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Abstract—Proofs are given for the consistency, stability
and convergence of the implicit forward-time central-space
(FTCS) finite difference method for solving integer-order three-
dimensional advection-diffusion-reaction equations (ADRE)
and Caputo fractional-order two dimensional ADRE models.
The method is then applied to obtain numerical solutions for the
transport of pollutants in street tunnels with various reaction
coefficients and rates of change of concentrations of sources and
sinks of pollution. Examples are given for both integer-order
and Caputo fractional-time systems.

Index Terms—advection-diffusion-reaction equation, Caputo
fractional derivative, finite difference method, convergence,
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I. INTRODUCTION

For many years, integer-order advection-diffusion-reaction
equations (ADRE) have been widely used as models in
many areas of science and engineering, for example, in fluid
flow, aerodynamics, fiber optics, water and air pollution,
molecular diffusion and chemical engineering. Also, in recent
years it has been recognized that if a physical system has
memory or history effects then fractional derivatives can give
better models. Because of their importance, there are many
analytical and numerical methods that have been developed
to solve both integer-order and fractional-order equations for
both linear and nonlinear ADREs. However, in general, it is
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necessary to use numerical methods to solve most real-world
problems.

A summary of some of the methods used for integer-order
equations is as follows. In 2012, Garzón-Alvarado et al. [1]
used a finite element method to solve a model of a decoupled
system of ADREs based on Navier-Stokes equations. In
2012, Savovic and Djordjevich [2] developed an explicit
finite difference method for solving a 1D advection-diffusion
equation for three dispersion problems. In 2013, Appadu and
Gidey [3] proposed two time-splitting procedures for solving
a 2D advection-diffusion equation with constant coefficients.
In 2013, Bause and Schwegler [4] developed a finite element
method for solving systems of coupled convection-dominated
transport equations. In 2015, Mojtabi and Deville [5] used
separation of variables to obtain an analytical solution, and
a finite element method to obtain a numerical solution, of
a time-dependent 1D linear advection-diffusion equation. In
2016, Gharehbaghi [6] proposed explicit and implicit differ-
ential quadrature methods to compute numerical solutions of
a time-dependent 1D advection-diffusion equation in a semi-
infinite domain. In 2017, Gyrya and Lipnikov [7] developed
a mimetic finite difference method on polygonal meshes for
solution of diffusion equations with a tensorial diffusion
coefficient. In 2017, Bahar and Gurarslan [8] studied Lie-
Trotter and Strang splitting methods for solution of a 1D
advection-diffusion equation. In 2018, Al-Jawary et al. [9]
proposed a semi-analytical technique for finding exact so-
lutions of Burgers’ equations and applied the technique to
study diffusion and advection-diffusion equations. In 2018,
Lou et al. [10] proposed discontinuous Galerkin methods
for solving linear advection-diffusion equations on unstruc-
tured hybrid grids. In 2018, Bhatt et al. [11] developed a
Krylov subspace approximation-based locally extrapolated
exponential time differencing method for solving nonlinear
3D ADRE systems. In 2020, Heng and Guodong [12] im-
proved the element-free Galerkin method and used it for
solving 3D advection-diffusion problems. In 2020, Cruz-
Quintero and Jurado [13] proposed a backstepping design for
boundary control of a reaction-advection-diffusion equation
with constant coefficients. In 2021, Para et al. [14] developed
a finite volume method for solving convection-diffusion
problems on 2D triangular grids and compared the accuracy
of the solutions with four piecewise linear reconstruction
techniques, namely, least squares, Frink, Green-Gauss, and
Holmes-Connell methods. In 2021, Hong et al. [15] used
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a meshless numerical scheme and a backward substitution
method to solve 3D advection-diffusion equations. In 2021,
Hidayat [16] proposed a meshless B-spline finite difference
method for the numerical solution of ADRE problems. In
2021, Sun et al. [15] used a backward substitution method
to solve 3D advection-diffusion equations. In 2021, Shahid et
al. [17] studied an epidemic-type model with advection and
diffusion terms for the transmission of computer viruses. In
2021, Garcı́a and Jurado [18] designed an adaptive boundary
control for a reaction-advection-diffusion PDE with unknown
advection and reaction parameters.

In recent years, time or space fractional-order derivatives
have been used to generalize many integer-order models of
real-world problems in physics, applied mathematics, and
engineering. The usual reason given for these generalizations
is that the fractional-order equations give better models for
real-life problems that include the memory effects or the
past history of the system. There are now many definitions
of fractional derivatives including Riemann-Liouville [19],
Caputo [19], [20], Caputo-Fabrizio [21], Hadamard [22],
Hilfer [23], [24], Katugampala [25], Atangana [26] and
Hattaf [27], [28]. Some examples of recent research which
are relevant to the numerical solution of fractional-order
partial differential equations related to an ADRE are as
follows. In 2005, Langlands and Henry [29] investigated
the accuracy and stability of an implicit numerical scheme
for solving a fractional diffusion equation describing anoma-
lously diffusing particles. In 2009, Su et al. [30] employed a
fractional Crank-Nicholson method (FCN) based on a shifted
Grünwald-Letnikov formula, to solve a two-sided fractional
advection-diffusion equation. In 2011, Wang [31] developed
a fast characteristic finite difference method for efficient so-
lution of space-fractional transient advection-diffusion equa-
tions in one space dimension. In 2018, Zhong et al. [32]
used Legendre polynomials and the associated operational
matrix to reduce fractional convection diffusion equations
with time-space variable coefficients to corresponding alge-
braic systems which can be solved numerically. In 2018,
Macı́as-Dı́az [33] employed a finite difference method to
solve fractional-order generalizations of the Burgers-Fisher
and the Burgers-Huxley equations in multiple dimensions
that included Riesz fractional diffusion. In 2018, Jannelli
et al. [34] used Lie transformations to find analytical and
numerical solutions of a time and space fractional ADRE. In
2019, Vivek et al. [35] studied the existence and stability of
solutions to a partial differential equation using the Growall
inequality method to prove Ulam-type stability. In 2021,
El-Kahlout [36] used the integral Fourier-sine and integral
Laplace transforms to obtain exact solutions of two types
of partial differential equations of Caputo fractional order in
the xz plane. In 2023, Qazza et al. [37] used a direct power
series method to solve several types of Caputo time-fractional
partial differential equations and systems. In 2023, Dimitrov
et al. [38] considered an approximation of the Caputo frac-
tional derivative and its asymptotic expansion formula and
applied it to the time fractional Black–Scholes equation for
option pricing. In 2024, Kumawat et al. [39] developed a new
integral transform called the Khalouta transform and used it
to find exact results of fractional differential equations using
both Riemann-Liouville and Caputo fractional derivatives.

