρhnf [gβC(C − C∞) cosβ1] + ρhnf [gβN (N −N∞) cosβ1]

+ ρhnfσhnfB
2
0ur cosα sinα+ ρhnf F⃗θ (30)

According to (Chisholm et al.) [7], permeability is part of the
proportionality constant in Darcy’s law, which relates discharge and
fluid physical properties to a pressure gradient applied to the porous
media.

Darcy’s law describes the flow of fluids through a porous medium
and states that the velocity of fluid flow through the porous material
between two points is directly proportional to the pressure gradient
( dp
dr

) and inversely proportional to both the fluid’s viscosity (µhnf )
and the distance (or length) between the two points. Thus,

ur =
−k

µhnf

(
dp

dr

)
(31)

For a flow in a gravitational field, Darcy’s law may be generalized
to

−dp

dr
=

µhnf

k
ur +

ck

k
1
2

ρhnfu
2
r (32)

ck is the Forchheimer constant, which is usually determined
experimentally for different porous media.

The linear Darcy’s term describing the distributed body force
extended by the fibers in the porous medium is retained, but the
nonlinear Forchheimer term is neglected.

−∆p+
µhnf

k
u⃗ = 0 (33)

Substituting (33) into (29) and differentiating partially with
respect to θ, we have

0 = − 1

ρhnf

∂2p

∂r∂θ
+

1

ρhnf

∂µhnf

∂θ

[
2

r

∂ur

∂r
+

2

r

∂2ur

∂r2
+

2

r

∂2ur

∂θ2

]
− 1

ρhnf

∂µhnf

∂θ

[
1

r

∂uθ

∂θ
− 2

r2
ur −

1

k
ur

]
+

1

rρhnf

×
[
∂2µhnf

∂θ2
∂ur

∂θ
− uθ

∂2µhnf

∂θ2

]
+

µhnf

ρhnf

[
2

r

∂2ur

∂r∂θ
+ 2

∂3ur

∂r2∂θ

]
+

µhnf

ρhnf

[
1

r

∂3ur

∂θ3
− 2

r2
∂ur

∂θ
− 1

k

∂ur

∂θ

]
− ∂2ur

∂t∂θ
− ∂ur

∂θ

∂ur

∂r

− ur
∂2ur

∂r∂θ
− uθ

r

∂2ur

∂θ2
+ g sinβ1

[
βT

∂

∂θ
(T − T∞)

]
+ g sinβ1

[
βC

∂

∂θ
(C − C∞)

]
− g sinβ1

[
βN

∂

∂θ
(N −N∞)

]
− σhnfB

2
0 sin

2 α
∂ur

∂θ
(34)
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Substituting (33) into (30) and differentiating partially with respect
to r, we have

0 =
1

ρhnf

∂2p

∂θ∂r
+

1

ρhnf

∂µhnf

∂θ

[
−2

r

∂ur

∂r

]
+

1

rρhnf

×
[
−2ur

∂2µhnf

∂θ∂r

]
+

µhnf

ρhnf

[
3

r2
∂ur

∂θ
− 3

r

∂2ur

∂θ∂r
− ∂3ur

∂r2∂θ

]
+

µhnf

ρhnf

[
−uθ

r2
+

uθ

k

]
− 2ur

r2ρhnf

∂µhnf

∂θ
− g cosβ1

×
[
βT (T − T∞) + rβT

∂

∂r
(T − T∞) + βC(C − C∞)

]
− g cosβ1

[
rβC

∂

∂r
(C − C∞) + βN (N −N∞)

]
− g cosβ1

[
rβN

∂

∂r
(N −N∞)

]
−B2

0ur cosα sinα

− rB2
0 cosα sinα

∂ur

∂r
+ uθ

∂ur

∂r
(35)

Adding the equations (34) and (35) and considering the thermo-
physical properties equations (1) to (8), to obtain,

B

G

1

ρf

∂µf

∂θ

[
2

r

∂2ur

∂r2
+

2

r

∂2ur

∂θ2
− 1

r

∂uθ

∂θ
− 2

r2
ur −

1

k
ur

]
+

B

rGρf

[
∂2µf

∂θ2
∂ur

∂θ
− uθ

∂2µf

∂θ2
− 2ur

∂2µf

∂θ∂r

]
+

µf

ρf
A

×
[
∂3ur

∂r2∂θ
+

1

r

∂3ur

∂θ3
− 1

k

∂ur

∂θ
+

1

r2
∂ur

∂θ
− 1

r

∂2ur

∂θ∂r

]
+

µf

ρf
A

×
[
−uθ

r2
+

uθ

k

]
− ∂2ur

∂t∂θ
− ∂ur

∂θ

∂ur

∂r
− ur

∂2ur

∂r∂θ
− uθ

r

∂2ur

∂θ2

+ uθ
∂ur

∂r
+ g sinβ1

[
βT

∂

∂θ
(T − T∞) + βC

∂

∂θ
(C − C∞)

]
+ g sinβ1

[
βN

∂

∂θ
(N −N∞)

]
− g cosβ1 [βT (T − T∞)]

+rβT
∂

∂r
(T−T∞)−g cosβ1

[
βC(C − C∞) + rβC

∂

∂r
(C − C∞)

]
− g cosβ1

[
βN (N −N∞) + rβN

∂

∂r
(N −N∞)

]
− σfFB2

0

× sin2 α
∂ur

∂θ
−B2

0ur cosα sinα− rB2
0 cosα sinα

∂ur

∂r
= 0

(36)

The fluid considered is non-Newtonian, the power law model
for viscosity is given by µf = µ0g

n−1, where g is the velocity
gradient, since g is a function of θ alone, then

∂µf

∂θ
= (n− 1)µ0g

n−2g′ (37)

and

∂2µf

∂2θ
= µ0(n− 1)

[
(n− 2)gn−3(g′)2 + gn−2g′′

]
(38)