As stated above, one aim of the present paper is to use 2D

and 3D ADRE models to study air pollution in street tunnels.
Some recent papers relevant to pollution are as follows. In
2017, Oyjindal and Pochai [40] used explicit finite difference
methods to obtain numerical simulations of air pollution near
an industrial zone. In 2018, Suebyat and Pochai [41] used
finite difference methods to solve a 3D air pollution model
for a heavy traffic area under a Bangkok sky train platform.
In 2018, Kusuma et al. [42] developed a finite difference
method to solve 2D advection and 3D diffusion models of
pollution distribution in a street tunnel. In 2020, Pananu
et al. [43] analyzed the convergence of the implicit FTCS
finite difference model for solving 2D ADRE and applied
the scheme to pollutant dispersion in a reservoir. In 2022,
Para et al. [44] proposed an explicit characteristic-based finite
volume method for the numerical solution of 1D and 2D
ADRE and applied it to solve some water pollution problems.

The main aims of the present paper are to develop implicit
FTCS finite difference methods for numerical solution of
integer-order 3D and fractional-order 2D ADRE models and
to give proofs of stability and convergence of the methods.
Then to apply the methods to obtain numerical solutions for
some useful models of air pollution in street tunnels.

This paper is organized as follows. In section II, we
introduce the integer-order 3D ADRE boundary value prob-
lem and then derive the integer-order implicit FTCS method
and give analytical proofs of consistency, stability and con-
vergence of the method. In section III, we introduce the
Caputo fractional-order 2D ADRE boundary value problem
and then derive the fractional-order implicit FTCS method
and give analytical proofs of consistency and stability of the
method. In section IV, we give numerical results for 2D and
3D ADRE models for air pollution in street tunnels using
both the integer-order and fractional-order implicit FTCS
methods. Finally, in section V we present conclusions.

II. INTEGER-ORDER THEORY

We consider the following initial time, space boundary
value problem for the 3D ADRE

∂Φ(x, t)

∂t
+∇ ·

(
vΦ(x, t)−D(x)∇Φ(x, t)

)
+RΦ(x, t) = Q(x, t), (1)

where (x, t) ∈ Ω× [0, T ], the initial time condition is

Φ(x, 0) = ψ(x) for x ∈ Ω, (2)

and the boundary space conditions are either Dirichlet or
Neumann conditions given by

Dirichlet Φ(x, t) = ψD(x, t),

Neumann D(x)
∂Φ(x, t)

∂n
= ψN (x, t)

for (x, t) ∈ ∂Ω× [0, T ]. (3)

In Eqs. (1)–(3), T is a finite time, ∂Ω is the boundary of
the spatial domain Ω, the initial and boundary functions ψ,
ψD and ψN are given functions, v is an advection vector,
D(x) > 0 is a diffusion coefficient function, R is a reaction
constant, Q(x, t) is a given source function, and n is a unit
normal vector at the surface.
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A. Integer-order implicit FTCS method
The first step in developing the finite difference method

is to discretize Ω, ∂Ω and [0, T ]. We assume that the spatial
domain Ω is a rectangular solid of side lengths Lx, Ly and
Lz in the x, y and z directions, respectively, and that there are
Nx step sizes of length ∆x in the x direction, Ny step sizes
of length ∆y in the y direction and Nz step sizes of length
∆z in the z direction. Then Lx = Nx∆x, Ly = Ny∆y and
Lz = Nz∆z and the discretized version of Ω is the spatial
grid

Ωh = {(xi, yj , zk) |xi = i∆x, yj = j∆y, zk = k∆z,

i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny,

k = 0, 1, . . . , Nz}, (4)

and the boundary of the spatial grid is

∂Ωh = {x0 = 0; yj = j∆y, j = 0, 1, . . . , Ny;

zk = k∆z, k = 0, 1, . . . , Nz}
∪{xNx = Lx; yj = j∆y, j = 0, 1, . . . , Ny;

zk = k∆z, k = 0, 1, . . . , Nz}
∪{xi = i∆x, i = 0, 1, . . . , Nx; y0 = 0;

zk = k∆z, k = 0, 1, . . . , Nz}
∪{xi = i∆x, i = 0, 1, . . . , Nx; yNy = Ly;

zk = k∆z, k = 0, 1, . . . , Nz}
∪{xi = i∆x, i = 0, 1, . . . , Nx;

yj = j∆y, j = 0, 1, . . . , Ny; z0 = 0}
∪{xi = i∆x, i = 0, 1, . . . , Nx;

yj = j∆y, j = 0, 1, . . . , Ny; zNz = Lz}.(5)

For the time interval [0, T ], we will assume that there are
N steps of size ∆t = T

N and then

TN = {tn | tn = n∆t, n = 0, 1, . . . , N}. (6)

In the proofs of convergence of the implicit FTCS method,
we will assume that the velocity and diffusion functions are
constant. The component form of the initial-boundary value
problem in Eqs. (1)–(3) is then as follows:

∂Φ

∂t
+ u

∂Φ

∂x
+ v

∂Φ

∂y
+ w

∂Φ

∂z

−Dx
∂2Φ

∂x2
−Dy

∂2Φ

∂y2
−Dz

∂2Φ

∂z2
+RΦ = Q(x, y, z, t),

where Φ = Φ(x, y, z, t),

(x, y, z) ∈ [0, Lx]× [0, Ly]× [0, Lz], t ∈ [0, T ] (7)
and where Φ(x, y, z, 0) = ψ(x, y, z),

Φ(0, y, z, t) = α1(y, z, t), Φ(Lx, y, z, t) = α2(y, z, t),

Φ(x, 0, z, t) = β1(x, z, t), Φ(x, Ly, z, t) = β2(x, z, t),

Φ(x, y, 0, t) = η1(x, y, t), Φ(x, y, Lz, t) = η2(x, y, t). (8)

Here, (u, v, w) are constant velocities in the (x, y, z) di-
rections, (Dx, Dy, Dz) are constant diffusion coefficients in
the (x, y, z) directions, and we have assumed that the initial
function ψ(x, y, z) is a given function and that the space
conditions are Dirichlet conditions with given functions
α1(y, z, t), α2(y, z, t), β1(x, z, t), β2(x, z, t), η1(x, y, t) and
η2(x, y, t).

As the next step, we discretize the domain as
(xi, yj , zk, tn) ∈ Ωh × TN , where the spatial grid Ωh
and boundary grid ∂Ωh are defined in Eqs. (4) and (5),
respectively, and the time grid TN = [0, T ] is defined in (6).

In the remainder of the paper, we will use the following
notation.

Φni,j,k = Φ(xi, yj , zk, t
n). (9)

In the implicit FTCS method, the finite difference approxi-
mations for the time and space derivatives and the truncation
errors are as follows:

∂Φ(xi, yj , xk, t
n)

∂t
=

Φn+1
i,j,k − Φni,j,k

∆t
+O(∆t),

∂Φ(xi, yj , zk, t
n)

∂x
=

Φn+1
i+1,j,k − Φn+1

i−1,j,k

2∆x
+O((∆x)2),

∂2Φ(xi, yj , zk, t
n)

∂x2
=

Φn+1
i+1,j,k − 2Φn+1

i,j,k + Φn+1
i−1,j,k

(∆x)2

+O((∆x)2), (10)

with similar approximations for y and z derivatives. As the
implicit forward-time, central-space name implies, forward-
time and central-space approximations are used for the
derivatives and the space derivatives are approximated at time
tn+1 in the step from time tn to time tn+1.

After substituting the finite difference approximations in
Eq. (10) into the component equation (7)–(8), we obtain the
following implicit FTCS approximation.

Φn+1
i,j,k − Φni,j,k

∆t
+ u

Φn+1
i+1,j,k − Φn+1

i−1,j,k

2∆x
+ v

Φn+1
i,j+1,k − Φn+1

i,j−1,k

2∆y

+w
Φn+1
i,j,k+1 − Φn+1

i,j,k−1

2∆z
−Dx

Φn+1
i+1,j,k − 2Φn+1

i,j,k + Φn+1
i−1,j,k

(∆x)2

−Dy
Φn+1
i,j+1,k − 2Φn+1

i,j,k + Φn+1
i,j−1,k

(∆y)2

−Dz
Φn+1
i,j,k+1 − 2Φn+1

i,j,k + Φn+1
i,j,k−1

(∆z)2
+RΦn+1

i,j,k = Qni,j,k, (11)

subject to Φ0
i,j,k = ξi,j,k, Φn0,j,k = αn1,j,k, ΦnNx,j,k = αn2,j,k,

Φni,0,k = βn1,i,k, Φni,Ny,k = βn2,i,k, Φni,j,0 = ηn1,i,j ,

Φni,j,Nz = ηn2,i,j , (12)

where the truncation errors (T,E.) for (11) are

T.E. = O
(
(∆t), (∆x)2, (∆y)2, (∆z)2

)
. (13)

B. Integer-order convergence analysis
An initial time, space boundary value problem is called

a well-posed problem if it has a unique solution. In this
paper, we will assume that all ADRE problems are well-
posed problems. A fundamental theorem that we use in the
proof of consistency, stability and convergence of the implicit
FTCS method is the following Lax equivalence theorem.

Theorem 2.1: (Lax equivalence theorem [45], [46]) A
consistent finite difference method for a well-posed linear
initial value problem is convergent if and only if it is also a
stable method.
As the first step, we will prove that the implicit FTCS method
is a consistent method for solving the ADRE.

Definition 2.1: Consistent method [45]–[47]
A finite difference method is a consistent method for a partial
differential equation if the finite difference method converges
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to the differential equation as the discrete mesh converges to
the continuous domain.

Theorem 2.2: The implicit FTCS finite difference method
in Eq. (11) is a consistent method for the ADRE in Eq. (7).

Proof: The truncation error in Eq. (13) between the
FTCS method in Eq. (11) and the component form of the
ADRE in Eq. (7) clearly converges to zero as ∆t → 0,
∆x→ 0, ∆y → 0, ∆z → 0. The FTCS method is therefore
a consistent method for the ADRE.
We now prove that the FTCS method is a stable method.

Definition 2.2: Stable [46], [47]
Basically, a finite difference scheme is said to be stable if the
errors made at one iteration of the calculation do not cause
the errors to be magnified as the computations are continued.
In the remainder of this section, for ease of writing and
without loss of generality, we will set ∆x = ∆y = ∆z = h
and let τ = ∆t and assume that Dx = Dy = Dz = D.
We begin by looking at the homogeneous equation with the
source term Qni,j,k = 0. For a homogeneous linear difference
equation, we can use the von Neumann method to prove the
stability of the method [46], [47].
Case I: Homogeneous equation

Proof: Setting Qni,j,k = 0 in equation (11), we obtain
the discretized homogeneous version of (11). We can also
note that the initial conditions in (12) uniquely specify the
solution of (11) at initial time n = 0. Then, following the von
Neumann method [47], we can assume that the solution for
the homogeneous linear difference equation (11) is a linear
combination of solutions of the form

Φni,j,k = λneI(αi+βj+ηk), I =
√
−1, (14)

where λ is an eigenvalue of the linear difference operator.
Substituting the solution (14) into (11), we obtain the equa-
tion for an eigenvalue λ which can be rearranged into the
simpler form

λneI(αi+βj+ηk)

[
λ− 1

τ

]
+ λn+1eI(αi+βj+ηk) ×[

u
eIα − e−Iα

2h
+ v

eIβ − e−Iβ

2h
+ w

eIη − e−Iη

2h

−D
(eIα − 2 + e−Iα

h2
+
eIβ − 2 + e−Iβ

h2
+
eIη − 2 + e−Iη

h2

)
+R
]

= 0. (15)

Then the only nonzero solution of (15) is

λ =
1

1 + τ
h

[
4D
h (A+ IB +Rh)

] , (16)

where A = sin2 α
2 + sin2 β

2 + sin2 η
2 and B = u sinα +

v sinβ + w sin η. Letting γ = 4Dτ
h2 and µ = τ

h , we find that
the magnitude of λ is

|λ| =
1√

[1 + γA+Rτ ]
2

+ [µB]
2
,

≤ 1. (17)

Therefore, the condition for Von Neumann stability of a
homogeneous linear difference equation that the magnitude
of all eigenvalues are less than or equal to 1 has been proved
for arbitrary values of time steps τ and space steps h.
Case II: Nonhomogeneous equation

We now prove the stability of the nonhomogeneous equa-
tion (11). A necessary condition for stability is that the initial

condition function, the boundary functions and the source
term in (11) are bounded, and therefore we will assume that

|ψi,j,k| ≤ ψ, |αn1,j,k| ≤ α1, |αn2,j,k| ≤ α2, |βn1,i,k| ≤ β1,

|βn2,i,k| ≤ β2, |η
n
1,i,j | ≤ η1, |η

n
2,i,j | ≤ η2, |Q

n
i,j,k| ≤ Q (18)

for all values of (i, j, k, n) for some finite non-negative
constants

ψ, α1, α2, β1, β2, η1, η2, Q. (19)