Substituting the equations (37) and (38) in the equation (36), we

have[
µ0(n− 1){(n− 2)gn−3(g′)2 + gn−2g′′}

] B
G

×
[

1

rρf

∂ur

∂θ
− uθ

rρf

]
+

[
(n− 1)µ0g

n−2g′

ρf

]
B

G

×
[
2

r

∂2ur

∂r2
+

1

r

∂2ur

∂θ2
− 2

r2
ur −

ur

k
− 2ur

r2

]
+

µ0g
n−1

ρf
A

[
∂3ur

∂r2∂θ
+

1

r

∂3ur

∂θ3
− 1

k

∂ur

∂θ
+

1

r2
∂ur

∂θ

]
− µ0g

n−1

ρf
A

[
1

r

∂2ur

∂θ∂r
− uθ

r2
+

1

k
uθ

]
− ∂2ur

∂t∂θ
− ∂ur

∂θ

∂ur

∂r

− ur
∂2ur

∂r∂θ
− uθ

r

∂2ur

∂θ2
+ uθ

∂ur

∂r
+ g sinβ1

[
βT

∂

∂θ
(T − T∞)

]
+ g sinβ1

[
βC

∂

∂θ
(C − C∞) + βN

∂

∂θ
(N −N∞)

]
− g cosβ1

[
βT (T − T∞) + rβT

∂

∂r
(T − T∞) + βC(C − C∞)

]
− g cosβ1

[
rβC

∂

∂r
(C − C∞) + βN (N −N∞)

]
− g cosβ1

[
rβN

∂

∂r
(N −N∞)

]
− σfFB2

0 sin
2 α

∂ur

∂θ

−B2
0ur cosα sinα− rB2

0 cosα sinα
∂ur

∂r
= 0 (39)

From the assumptions given and considering viscous dissipation,
Joule heating, and thermal radiation, the equation of energy be-
comes (Devi) [11]

(ρCp)hnf

[
∂T

∂t
+ ur

∂T

∂r
+ uθ

∂T

∂θ

]
=

1

r

∂

∂r

(
khnfr

∂T

∂r

)
+

1

r

∂

∂θ

(
khnf

r

∂T

∂θ

)
+ µhnf

[
2
(
∂ur

∂r

)2

+ 2
(
ur

r

)2
]
+

µhnf

[(
−uθ

r
+

1

r

∂ur

∂θ

)2
]
+

J⃗2

σhnf
− 1

r

∂qr
∂θ

(40)

The joule heating is the heat produced as a result of resistance as
electric current passes through a conductor. From Ohms law,

J⃗ = σhnf (E⃗ + V⃗ × B⃗) (41)

since there is no externally applied electric field, E⃗
Given that;

(V⃗ × B⃗) =

∣∣∣∣∣ r̂ θ̂ ẑ
ur 0 0

B0 cosα B0 sinα 0

∣∣∣∣∣ (42)

J⃗2

σhnf
= σhnf

[
V⃗ × B⃗)

]
·
[
V⃗ × B⃗)

]
(43)

J⃗2

σhnf
= σhnfu

2
rB

2
0 sin

2 α (44)

Substituting (44) in equation (40), it becomes

(ρCp)hnf

[
∂T

∂t
+ ur

∂T

∂r
+ uθ

∂T

∂θ

]
=

1

r

∂

∂r

(
khnfr

∂T

∂r

)
+
1

r

∂

∂θ

(
khnf

r

∂T

∂θ

)
+ µhnf

[
2
(
∂ur

∂r

)2

+ 2
(
ur

r

)2
]

+µhnf

[(
−uθ

r
+

1

r

∂ur

∂θ

)2
]
+ σhnfu

2
rB

2
0 sin

2 α− 1

r

∂qr
∂θ

(45)

In equation (45) qr is the thermal radiation. (Mukhopadhyay) [27]
described qr = −4σ∗

3k∗r
∂T4

∂θ
, where σ∗ is the Stefan-Boltzman

constant, k∗ is the absorption co-efficient. The quadratic thermal
radiation aspect is appropriate in the situations where the quadratic
variation of temperature is accounted for in the thermal convection.
It is worth noting that qr can not be negative, its the temperature
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difference that is negative, that is the temperature gradient is from
the region of high to low temperature.

T 4 is expanded using Taylor’s series as a linear function, the
difference between the temperature at the wall and the free stream
is small. Hence,

T 4 ≈ 4T 3
∞T − 3T 4

∞ (46)

Using this expression in Rosselands approximation qr , we have;

qr = −4σ∗

3k∗
1

r

∂

∂θ

[
4T 3

∞T − 3T 4
∞
]
= −16σ∗

3k∗r
T 3
∞

∂T

∂θ
(47)

Substitution (47) in the equation (45) and using the fact that
variable thermal conductivity is a function of temperature we have,

∂T

∂t
+ ur

∂T

∂r
+ uθ

∂T

∂θ
=

k∗
hnf

(ρCp)hnf

b

∆T

(
∂T

∂r

)2

+
k∗
hnf

(ρCp)hnf

×
[
1 + b

T − T∞

∆T

](
1

r

∂T

∂r
+

∂2T

∂r2
+

1

r2
∂2T

∂θ2

)
+

k∗
hnf

(ρCp)hnfr2
b

∆T

(
∂T

∂θ

)2

+
µhnf

(ρCp)hnf

[
2
(
∂ur

∂r

)2

+ 2
(
ur

r

)2
]

+
µhnf

(ρCp)hnf

[(
uθ

r

)2

− 2uθ

r2
∂ur

∂θ
+

1

r2

(
∂ur

∂θ

)2
]

+
σhnf

(ρCp)hnf
u2
rB

2
0 sin

2 α+
1

(ρCp)hnf

16σ∗T 3
∞

3k∗r2
∂2T

∂θ2
(48)

Under the given assumptions and incorporating thermophoresis
velocity, the equation of concentration becomes (Devi) [11]

∂C

∂t
+ ur

∂C

∂r
+

uθ

r

∂C

∂θ
= Dhnf

[
1

r

∂C

∂r
+

∂2C

∂r2
+

1

r2
∂2C

∂θ2

]
− k1µhnf

ρhnfr2

[
− C

T 2

(
∂T

∂θ

)2

+
C

T

∂2T

∂θ2
+

1

T

∂T

∂θ

∂C

∂θ

]
− k1C

ρhnfTr2
∂µhnf

∂θ

∂T

∂θ
−KrC (49)

The behavior of microorganisms is governed by a complex set of
equations that take into account a variety of factors, including their
concentration within a given fluid. The equation of microorganism
density is given by (Devi) [11]

∂N

∂t
+ ur

∂N

∂r
+

uθ

r

∂N

∂θ
+

dwc

(c− c∞)

[
1

r

∂N

∂θ

∂C

∂θ
+

N

r

∂2C

∂θ2

]
=

Dm

[
1

r2
∂2N

∂θ2

]
(50)

In order to solve the nonlinear partial differential equation
that governs multiphase flow, it is necessary to have the suitable
boundary conditions.
In the case of a two-phase stratified oil-water flow, the boundary
conditions includes specifications for both the oil-water interface
and the pipe wall. The wall of the pipe, as well as the oil-water
interface, adhere to a no-slip condition. The temperature and
velocity at the outlet are assumed to be fully developed, with zero
temperature and velocity gradients in the radial direction.

At the pipe wall, θ = ±α

ur = 0, uθ = uo, T = Tw, C = Cw, N = Nw (51)

At θ = 0, the interface is treated as a moving wall.

ur = u∞, uθ = 0, T = T∞, C = C∞, N = N∞ (52)

At r = 0

ur = u∞, uθ = 0, T = T∞, C = C∞, N = N∞ (53)

At r = ∞, the gradients of all variables in the flow direction are
zero as proposed by (Mavi and Chinyoka) [28].

∂uθ

∂r
= 0,

∂ur

∂r
= 0,

∂T

∂r
= 0,

∂C

∂r
= 0,

∂N

∂r
= 0 (54)

It is a requirement that the equations (39), (48), (49) and (50)
are transformed into ordinary differential equation using similarity
transformation before solving them numerically by Spectral method.

Ojiambo et al. [29] defined the unsteady boundary layer equation,
which is based on time dependent length scale as

u(x, t) =
νxm

δm+1
(55)

Where ν represents the kinematic viscosity, δ is a time dependent
length scale, m is an arbitrary constant that is related to the wedge
angle and x is the distance across the pipe.

Nagler [30] defined the velocity of two dimensional steady
boundary layer is ur = −Qf(θ)

r
, where Q represents the planar

volumetric flow rate.
Since the flow is unsteady, we have

ur(θ, t) = −Q

r

1

δm+1
f(θ) (56)

It is a requirement that the transformation is made dimensionless
by using the transformation η = θ

α
.

Hence,
ur(θ, t) = −Q

r

1

δm+1
f(η) (57)

The transformation for equation of conservation of energy,
concentration of species and micro organisms density equations
were done using.

ω(η)

δm+1
=

T − Tw

T∞ − Tw
(58)

ϕ(η)

δm+1
=

C − Cw

C∞ − Cw
(59)

Θ(η)

δm+1
=

N −Nw

N∞ −Nw
(60)

It is a requirement that the similarity transform given by equation
(57) should certisfy the equation of continuity (49) that is

∂

∂r
(rur) = 0 (61)(

Q

r

1

δm+1
f
)
−
(
Q

r

1

δm+1
f
)
= 0 (62)

Hence it satisfies the equation of continuity showing that its an
appropriate transformation.

By applying the similarity transformations as defined in equa-
tions (57) in the equation (39), to obtain,[

(n− 1){(n− 2)gn−3(g′)2 + gn−2g′′}
] B
G

×
[
−r2f ′ − r3

Q
δm+1uθ

]
+
[
(n− 1)gn−2g′

] B
G

×
[
−4f − r2f ′′ + 4rf +

r3

k
f

]
+ gn−1A

×
[
−4rf ′ − r2f ′′′ +

r3

k
f ′ − r2

Q
uθδ

m+1 +
r4uθδ

m+1

Qk

]
− ρf (m+ 1)r3

µ0δ

dδ

dt
f ′ +

2Qrρf
µ0δm+1

ff ′ +
ρf
µ0

uθr
2f ′′ +

ρf
µ0

r2uθf

+
gρfr

4 sinβ1

µ0Q

[
βT (T∞ − Tw)ω

′ + βC (C∞ − Cw)ϕ
′]

+
gρfr

4 sinβ1

µ0Q

[
βN (N∞ −Nw)Θ

′ − βT (T∞ − Tw)ω
]

− gρfr
4 cosβ1

µ0Q
[βC (C∞ − Cw)ϕ+ βN (N∞ −Nw)Θ]

+

(
σfFB2

0r
3ρf sin

2 α

µ0

)
f ′ = 0 (63)
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The following dimensionless parameters arise from the model,
Re = ruθ

νf
= Q

νf r
, Gr(T ) = gr3βT (T∞−Tw)

νf
, Gr(C) =

gr3βC(C∞−Cw)
νf

,Gr(N) = gr3βN (N∞−Nw)
νf

, Ha = B0r
√

σf

µf
,

λ =
δmρf

µf rm−1
dδ
dt

and Da = kQ
ruθ

. Using the dimensionless numbers
in the equation (63), simplifying and using the assumption that the
viscosity is a function of tangential direction, µhnf = µ0g

n−1 and
g = g(θ) = θs for s ̸= 0 (Nagler) [30], to obtain,

[s(n− 1){s(n− 1)− 1}] θs(n−1)−2B

G

[
−r2f ′ − r3

Q
δm+1uθ

]
+
[
s(n− 1)θs(n−1)−1

] B
G

[
−4f − r2f ′′ + 4rf +

r3

k
f

]
+ θs(n−1)A

[
−4rf ′ − r2f ′′′ +

r3

k
f ′ − r2

Q
uθδ

m+1 +
r3δm+1

Da

]
− (m+ 1)

rm+2

δm+1
λf ′ +

2r2

δm+1
Reff ′ + rRef ′′ + rRef

+
r

Q
sinβ1

[
Gr(T )ω

′ +Gr(C)ϕ
′ +Gr(N)Θ

′]− r

Q
cosβ1

×
[
Gr(T )ω +Gr(C)ϕ+Gr(N)Θ

]
+Ha2F (r sin2 α)f ′ = 0

(64)

Substituting the similarity transformation (58) into the equation
(48) and simplifying, to obtain