For simplicity, we will also define a maximum bound on all
boundary conditions as

ω = max{α1, α2, β1, β2, η1, η2}. (20)

As the first step in the proof, we obtain bounds on the norms
of |Φn+1

i,j,k| in the iteration from time step n to time step
n + 1. After rearranging the FTCS iteration equation (11)
and setting ∆x = ∆y = ∆z = h, ∆t = τ and Dx = Dy =
Dz = D, we can rewrite the iteration equation in the form

aΦn+1
i−1,j,k + bΦn+1

i,j−1,k + cΦn+1
i,j,k−1 + dΦn+1

i,j,k + eΦn+1
i+1,j,k

+fΦn+1
i,j+1,k + gΦn+1

i,j,k+1 = −Φni,j,k − τQni,j,k, (21)

where

a =

(
uτ

2h
+
Dτ

h2

)
, b =

(
vτ

2h
+
Dτ

h2

)
, c =

(
wτ

2h
+
Dτ

h2

)
,

d =

(
−1− 6Dτ

h2
−Rτ

)
, e =

(
−uτ

2h
+
Dτ

h2

)
,

f =

(
−vτ

2h
+
Dτ

h2

)
, g =

(
−wτ

2h
+
Dτ

h2

)
, (22)

and where the step sizes τ and h can be chosen so that the
coefficients a, b, c, d, e, f, g satisfy the conditions

|d| > |a|+ |b|+ |c|+ |e|+ |f |+ |g|+ δ, δ > 0. (23)

We now prove the following theorem.
Theorem 2.3: If the coefficients of Eq. (21) satisfy the

conditions Eq. (23) then, for some value of δ, the solutions
of Eq. (21) exist and satisfy the inequality

|Φn+1
i,j,k| ≤ max

{
ω,

1

δ
max
i,j,k
|Φni,j,k|+

τQ

δ

}
. (24)

Proof: : Assume that

|Φn+1
i∗,j∗,k∗ | = max

i,j,k
{|Φn+1

i,j,k|}, i = 0, 1, ..., Nx,

j = 0, 1, ..., Ny, k = 0, 1, ..., Nz. (25)

Note: Eq. (25) implies that

|Φn+1
i∗,j∗,k∗ | ≥ max

{
|Φn+1
i∗−1,j∗,k∗ |, |Φ

n+1
i∗+1,j∗,k∗ |,∣∣∣Φn+1

i∗,j∗−1,k∗ |, |Φ
n+1
i∗,j∗+1,k∗ |,

|Φn+1
i∗,j∗,k∗−1|, |Φ

n+1
i∗,j∗,k∗+1|

}
, (26)

and that from the upper bound conditions (18)–(20), we have:

|Φn+1
i,j,k| ≤ max

{
ω, |Φn+1

i∗,j∗,k∗ |
}

(27)
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for all i, j, k. Then, from (21), we have

|d||Φn+1
i∗,j∗,k∗ |

= | − aΦn+1
i∗−1,j∗,k∗ − bΦ

n+1
i∗,j∗−1,k∗ − cΦ

n+1
i∗,j∗,k∗−1

−eΦn+1
i∗+1,j∗,k∗ − fΦn+1

i∗,j∗+1,k∗ − gΦn+1
i∗,j∗,k∗+1

+Φni∗,j∗,k∗ + τQni∗,j∗,k∗ |
≤ |aΦn+1

i∗−1,j∗,k∗ |+ |bΦ
n+1
i∗,j∗−1,k∗ |+ |cΦ

n+1
i∗,j∗,k∗−1|

+|eΦn+1
i∗+1,j∗,k∗ |+ |fΦn+1

i∗,j∗+1,k∗ |+ |gΦn+1
i∗,j∗,k∗+1|

+|Φni∗,j∗,k∗ |+ |τQni∗,j∗,k∗ |
= |a||Φn+1

i∗−1,j∗,k∗ |+ |b||Φ
n+1
i∗,j∗−1,k∗ |+ |c||Φ

n+1
i∗,j∗,k∗−1|

+|e||Φn+1
i∗+1,j∗,k∗ |+ |f ||Φ

n+1
i∗,j∗+1,k∗ |

+|g||Φn+1
i∗,j∗,k∗+1|+ |Φ

n
i∗,j∗,k∗ |+ τ |Qni∗,j∗,k∗ |

≤ (|a|+ |b|+ |c|+ |e|+ |f |+ |g|)|Φn+1
i∗,j∗,k∗ |

+|Φni∗,j∗,k∗ |+ τQ, (28)

and therefore

|Φn+1
i∗,j∗,k∗ | ≤

|Φni∗,j∗,k∗ |+ τQ

|d| − |a| − |b| − |c| − |e| − |f | − |g|

≤
|Φni∗,j∗,k∗ |

δ
+
τQ

δ
. (29)

Then, from (18)–(20), and since

|Φni∗,j∗,k∗ | ≤ max
i,j,k
|Φni,j,k| and |Φn+1

i∗,j∗,k∗ | = max
i,j,k
|Φn+1
i,j,k|,

(30)
we have

|Φn+1
i,j,k| ≤ |Φ

n+1
i∗,j∗,k∗ | ≤ max

{
ω,

1

δ
max
i,j,k
|Φni,j,k|+

τQ

δ

}
(31)

for all i, j, k. The proof is complete.
Note: Theorem 2.3 proves that if the maximum norm of the
solution at the previous time step n exists, then the maximum
norm of the solution at time step n+ 1 also exists and is a
bounded multiple of the maximum norm of the solution at
the previous time step.

By iteration of the result in Eq. (24) and using the initial
condition bound on the initial condition in (18) that |Φ0

i,j,k| =
|ψi,j,k| ≤ ψ, we have that

|Φ1
i,j,k| ≤ max

i,j,k
|Φ1
i,j,k| ≤ max

{
ω,

1

δ
ξ +

τQ

δ

}
,

|Φ2
i,j,k| ≤ max

i,j,k
|Φ2
i,j,k| ≤ max

{
ω,

1

δ
max
i,j,k
|Φ1
i,j,k|+

τQ

δ

}
,

...

|ΦNi,j,k| ≤ max
i,j,k
|ΦN−1
i,j,k | ≤ max

{
ω,

1

δ
max
i,j,k
|ΦN−1
i,j,k |+

τQ

δ

}
, (32)

where N is the total number of steps. It is clear from the
iteration in (32) that increasing the value of δ in Eq. (23),
i.e., increasing the coefficient |d| relative to the coefficients
|a|, |b|,|c|,|e|,|f |,|g|, increases the accuracy and stability of
the method.

Finally, we note that we have proved that the implicit
FTCS finite difference method is consistent and stable and
therefore by the Lax Equivalence Theorem, the method is
also convergent.

III. CAPUTO FRACTIONAL-TIME THEORY

For simplicity, we consider the following Caputo
fractional-time 2-dimensional version of the integer-order
ADRE in Eqs. (1)–(3). We also assume that the advection
velocity is a constant u in the x-direction.

∂αφ(x, t)
∂tα

+ u
∂φ(x, t)
∂x

−D
(
∂2φ(x, t)
∂x2

+
∂2φ(x, t)
∂y2

)
+Rφ(x, t) = Q(x, t),

x = (x, y) ∈ Ω = (0, L1)× (0, L2), t ∈ (0, T ], (33)

with initial and boundary conditions:

φ(x, y, 0) = ψ(x, y), (x, y) ∈ Ω, (34)
φ(x, y, t)|∂Ω = 0, 0 ≤ t ≤ T, (35)

and where the Caputo fractional-time derivative of order 0 <
α < 1 is defined by

∂αφ(x, y, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂φ(x, y, ξ)

∂ξ

dξ

(t− ξ)α
. (36)

A. Fractional-order implicit FTCS method

The following derivation is a generalization of the method
discussed in Zhuang and Liu [48] for a Caputo fractional
diffusion equation.

In the fractional differential equation (33), we discretize
the Caputo fractional-time derivative in (36) using the dis-
cretization given in section (II-A) as follows:

∂αφ(xi, yj , t
n+1)

∂tα

=
1

Γ(1− α)

n∑
s=0

∫ ts+1

ts

∂φ(xi, yj , ξ)

∂ξ

dξ

(tn+1 − ξ)α
, (37)

where ts = sτ, s = 0, 1, 2, . . . , N . We then approximate
the partial derivative in Eq. (37) by the finite difference
approximation

∂φ(xi, yj , ξ)

∂ξ
=
φ(xi, yj , t

s+1)− φ(xi, yj , t
s)

τ
+O(τ) (38)

and obtain∫ ts+1

ts

∂φ(xi, yj , ξ)

∂ξ

dξ

(tn+1 − ξ)α

=
φ(xi, yj , t

s+1)− φ(xi, yj , t
s)

τ

∫ ts+1

ts

dξ

(tn+1 − ξ)α

=
τ−α

(
φ(xi, yj , t

s+1)− φ(xi, yj , t
s)
)

(1− α)
bn−s +O(τ), (39)

where bn−s = (n− s+ 1)1−α − (n− s)1−α. Therefore,

∂αφ(xi, yj , t
n+1)

∂tα

=
τ−α

(1− α)Γ(1− α)

n∑
s=0

(
φ(xi, yj , t

s+1)− φ(xi, yj , t
s)
)
bn−s

+O(τ). (40)

Next, replacing (1 − α)Γ(1 − α) = Γ(2 − α) and
substituting s = n − s and bs = (s + 1)1−α − s1−α in
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the sum, we have

∂αφ(xi, yj , t
n+1)

∂tα

=
τ−α

Γ(2− α)

n∑
s=0

bs
(
φ(xi, yj , t

n−s+1)− φ(xi, yj , t
n−s)

)
+O(τ)

= Lαh,τφ(xi, yj , t
n+1) +O(τ). (41)

Therefore, using (41), we have that the truncation error in
the Caputo fractional derivative is∣∣∣∣∂αφ(xi, yj , t

n+1)

∂tα
− Lαh,τφ(xi, yj , t

n+1)

∣∣∣∣ ≤ Cτ, (42)

where C is a constant greater than or equal to the sum of
the absolute values of the errors in all terms.

Then, substituting the fractional time approximation
Eq. (41) and the centered space finite differences in Eq. (10)
into Eq. (33), we obtain, after rearranging, the following
implict FTCS approximation for (33):

φn+1
i,j − φ

n
i,j +

n∑
s=1

bs
(
φn−s+1
i,j − φn−si,j

)
+ταΓ(2− α)u

(
φn+1
i+1,j − φ

n+1
i−1,j

2∆x

)

= ταΓ(2− α)D

(
φn+1
i+1,j − 2φn+1

i,j + φn+1
i−1,j

(∆x)2

+
φn+1
i,j+1 − 2φn+1

i,j + φn+1
i,j−1

(∆y)2

)
−ταΓ(2− α)Rφn+1

i,j + ταΓ(2− α)Qn+1
i,j , (43)

where φni,j = φ(xi, yj , t
n) and i = 1, 2, . . . , N1 − 1; j =

1, 2, . . . , N2 − 1; n = 1, 2, . . . , N − 1.
Finally, letting

P1 =
uταΓ(2− α)

2∆x
, P2 =

DταΓ(2− α)

(∆x)2
, P3 =

DταΓ(2− α)

(∆y)2
,

(44)
we obtain the following implicit fractional-time difference

equation approximation (FDM) for (33).

(P1 − P2)φn+1
i+1,j − (P1 + P2)φn+1

i−1,j

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]φn+1
i,j

−P3(φn+1
i,j+1 + φn+1

i,j−1)

= φni,j −
n∑
s=1

bs
(
φn+1−s
i,j − φn−si,j

)
+ ταΓ(2− α)Qn+1

i,j .

(45)

From the definition of bs = (s+ 1)1−α − s1−α, we have
the following result.

Lemma 3.1: The coefficients bs(s = 0, 1, 2, . . .) satisfy:

(1) b0 = 1, bs > 0, s = 0, 1, 2, . . . ;

(2) bs > bs+1, s = 0, 1, 2, . . . .

Hence, for n = 0:

(P1 − P2)φ1
i+1,j − (P1 + P2)φ1

i−1,j

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]φ1
i,j

−P3(φ1
i,j+1 + φ1

i,j−1)

= ψ(xi, yj) + ταΓ(2− α)Q1
i,j , (46)

and for n ≥ 1:

(P1 − P2)φn+1
i+1,j − (P1 + P2)φn+1

i−1,j

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]φn+1
i,j

−P3(φn+1
i,j+1 + φn+1

i,j−1)

= (b0 − b1)φni,j +
n−1∑
s=1

(bs − bs+1)φn−si,j + bnφ
0
i,j

+ταΓ(2− α)Qn+1
i,j , (47)

where i = 1, 2, . . . , N1; j = 1, 2, . . . , N2.

B. Fractional-order convergence analysis
As stated in the Lax theorem in subsection II-B, a con-

sistent finite difference method converges if and only if it is
stable.