[
k∗
hnf

(Cp)hnfµhnf
+

k∗
hnf

(Cp)hnfµhnf
b.
T∞ − Tw

∆T
+

]
ω′′

+

[
16σ∗T 3

∞

3k∗(Cp)hnfµhnf

]
ω′′ +

k∗
hnf

(Cp)hnfµhnf
.
b(T∞ − Tw)

∆Tδm+1
(ω′)2

− uθ
ρhnf

µhnf
r2ω′ +

m+ 1

σ

ρhnf

µhnf
r2

dδ

dt
ω +

Q2

(T∞ − Tw)(Cp)hnf

×
[

4

r2δm+1
f2 +

δm+1(uθ)
2

Q2

]
+

Q2

(T∞ − Tw)(Cp)hnf

×
[
2uθ

rQ
f ′ +

1

r2δm+1
(f ′)2

]
+

σhnf

δm+1

Q2B2
0 sin

2 α

(T∞ − Tw)(Cp)hnfµhnf
f2 = 0 (65)

From the thermophysical properties, equations (1) to (8), to obtain[
k∗
f

(Cp)fµf

C

DB
+

k∗
f

(Cp)fµf
b.
T∞ − Tw

∆T

C

DB

+
16σ∗T 3

∞

3k∗(Cp)fµfDB

]
ω′′ +

k∗
f

(Cp)fµf

C

DB
.
b(T∞ − Tw)

∆Tδm+1
(ω′)2

− uθ
ρf
µf

1

A
r2ω′ +

m+ 1

σ

ρf
µf

1

A
r2

dδ

dt
ω +

Q2

(T∞ − Tw)(Cp)fD

×
[

4

r2δm+1
f2 +

δm+1(uθ)
2

Q2

]
+

Q2

(T∞ − Tw)(Cp)fD

×
[
2uθ

rQ
f ′ +

1

r2δm+1
(f ′)2

]
+

σf

δm+1

Q2B2
0 sin

2 α

(T∞ − Tw)(Cp)fµf

F

DB
f2 = 0 (66)

Factoring in the following dimensionless numbers , Pr =
µf (Cp)f

k∗
f

, R =
16σ∗T3

∞
3k∗ , λ =

δmρf
µf rm−1

dδ
dt

, Ec = Q2

(Cp)f (T∞−Tw)
,

Re = ruθ
νf

and J =
σfB2

0 sin2 α

ρf (Cp)fνf (T∞−Tw)
into the equation (66), to

obtain

1

DB Pr

[
C + C b+

R

kfC

]
ω′′ +

1

Pr

bC

DB

1

δm+1
(ω′)2

− r

A
Reω′ +

(m+ 1)

A

rm+1

δm+1
λω +

Ec

D

[
4

r2δm+1
f2 + δm+1 u

2
θ

Q2

]
+
Ec

D

[
2uθ

rQ
f ′ +

1

r2δm+1
(f ′)2

]
+

F

DB

Q2

δm+1
Jf2 = 0 (67)

Substituting the equations (1) to (8) in (49),

(m+ 1)
ρfr

2

µfδ

1

A

dδ

dt
ϕ− ρfuθr

µf

1

A
ϕ′ +Dhnf

ρf
µf

1

A
ϕ′′

+k1

(
Cwδ

m+1

(C∞ − Cw)
+ ϕ

)(
1

Twδm+1

(T∞−Tw)
+ ω)

)(
1

Twδm+1

(T∞−Tw)
+ ω

)

× (ω′)2 − k1

(
Cw

C∞ − Cw
+ ϕ
)(

1
Tw

T∞−Tw
+ ω

)
ω′′

+

(
1

(Twδm+1

(T∞−Tw
+ ω

)(
ω′ϕ′)− k1

(
Cwδ

m+1

C∞ − Cw
+ ϕ

)(
B
∂µf

∂θ

)
×

(
1

Twδm+1

T∞−Tw
+ ω

ω′

)
− krρfr

2

µf

1

A

(
Cwδ

m+1

C∞ − Cw
+ ϕ

)
= 0

(68)

The non-dimensional numbers defined here are λ = δm

µf

ρf
rm−1

dδ
dt

,
Sc =

νf
Df

, Re = ruθ
νf

, Nt = Tw
T∞−Tw

, Nc = Cw
C∞−Cw

and Kc =
krνf
uθ

.
Substituting the dimensionless parameters in the equation (68), to
obtain

1

A Sc
ϕ′′ − Re

A
ϕ′ +

(m+ 1)

A

rm+1

δm+1
λϕ− k1

Ntδm+1 + ω

×
[
−
(

Ncδm+1 + ϕ

Ntδm+1 + ω)

)
(ω′)2

]
− k1

Ntδm+1 + ω

×
[
(Nc+ ϕ)

(
Ntδm+1 + ω

Nt+ ω

)
ω′′ + ω′ϕ′

]
− k1

Ntδm+1 + ω

×
(
Ncδm+1 + ϕ

)(
B
∂µf

∂θ

)(
ω′)−Kc

A
Re
(
Ncδm+1 + ϕ

)
= 0

(69)

From assumption the assumption that the viscosity is a function
of tangential direction, µhnf = µ0g

n−1 and g = g(θ) = θs for
s ̸= 0 (Nagler) [30]. Then the equation (69) becomes,

1

A Sc
ϕ′′ − Re

A
ϕ′ +

(m+ 1)

A

rm+1

δm+1
λϕ− k1

Ntδm+1 + ω

×
[
−
(

Ncδm+1 + ϕ

Ntδm+1 + ω)

)
(ω′)2

]
− k1

Ntδm+1 + ω

×
[
(Nc+ ϕ)

(
Ntδm+1 + ω

Nt+ ω

)
ω′′ + ω′ϕ′

]
− µ0k1

Ntδm+1 + ω

×
(
Ncδm+1 + ϕ

) (
B(n− 1)sθs(n−1)−1

) (
ω′)

− Kc

A
Re
(
Ncδm+1 + ϕ

)
= 0 (70)

Substituting the equations (60) in equation (50), simplifying and
adding the thermophysical properties given by equations (1) to (8),
the equation (70), becomes