Using Definition 2.1, we note that the method is consistent
since the truncation errors in the approximations for the
Caputo derivative (Eq. (42)) and the space derivatives both
go to zero as the step sizes τ , ∆x and ∆y go to zero, and
therefore the trucation errors in the implicit fractional FTCS
method also go to zero.

In discussing the errors in the proof of stability, we will
use φni,j to mean the exact solution of (46) and (47) and φ̂ni,j
to mean an approximate computed solution of (46) and (47)
at a mesh point (xi, yj , t

n). Then, we can write the error as

eni,j = φni,j − φ̂ni,j , i = 0, 1, 2, . . . , N1; j = 0, 1, 2, . . . , N2;

n = 0, 1, 2, . . . , N. (48)

We will assume that there is an initial “machine error” in
the initial conditions of e0

i,j = ψ(xi, yj)− φ̂0
i,j . We will now

prove that solving the discretized equations by iteration for
n = 0, 1, 2, . . . , N is a stable process. From (46) and (47),
we have

(P1 − P2)e1
i+1,j − (P1 + P2)e1

i−1,j

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]e1
i,j

−P3(e1
i,j+1 + e1

i,j−1)

= e0
i,j , (49)

(P1 − P2)en+1
i+1,j − (P1 + P2)en+1

i−1,j

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]en+1
i,j

−P3(en+1
i,j+1 + en+1

i,j−1)

= (b0 − b1)eni,j +

n−1∑
s=1

(bs − bs+1)en−si,j + bne
0
i,j , (50)

which can be written in matrix form as
AE1 = E0,
AEn+1 = (b0 − b1)En + (b1 − b2)En−1 + · · ·

+(bn−1 − bn)E1 + bnE0,
E0,

(51)

where

En =


En1
En2
...

EnN1−1

 and Eni =


eni,1
eni,2

...
eni,N2−1

 , i = 1, 2, . . . , N1,

(52)
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and where A = [Ai,j ] is the matrix of coefficients in Eq. (50).
Since these matrices can be very big and the coefficients can
be easily obtained from Eq. (45) or (50), we will not give
them here.

Then, the following result can be proved using mathemat-
ical induction.

Theorem 3.1: ||En||∞ ≤ ||E0||∞, n = 1, 2, 3, . . . .

Proof: We first note that the coefficients P1, P2, P3 > 0
and that the step sizes ∆x and τ can be chosen so that
P1 ≤ P2. Then, by definition of infinity norm,

‖En‖∞ = max
1≤i≤N1−1; 1≤j≤N2−1

|eni,j |. (53)

Next, we define

|e1
p,q| = max

1≤i≤N1−1; 1≤j≤N2−1
|e1
i,j |

= ‖E1‖∞ (54)

and then, since

(P1 − P2)− (P1 + P2) + [1 + 2P2 + 2P3 + ταΓ(2− α)R]

−2P3 − ταΓ(2− α)R = 1, (55)

we have from (49) that

|e1
p,q| =

{
(P1 − P2)− (P1 + P2)

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]

−2P3 − ταΓ(2− α)R
}
|e1
p,q|

= (P1 − P2)|e1
p,q| − (P1 + P2)|e1

p,q|
+[1 + 2P2 + 2P3 + ταΓ(2− α)R]|e1

p,q|
−P3(|e1

p,q|+ |e1
p,q|)− ταΓ(2− α)R|e1

p,q|
≤ (P1 − P2)|e1

p+1,q| − (P1 + P2)|e1
p−1,q|

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]|e1
p,q|

−P3(|e1
p,q+1|+ |e1

p,q−1|)

≤
∣∣∣(P1 − P2)e1

p+1,q − (P1 + P2)e1
p−1,q

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]e1
p,q

−P3(e1
p,q+1 + e1

p,q−1)
∣∣∣

= |e0
p,q| ≤ ‖E0‖∞, (56)

and therefore

‖E1‖∞ = |e1
p,q‖ ≤ ‖E0‖∞. (57)

We now prove that if

‖Es‖∞ ≤ ‖E0‖∞, s = 1, 2, . . . , n (58)

then

‖Es‖∞ ≤ |E0‖∞, s = 1, 2, . . . , n+ 1 (59)

Letting

|en+1
p,q | = ‖En+1‖∞ = max

1≤i≤N1−1;1≤j≤N2−1
|en+1
i,j |, (60)

we have from (49) and (50) and using Lemma 3.1 that

|en+1
p,q | = (P1 − P2)|en+1

p,q | − (P1 + P2)|en+1
p,q |

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]|en+1
p,q |

−P3(|en+1
p,q |+ |en+1

p,q |)
−ταΓ(2− α)R|en+1

p,q |
≤ (P1 − P2)|en+1

p+1,q| − (P1 + P2)|en+1
p−1,q|

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]|en+1
p,q |

−P3(|en+1
p,q+1|+ |e

n+1
p,q−1|)

≤
∣∣∣(P1 − P2)en+1

p+1,q − (P1 + P2)en+1
p−1,q

+[1 + 2P2 + 2P3 + ταΓ(2− α)R]en+1
p,q

−P3(en+1
p,q+1 + en+1

p,q−1)
∣∣∣

=
∣∣∣(b0 − b1)enp,q +

n−1∑
s=1

(bs − bs+1)en−sp,q

+bne
0
p,q

∣∣∣
≤ (b0 − b1)|enp,q|+

n−1∑
s=1

(bs − bs+1)|en−sp,q |

+bn|e0
p,q|

≤ (b0 − b1)‖En‖∞

+
n−1∑
s=1

(bs − bs+1)‖En−s‖∞ + bn‖E0|∞

≤ {b0 − b1 +
n−1∑
s=1

(bs − bs+1) + bn}|E0|∞

= ‖E0‖∞, (61)

since b0 − b1 +
∑n−1
s=1 (bs − bs+1) + bn = b0 = 1.

Therefore, we have proved that if

‖Es‖∞ = |esp,q| ≤ ‖E0|∞, s = 1, 2, . . . , n (62)

then
‖En+1‖∞ = |en+1

p,q | ≤ ‖E0|∞ (63)

Therefore, since we have proved that ‖E1‖∞ ≤ ‖E0|∞, we
have proved by induction that

‖En‖∞ ≤ ‖E0|∞, n = 1, 2, . . . , N. (64)

Hence, the following theorem has been proved.
Theorem 3.2: The implicit difference approximation de-

fined by Eq. (45) is stable if the step sizes satisfy the
inequality P1 = uταΓ(2−α)

2∆x ≤ εταΓ(2−α)
(∆x)2 = P2.

Therefore, since the error equation is stable the errors
in the numerical solution by the implicit fractional FTCS
method will be bounded by the initial “machine error”.

We note here that the first and second authors have derived
an explicit proof that the exact solution of the discretized
equations (45) converge to the exact solution of the partial
differential equations (33)–(35) in the limit as the step sizes
τ,∆x,∆y → 0. However, we will not include the proof in
this paper.

IV. NUMERICAL RESULTS

A. Integer-order

In this section, the implicit FTCS finite difference method
is used to obtain numerical solutions for the following cases
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(homogeneous and nonhomogeneous) of three-dimensional
ADRE problems of air pollution. All programs for the
numerical solutions have been written in Matlab.

Problem 1: We solve an air pollution model for a tunnel
of length L (x direction), width W (y direction) and height
H (z direction) corresponding to the ADRE in Eq. (7), where
Φ = Φ(x, y, z, t) [kg/m3] is the air pollutant concentration at
(x, y, z) [m] and time t [s], (u, v, w) are wind velocity com-
ponents [m/s] in (x, y, z) directions, Dx and Dy are constant
diffusion coefficients in the horizontal direction [m2/s], Dz is
a constant diffusion coefficient in the z−direction (vertical)
[m2/s], R is a reaction coefficient, and Q(x, y, z, t) is the
rate of change of concentrations of sources or sinks of air
pollutants [kg/m3·s].

Then, using the results for the implicit FTCS method from
section II-A the corresponding FTCS equation is the same
as Eq. (11).

For the air pollution models, we assume that the initial
condition is

Φ(x, y, z, 0) = 0, 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1,
(65)

and that the boundary conditions are as shown in Table I.

TABLE I
BOUNDARY CONDITIONS

Boundary Boundary condition Value

Entrance gate :
x = 0, 0 ≤ y < 0.5, 0 ≤ z ≤ 1 Φ(0, y, z, t) 0

Entrance gate :
x = 0, 0.5 ≤ y ≤ 1, 0 ≤ z ≤ 1 Φ(0, y, z, t) 1

Exit gate :
x = 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 ∂Φ

∂x
(1, y, z, t) 0

Right side wall :
0 ≤ x < 0.3, y = 0, 0 ≤ z ≤ 1 Φ(x, 0, z, t) 0

Right side wall :
0.3 ≤ x ≤ 0.6, y = 0, 0 ≤ z ≤ 1 Φ(x, 0, z, t) 1

Right side wall :
0.6 < x ≤ 1, y = 0, 0 ≤ z ≤ 1 Φ(x, 0, z, t) 0

Left side wall :
0 < x < 1, y = 1, 0 ≤ z ≤ 1 ∂Φ

∂y
(x, 1, z, t) 0

Ground :
0 < x < 1, 0 < y < 1, z = 0 ∂Φ

∂z
(x, y, 0, t) 0

Ceiling :
0 < x < 1, 0 < y < 1, z = 1 ∂Φ

∂z
(x, y, 1, t) 0

Case 1 : We consider the 3D ADRE (7). By taking
w = 0, R = 0, Q = 0, L = 1,W = 1 and H = 1, Eq. (7)
reduces to the following 2D advection 3D diffusion equation
for transport of pollutants in the street tunnel problem
discussed in [42], [49].

∂Φ

∂t
+ u

∂Φ

∂x
+ v

∂Φ

∂y
−Dx

∂2Φ

∂x2
−Dy

∂2Φ

∂y2
−Dz

∂2Φ

∂z2

= 0, 0 < t < T. (66)

This partial differential equation with initial condition (65)
and boundary conditions in Table I comes from a model
of pollution distribution in a street tunnel where there is a
steady wind flowing in the x and y directions and there is
no pollutant flow through the solid side-walls or the solid
base and roof of the tunnel. We use the nondimensionalised
parameters ∆x = ∆y = ∆z = 0.1,∆t = 0.005, Dx =
Dy = Dz = 0.5, u = 0.6, v = 0.4 and time T = 20.

The numerical solutions and the contour plots of the
problem obtained using the implicit FTCS scheme in Eq. (11)
are plotted in Figs. 1 and 2. We have tested the accuracy
of our numerical solutions by comparing them with those of
Kusuma et al. [42] and found that there was good agreement.
It can be seen from the contour plots that the qualitative
behaviors in the plots are similar for all diffusion coefficient
values, but that there are considerable differences in detail.
In particular, an increase in the diffusion coefficient gives,
as expected, a more uniform spread of the pollution.

Case 2: In this problem, we consider the three-dimensional
advection-diffusion-reaction equation in Eq. (7) for the spe-
cial case of advection only in the horizontal directions, i.e.,
for w = 0. Otherwise, the meaning of all symbols is the
same as described above.

This case of partial differential equation and initial condi-
tion (65) and boundary conditions in Table I comes from a
model of pollution distribution in a street tunnel where there
is a steady wind blowing in the x and y directions and there
is no flux of pollutant through the solid side-walls or the solid
base and roof of the tunnel. In the numerical simulations, we
use the nondimensionalised parameters ∆x = ∆y = ∆z =
0.1,∆t = 0.005, Dx = Dy = Dz = 0.2, u = 0.6, v = 0.4
and time T = 20.

We have computed the numerical solutions of this model
using the implicit FTCS method for the following cases.
The plots of the numerical solutions for the cases below are
qualitatively very similar to the plots in Fig. 1 and therefore
we will not repeat them.

1) R = 0.05 and Q = 0.007. The contour plot for this
case is shown in Fig. 3 at a height z = 0.2 meters.

2) R = 0.5 and Q = −e−t. The contour plot for this case
is shown in Fig. 4 at a height z = 0.2 meters.

It can be seen from the contour plots in Figs. 3 and 4 that
the solutions for the different Q and R values show similar
qualitative behavior but with differences in detail.
Finally, we show numerical solutions for z = 0.2 m for
Q = 0.007 and R = 0.05, 0.1, 0.5. The 2D plots for this case
are shown in Figs. 5 (a) at y = 0.5 m and (b) at x = 0.5 m.

It can be clearly seen from Fig. 5 that at the value of
Q = 0.007 there is a marked decrease in pollution as the
value of the reaction coefficient R is increased.
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Problem 2: In this problem, we consider an advection-
diffusion model of air pollution in a tunnel with air flow in
the x and y directions, diffusion in x, y and z directions,
but with no reaction or source terms. The three-dimensional
advection-diffusion-reaction equation with w = 0, R =
0, Q = 0 can then be written as [50]

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= Dx

∂2C

∂x2
+Dy

∂2C

∂y2
+Dz

∂2C

∂z2
.