−(m+ 1)
ρfr

2

µfAδ

dδ

dt
Θ+ uθr

ρf
µf A

Θ′ +
rdWc

µfB

1

δm+1
Θ′ϕ′

+
rdWcρf
A µf

(
Nwδ

m+1

N∞ −Nw
+Θ

)
1

δm+1
ϕ′′ = Dm

[
ρf

A µf
Θ′′
]
(71)

The dimensionless parameters featured here are, λ =
δmρf

µf rm−1
dδ
dt

,

Re = ruθ
νf

, Pe = dWc
Dm

, Lb = νf
Dm

and Nn = Nw
N∞−Nw

.
Substituting the above dimensionless parameters into the equations
(71), to obtain
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Lb

A
Θ′′ − Re

A
Θ′ − Pe

B Lb
rΘ′ϕ′ +

(m+ 1)

A

rm+1

δm+1
λΘ−

rPe

A Lb

(
Nnδm+1 +Θ

) 1

δm+1
ϕ′′ = 0 (72)

Transforming the boundary conditions (51), (52),(53) and (54),
using the transformations (57), (58), (59) and (60), to obtain
At θ = ±α

f(η) = 0, ω = 0, ϕ = 0,Θ = 0 (73)

At θ = 0

f(η) = −u∞rδm+1

Q
, f ′(η) = 0, ω = δm+1, ϕ = δm+1,Θ = δm+1

(74)
At r = 0

f(η) = −u∞rδm+1

Q
,ω = δm+1, ϕ = δm+1,Θ = δm+1 (75)

At r = ∞
∂f

∂r
= 0,

∂ω

∂r
= 0,

∂ϕ

∂r
= 0,

∂Θ

∂r
= 0 (76)

IV. NUMERICAL SOLUTION

The spectral relaxation method (SRM) is used to solve (64),(67),
(70), and (76). The spectral relaxation method is a recent innovation
that employs the Gauss–Seidel approach to decouple large systems
of nonlinear equations.
The method assumes that solution of the differential equation takes
the form

U(r) =

N∑
j=0

Lj(ri)uj (77)

Where,

Lj(r) =

N∏
i=0
i̸=j

r − ri
rj − ri

, Lj(ri) =

{
1, i = j

0, i ̸= j
(78)

Lj(r) are lagrange cardinal polynomials. The grid points used are
the Chebyshev Gauss Lobatto points, that is the relative extremes of
Chebyshev polynomial of first kind. This clustered grid points are
not ill conditioned which to a greater extent improves the accuracy
of the solution. They are given by;

r̄i = cos
(
iπ

N

)
, i = 0, 1, 2, ..., N (79)

defined over the interval [−1, 1]. There is need to apply linear
transformation

ri =
(
b− a

2

)
r̄i +

(
b+ a

2

)
(80)

that maps r̄ ∈ [−1, 1] to the computational domain [a, b].
The fundamental idea behind the spectral collocation method

is the introduction of a differentiation matrix D which is used
to approximate the derivative of the unknown variables at the
collocation points as the matrix vector product.

The first derivative is approximated by;

U ′(r) =

N∑
j=0

L′
j(ri)uj

N∑
j=0

L′
j(ri)uj =

N∑
j=0

Dijuj = DU, (81)

U′′ = D2U, U′′′ = D3U, U(n) = DnU, n = 2, 3, 4... (82)

The entries of Chebyshev differentiation matrix D are defined in
(Trefethen) [31].

Spectral relaxation method(SRM) decouples linear terms at cur-
rent iterative level. In addition, evaluate nonlinear terms at previous
iteration level. The method is more accurate but converges slower
than SQLM, and the rate of convergence is quadractic, just like the
Newton Raphson method.

The SRM requires that an initial approximation to the solution
is given. Starting from given initial approximations, the iteration
schemes are solved for U which is inturn used to solve for F. In
order to solve the equation, we discretize the equation using the
chebyshev spectral method, before applying the spectral methods.
In the spectral relaxation framework, we arrange the system of
differential equations (64), (67), (70) and (76) as:

L1[F, ω,Φ,Θ] +N1[F, ω,Φ,Θ] = 0

L2[F, ω,Φ,Θ] +N2[F, ω,Φ,Θ] = 0

L3[F, ω,Φ,Θ] +N3[F, ω,Φ,Θ] = 0

L4[F, ω,Φ,Θ] +N4[F, ω,Φ,Θ] = 0

(83)

where L stands for the linear differential operator and N stands
for the non linear differential operator. Linear terms are evaluated
at current iteration level (r + 1), whereas Non-linear terms are
evaluated at previous iterations (r).

L1[Fr+1, ωr,Φr,Θr] +N1[Fr, ωr,Φr,Θr] = 0

L2[Fr+1, ωr+1,Φr,Θr] +N2[Fr+1, ωr,Φr,Θr] = 0

L3[Fr+1, ωr+1,Φr+1,Θr] +N3[Fr+1, ωr+1,Φr,Θr] = 0

L4[Fr+1, ωr+1,Φr+1,Θr+1] +N4[Fr+1, ωr+1,Φr+1,Θr] = 0
(84)

For the system of differential equations (64), (67), (70) and (76)
the relaxation scheme is given as:

[
−r2Aθs(n−1)

]
f ′′′
r+1 +

[
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]
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[−4]

+ [s(n− 1)θs(n−1)−1]
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r3
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+ rRe
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s(n− 1){s(n− 1)− 1}θs(n−1)−2B

G

r3

Q
δm+1uθ

+ θs(n−1)A
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Q
uθδ
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δm+1

Da

]
− 2r2

δm+1
Refrf

′
r

− r

Q
sinβ1[GrTω

′
r +GrCΦ

′
r +GrNΘ′

r] +
r

Q
cosβ1

× [GrTωr +GrCΦr +GrNΘr] (85)
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2
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− F
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Q2
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r (86)
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(87)

Lb

A
Θ′′

r+1 +
[
−Re

A
− Pe

B Lb
rΦ′

r+1

]
Θ′

r+1

+

[
(m+ 1)rm+1

Aδm+1
λ− rPe

A Lbδm+1
Φ′′

r+1

]
Θr+1 =

rPe

ALb
NnΦ′′

r

(88)

V. COMPUTER SIMULATIONS

MATLAB software(R2020a) was used to obtain the flow profiles
of the respective flow variables. The model requires the use of
appropriate parameters, such as Pr for water and oil which are
in the range of 5 < Pr < 7 and 0 < Pr < 500, respectively.
Reynolds number are in the range of 0 ≤ Re ≤ 2000 since we are
dealing with laminar flow. The Eckert number 2.0 means that the
flow kinetic energy is more than the enthalpy difference, GrT > 0
represents the heating of the fluid which is in contact with the wall.
The number of collocation points in the radial direction is taken as
50. The simulation yielded the results shown in the next section.

VI. VALIDATION

The results of this study have been validated by comparing the
fluid temperature profiles with those reported in the previous work
by (Khan et al.) [32]. As depicted in Figure 10, the temperature
profiles from both studies exhibit a strong agreement, particularly in
their trends over time. This consistency in the results across different
studies underscores the robustness and reliability of the model
used in this research. The close match between the temperature
profiles not only confirms the accuracy of the present model but
also reinforces its applicability in simulating similar fluid dynamics
scenarios.

VII. RESULTS AND DISCUSSION

The Equations (85)–(88) were implemented in MATLAB and
the results obtained in the form of graphs, which are discussed as
follows.

A. Effects of Flow Parameters on Velocity
As shown in Figure 2, an increase in the Reynolds number leads

to a rise in the velocity profiles. This is because a higher Reynolds
number indicates a stronger influence of inertia forces compared
to viscous forces. Inertia, the tendency of the fluid to maintain
its motion, becomes more dominant, which increases the overall
velocity. Conversely, viscous forces, which resist the fluid’s motion,
tend to retard the flow. However, as the Reynolds number increases,
the impact of these viscous forces diminishes.

Since the flow under consideration is laminar, the fluid particles
move smoothly in parallel layers with minimal mixing. The velocity
profile reaches its maximum at a point just before the center of the
pipe, where the influence of the adjacent immiscible fluid is most
pronounced. As a result of this interaction, the fluid experiences
a velocity drop due to the adjacent layer’s effect. The no-slip
condition on the walls of the pipes ensures that the fluid velocity
gradually decreases to zero as it approaches the walls, reflecting the
physical constraint that the fluid adheres to the boundary.

Fig. 2. Graph of velocity for varying Reynolds number.

As depicted in Figure 3, an increase in the thermal Grashof
number results in an elevation of the velocity profiles. The thermal
Grashof number quantifies the relative importance of buoyancy
forces compared to viscous forces in the flow. As this number in-
creases, it signifies that the buoyancy forces, driven by temperature
differences, become more dominant than the viscous forces, which
resist motion. This dominance of buoyancy forces enhances fluid
motion, leading to an increase in fluid velocity.

The maximum velocity is observed at a point some distance away
from the center of the pipe. This shift from the center is due to the
influence of the boundary formed by the adjacent immiscible fluid,
which alters the velocity distribution within the pipe. As the fluid
approaches the pipe wall, the no-slip condition imposes that the
velocity decreases gradually to zero, reflecting the adherence of the
fluid to the wall and the resistance offered by the viscous forces at
the boundary.

Fig. 3. Graph of velocity for varying thermal Grashof number.

Figure 4 illustrates that an increase in the microbial Grashof
number results in a higher velocity of fluid flow. The microbial
Grashof number reflects the influence of microbial activity on buoy-
ancy forces relative to viscous forces. Microbial activity generates
products like gases, which alter the fluid’s density and viscosity.
These changes in the density gradient enhance buoyancy-driven
flow, leading to an increase in the velocity profile as the fluid moves
in response to the varying densities.
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Fig. 4. Graph of velocity for varying microorganisms Grashof number.

In addition, microorganisms exhibit chemotaxis, the ability to
swim toward or away from chemical stimuli. This directed move-
ment also contributes to the increase in fluid velocity as the col-
lective motion of microorganisms amplifies the flow. Consequently,
the combined effects of density changes due to microbial activity
and chemotaxis lead to a significant increase in the velocity profiles
within the fluid.

From figure (5) the observed decrease in the velocity profile with
an increase in the volume fraction of aluminum oxide nanoparti-
cles in a nanofluid. Addition of Aluminium oxide increases the
fluid’s viscosity, resulting in higher internal resistance to flow.
The improved thermal conductivity of the nanofluid influences the
momentum transfer, while the presence of nanoparticles leads to
a thickening of the boundary layer near solid surfaces, further
reducing the velocity.

Fig. 5. Graph of Velocity for varying Volume fraction of Aluminium Oxide.

The increase in velocity profiles with rising copper nanoparticle
volume fraction in a nanofluid as observed in figure (6) is because
Copper has excellent thermal conductivity, which promotes higher
flow velocities.

B. Effects of Flow Parameters on Temperature
Figure 7 shows that an increase in the Reynolds number leads

to an increase in the temperature profiles. This occurs because a

Fig. 6. Graph of Velocity for varying Volume fraction of Copper.

higher Reynolds number signifies an increase in the velocity of the
fluid. As the fluid velocity increases, the friction between the fluid
particles and the hybrid particles within the flow also intensifies.
This increased interaction enhances heat transfer between fluid
molecules, leading to an overall increase in temperature throughout
the fluid.

Fig. 7. Graph of temperature for varying Reynolds number.

The temperature reaches its maximum at a point just outside the
center of the tube, where the combined effects of fluid velocity
and particle interaction are most pronounced. As the fluid moves
toward the wall of the pipe, the temperature gradually decreases.
This decline reflects the reduced interaction near the boundary and
the heat dissipation due to the cooler pipe walls.

From Figure 8, it is seen that an increase in the Eckert number
leads to an increase in the temperature profiles, with a maximum
value some distance from the center. An increase in the Ec number
means an increase in the kinetic energy of the flow relative to
the difference in enthalpy. This means that more kinetic energy
promotes more vigorous mixing of the fluid. The vigorous mixing
leads to the formation of heat energy as a result of the collisions
of particles, leading to increased temperature profiles.

From Figure 9, an increase in the unsteadiness parameter (λ)
leads to an increase in temperature profiles. An increase in the
unsteadiness parameter means that the time derivatives in the
governing equations become more significant compared to the
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Fig. 8. Graph of temperature for varying Eckert number.

significant as compared to the spatial derivatives. This leads to faster
changes in the temperature profiles over time.

Fig. 9. Graph of temperature for varying Lambda number.

From Figure 10, it is seen that an increase in thermal Grashof
number leads to an increase in temperature profiles. The thermal
Grashof number, GrT , is defined as the ratio of buoyancy forces
to viscous forces. An increase in GrT means that buoyancy forces
dominate over viscous forces. This dominance enhances the fluid’s
natural tendency to move, resulting in stronger convection within
the flow.

As GrT increases, the fluid experiences more pronounced con-
vection motion, which leads to more efficient heat transfer. This
increased mixing within the fluid manifests as steeper temperature
gradients or higher overall temperatures. The enhanced heat transfer,
driven by the buoyancy-induced movement of the fluid, is reflected
in the elevated temperature profiles as GrT increases.

In Figure 11, an increase in GrN leads to an increase in
temperature profiles. The reason for the increase in temperature
profiles is the interplay between microbial activity and fluid dy-
namics. Microorganisms are living organisms that metabolize and
generate heat as a byproduct of their metabolic processes. This
metabolic activity can lead to localized increases in temperature
within their immediate surroundings. As GrN increases, these
localized temperature increases become more pronounced due to
improved fluid motion and mixing.

Fig. 10. Graph of temperature for varying thermal Grashof Number.

Fig. 11. Graph of temperature for varying microorganism Grashof number.

Microorganisms often create gradients in nutrients concentration
and metabolic byproducts in their environment. These gradients
can drive fluid motion through processes such as chemotaxis
(movement of microorganisms in response to chemical gradients)
and bioconvection (movement induced by microorganism growth).
As GrN increases, buoyant forces become more dominant, leading
to stronger fluid motion and enhanced mixing of temperature
variations caused by microbial activity.

From Figure 12, it is observed that an increase in the radiation
parameter leads to a decrease in temperature profiles. This occurs
because a higher radiation parameter signifies that the material
absorbs more radiation, leading to heat loss. Additionally, as the
radiation parameter increases, the material becomes more reflective,
further contributing to the reduction in temperature.

Moreover, some materials scatter incoming radiation rather than
absorbing it. An increase in the radiation parameter, RR, enhances
this scattering effect, making the absorption of radiation less effec-
tive and thereby resulting in lower temperatures within the material.
This combination of increased heat loss, reflectivity, and scattering
accounts for the observed decrease in temperature profiles as the
radiation parameter increases.

From Figure 13, it is observed that an increase in the Joule
heating parameter leads to an increase in the temperature profiles.
When an electric current passes through a resistor, energy is
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Fig. 12. Graph of temperature for varying Radiation parameter.

dissipated in the form of heat because of the collisions between
charge carriers and the atoms of the material. The amount of heat
generated per unit time is directly proportional to the square of
the current passing through the conductor and the resistance of the
conductor. According to the first law of thermodynamics, energy
cannot be created or destroyed, only transformed from one form to
another. The induced current in the conductor is transformed into
heat energy. The heat energy increases the internal energy of the
material, leading to a rise in temperature. The temperature increases
are proportional to the amount of heat generated, which in turn, is
directly proportional to the Joule heating parameter.

Fig. 13. Graph of temperature for varying Joule heating.

From Figure 14, it is observed that an increase in Prandtl number
leads to an increase in the temperature profile. Pr is the ratio
of momentum diffusivity to thermal diffusivity. It indicates how
effectively momentum and heat are transported in a fluid. A higher
Pr means that the thermal diffusivity is relatively lower compared
to the momentum diffusivity. An increase in Pr leads to a thicker
thermal boundary layer and a slower rate of heat transfer. Pr controls
the relative thickness of the momentum and thermal boundary
layers. This results in a more gradual temperature profile across the
fluid, with the temperature gradient more evenly spread. Because
momentum diffusivity is relatively higher compared to thermal
diffusivity, there is more mixing within the fluid because momentum
transport dominates over heat transport.

Fig. 14. Graph of temperature for varying Prandtl number.

As observed in figure (15), the decrease in temperature profiles
with an increasing volume fraction of aluminum oxide nanoparticles
is primarily due to improved thermal conductivity, increased heat
capacity, enhanced convective heat transfer, and beneficial particle
interactions, all of which facilitate more efficient heat dissipation
within the nanofluid.

Fig. 15. Graph of temperature for varying Volume fraction of Aluminium
Oxide.

As observed in figure (16), the increase in temperature profiles
with a higher volume fraction of copper nanoparticles is mainly due
to the combined effects of lower specific heat capacity, potential
agglomeration leading to localized heating, and changes in heat
dissipation dynamics, which create higher temperature regions
within the nanofluid.

C. Effects of Flow Parameters on Concentration
From Figure 17, it is observed that an increase in Reynolds

number leads to an increase in concentration profiles. This is
because an increase in the Reynolds number corresponds to an
increase in fluid velocity. The increase in velocity enhances the
mixing within the fluid, which promotes the better dispersion of
nanoparticles. As a result, the nanoparticles are more uniformly
distributed throughout the flow, leading to higher concentration
profiles.
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Fig. 16. Graph of temperature for varying Volume fraction of Copper.

Fig. 17. Graph of concentration for varying Reynolds number.

In Figure 18, it is seen that an increase in the Schmidt number
leads to an increase in the concentration profile. An increase in
the Schmidt number corresponds to a decrease in the diffusivity
of the DD mass due to their inverse relationship. A decrease
in mass diffusivity implies reduced movement of nanoparticles,
which decreases their dispersion within the fluid. As a result,
the concentration of nanoparticles decreases locally, leading to an
increase in the overall concentration of the fluid.

D. Effects of Flow Parameters on Microorganism Concen-
tration

From Figure 19, it is observed that an increase in Reynolds
number leads to an increase in microorganism concentration. As the
Reynolds number increases, the fluid velocity also increases. This
higher velocity enhances the mixing and dispersion of substances
within the fluid. Consequently, the improved mixing results in a
more uniform distribution of microorganisms throughout the fluid,
leading to an increase in microorganism density.

From Figure 20, it is observed that an increase in the chemical
reaction parameter leads to a decrease in the concentration of
microorganisms. This is because certain chemical reactions produce
by-products or reactants that are toxic to microorganisms. Gyro-
tactic microorganisms can respond by avoiding areas with high
concentrations of toxins, using their directed movement capabilities

Fig. 18. Graph of concentration for varying Schmidt number.

Fig. 19. Graph of microorganism density for varying Reynolds number.

to navigate away from harmful regions. This avoidance behavior
can lead to a decrease in microorganism density in areas where
chemical reactions result in elevated toxicity levels.

From Figure 21, it is observed that an increase in Schmidt
number leads to an increase in microorganism density. The Schmidt
number, Sc, is a dimensionless parameter that indicates the relative
importance of momentum diffusion to mass diffusion. An increase
in Sc implies that momentum diffusion dominates over mass
diffusion.

As a result, microorganisms experience enhanced thermophoretic
forces, which drive them toward regions of higher temperature. This
movement increases the concentration of microorganisms in these
hotter regions, leading to a higher overall microorganism density.

From Figure 22, it is observed that an increase in bioconvection
Lewis number leads to a decrease in microorganisms density profile.
The bioconvection Lewis number represents the ratio of diffusion to
bioconvection effects. When the Lewis number increases, it implies
that diffusion becomes relatively stronger compared to biocon-
vection. Therefore, as the bioconvection Lewis number increases,
microorganisms are more likely to disperse due to diffusion.

From Figure 23, it is observed that microorganism density profile
decreases with an increase in Peclet number. The Peclet number is
defined as advective over a diffusive transport rate. The decrease
in microorganism density with an increase in the Peclet number
is because a rise in Peclet Number enhances the motion of the
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Fig. 20. Graph of microorganism density for varying chemical reaction
parameter.

Fig. 21. Graph of microorganism density for varying Schmidt number.

fluid particles, inducing a decline in the thickness of gyro-tactic
microorganism.

From figure (24), the increase in aluminum oxide volume fraction
leads to higher microorganism density through several mechanisms.
First, aluminum oxide enhances the availability of nutrients in the
surrounding environment, promoting the growth and proliferation
of microorganisms. Its high surface area provides more sites for
microbial attachment, resulting in a greater local density of mi-
crobes around the particles. Additionally, the presence of Alu-
minium oxide stabilizes microbial communities in fluid mediums,
preventing washout and contributing to increased density. From
figure (25), the increase in copper nanoparticle volume fraction
leads to a higher microorganism density profile through several
mechanisms. First, copper enhances nutrient availability in the
surrounding environment, promoting microbial growth. Second, its
antimicrobial properties create a selective environment that favors
the growth of Gyro-tactic microorganisms that thrive in the presence
of copper.

VIII. SUMMARY AND CONCLUSIONS

In this research, we have developed a thorough model for multi-
phase hybrid gyro-tactic nanofluid flow through a porous convergent
pipe with injection and suction. Our model accounts for various crit-
ical factors such as fluid incompressibility, non-Newtonian behavior,

Fig. 22. Graph of microorganism density for varying microbial Lewis
number.

Fig. 23. Graph of microorganism density for varying Peclet number.

and the nonlinear relationship between viscosity and the tangential
direction. The angle of inclination of the pipe is considered, and oil
and water are treated as immiscible fluids separated by a smooth
interphase. To ensure model accuracy, we meticulously adjust the
volume fraction of each hybrid nanoparticle.

Our model comprises simultaneous governing equations for
continuity, momentum conservation, energy, nanoparticle concen-
tration, and microorganism density. Initially, nonlinear partial differ-
ential equations are transformed into nonlinear ordinary differential
equations via similarity transformations. Subsequently, we linearize
and discretize these ordinary differential equations using the spectral
relaxation method, followed by simulation in MATLAB.

From our research, several key conclusions emerge:
(i) It is imperative to model oil recovery as two immiscible fluids,

oil and water, due to their unique characteristics. We observe
that the velocity of the fluid generally increases with certain
flow parameters, such as Reynolds number, Thermal Grashof
number, and Mass Grashof number.

(ii) The fluid temperature tends to rise with certain flow param-
eters, including Reynolds number, Eckert number, Unsteadi-
ness parameter, thermal Grashof number, microbial Grashof
number, and Joule heating parameter. Conversely, it decreases
with increasing values of the chemical reaction parameter and
Radiation parameter.
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Fig. 24. Graph of microorganism density for varying Volume fraction of
Aluminium Oxide.

Fig. 25. Graph of microorganism density for varying Volume fraction of
Copper.

(iii) The presence of gyro-tactic microorganisms plays a vital role
in enhancing both the velocity and temperature of the fluid,
essential elements for optimizing the oil recovery process.
Increasing the density of these microorganisms emerges as
a crucial strategy for engineers aiming to maximize oil yield.
By doing so, engineers can effectively boost fluid velocity,
promoting better fluid movement within the reservoir.

(iv) The heightened microbial density contributes to elevating
the fluid temperature, which is instrumental in facilitating
enhanced oil recovery. Thus, prioritizing the augmentation of
microorganism density emerges as a paramount consideration
for engineers seeking to optimize oil recovery operations and
achieve higher yields.

(v) The concentration of the hybrid nanoparticles increases with
an increase in Reynolds number and Schmidt number. How-
ever, it decreases with an increase in the chemical reaction
parameter and the thermophoresis parameter.

(vi) The microorganism density increases with an increase in
Reynolds number and Schmidt number. However, it decreases
with an increase in chemical reaction parameter, thermophore-
sis parameter, microbial Lewis number and Peclet number.

IX. RECOMMENDATION TO ENGINEERS

1) Invest in technologies that allow the precise control and
manipulation of flow parameters such as Reynolds number,
Hartman number, and Grashof numbers to optimize fluid
velocity and temperature for enhanced oil recovery.

2) Develop infrastructure to support the use of hybrid nanofluids
in oil recovery operations, ensuring proper handling and
application to maintain their stability and effectiveness.

3) Encourage regulatory frameworks that support the integration
of advanced fluid models which consider non-Newtonian
properties and variable viscosity into existing oil recovery
processes.
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