(67)

In this model, the length is L = 192 meters, the width is
W = 26 meters and an entrance gate in the right-hand side
wall has been added to allow air flow in the y direction. We
assume ∆x = ∆y = ∆z = 2 m, ∆t = 0.06 sec, Dx =
Dy = 0.1592 m2/sec, Dz = 0.05 m2/sec, u = 2.7778 m/sec,
and v = u

20 m/sec.
The initial condition is

C(x, y, z, 0) = 0, 0 ≤ x ≤ 192; 0 ≤ y ≤ 26; 0 ≤ z ≤ 6,
(68)

and the boundary conditions are shown in Table II.

TABLE II
BOUNDARY CONDITIONS FOR PROBLEM 2

Boundary Boundary condition Value

Entrance gate (x = 0) :
x = 0, 0 < y < 26, 0 < z < 6 C(0, y, z, t) 1

Exit gate :
x = 192, 0 < y < 26, 0 < z < 6 ∂C

∂x
(192, y, z, t) −0.01

Right side wall :
0 < x < 64, 129 < x < 192, y = 0, C(x, 0, z, t) 0
0 < z < 6

Right side wall gap :
64 ≤ x ≤ 129, y = 0, 0 < z < 6 C(x, 0, z, t) 0.5

Left side wall :
0 < x < 192, y = 26, 0 < z < 6 ∂C

∂y
(x, 26, z, t) 0

Ground :
0 < x < 192, 0 < y < 26, z = 0 ∂C

∂z
(x, y, 0, t) 0

Platform ceiling :
0 < x < 192, 4 < y < 17, z = 6 ∂C

∂z
(x, y, 6, t) 0

Ceiling parallel gaps :
0 < x < 192, 0 < y ≤ 4, ∂C

∂z
(x, y, 6, t) -0.01

17 ≤ y < 26, z = 6

We have computed the air pollutant concentration levels
for Problem 2 for the boundary conditions in Table II and
plotted the results at t = 30 seconds and t = 120 seconds.
The numerical solutions and contour plots at t = 30 seconds
are shown in Fig. 6 (a) and (b) and at t = 120 seconds in
Fig. 7 (a) and (b).

We have also examined the effect of changing the condi-
tions on the left side wall (y = 26). The new conditions at

y = 26 are as follows.

Left side wall:
∂C

∂y
(x, 26, z, t) = −0.25C(x, 26, z, t), (69)

Left side wall:
∂C

∂y
(x, 26, z, t) = −0.5C(x, 26, z, t). (70)

A comparison of the solutions for the original left side
wall conditions in Table II and the conditions in Eqs. (69)
and (70) are shown in Fig. 8 at z = 4 m and t = 120 s for
y = 26 m. It can be seen that the effects of changing the
boundary conditions at the left side wall decrease rapidly as
the distance from the wall increases.

B. Fractional-order

We use the implicit FTCS scheme to solve the Caputo
fractional-time version of ADRE. We will consider both the
one-dimensional and the two-dimensional case. The two-
dimensional model is as follows.
∂αφ(x, t)
∂tα

+ ū
∂φ(x, t)
∂x

−Dx
∂2φ(x, t)
∂x2

−Dy
∂2φ(x, t)
∂y2

+Rφ(x, t) = Q(x, t),
x = (x, y) ∈ (0, L1)× (0, L2), t ∈ (0, T ], (71)

where ∂αφ(x,t)
∂tα is the Caputo fractional-order time derivative

of order α, and Dx, Dy are diffusion coefficients, R is the
reaction term and Q(x, t) is the source term.

The implicit difference equation approximation (FDM) is

(P1 − P2)φn+1
i+1,j − (P1 + P2)φn+1

i−1,j +
[
1 + 2P2 + 2P3

+ ταΓ(2− α)R
]
φn+1
i,j − P3(φn+1

i,j+1 + φn+1
i,j−1)

= φni,j −
n∑
s=1

bs
(
φn+1−s
i,j − φn−si,j

)
+ ταΓ(2− α)Qn+1

i,j ,

(72)

where

P1 =
ūταΓ(2− α)

2∆x
, P2 =

Dxτ
αΓ(2− α)

(∆x)2
,

P3 =
Dyτ

αΓ(2− α)

(∆y)2
, bs = (s+ 1)1−α − s1−α. (73)

After rearrangement, Eq. (72) can be written in the form

φn+1
i,j + S1φ

n+1
i−1,j + S2φ

n+1
i+1,j + S3(φn+1

i,j−1 + φn+1
i,j+1)

= S4

(
φni,j −

n∑
s=1

bs
(
φn+1−s
i,j − φn−si,j

))
+ S5Q

n
i,j ,

(74)

where

S1 = (−P1 − P2)/B, S2 = (P1 − P2)/B,

S3 = −P3/B, S4 = 1/B,

S5 = (ταΓ(2− α))/B, (75)

and

B = 1 +
2Dx∆t

(∆x)2
+

2Dy∆t

∆y)2
+ τΓ(2− α)R. (76)
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Fig. 6. Pollutant distribution and contour plot for Problem 2 with advection only in x and y directions at z = 4 m with left side wall boundary condition
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(x, 26, z, t) = 0 at t = 30 sec
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Problem 3: Consider the fractional time one dimensional
advection-diffusion-reaction equation in Eq. (72) with ū =
1, Dx = 1, Dy = 0, R = 0 on [0, 1]× [0, 1] [51]

∂αφ

∂tα
+
∂φ

∂x
− ∂2φ

∂x2
= Q. (77)

The initial and boundary conditions are

φ(x, 0) = 0, x ∈ [0, 1] (78)
φ(0, t) = 0, φ(1, t) = t3, t ∈ (0, 1], (79)

where 0 < α < 1, and the source term is

Q(x, t) =
6

Γ(4− α)
x2t3−α + 2t3(x− 1). (80)

The exact solution of Eq. (77) is

φ(x, t) = x2t3. (81)

After rearrangement, the implicit FTCS scheme of FDM
from Eq. (74) can be written as

φn+1
i,j + S1φ

n+1
i−1,j + S2φ

n+1
i+1,j

= S3

(
φni,j −

n∑
s=1

bsφ
n+1−s
i,j +

n∑
s=1

bsφ
n−s
i,j

)
,+ S4Q

n
i,j ,

(82)

where

S1 = (−P1− P2)
/(

1 +
2Dx∆t

(∆x)2

)
,

S2 = (P1− P2)
/(

1 +
2Dx∆t

(∆x)2

)
,

S3 = 1
/(

1 +
2Dx∆t

(∆x)2

)
,

S4 = ταΓ(2− α)
/(

1 +
2Dx∆t

(∆x)2

)
.

Figs. 9 (a)-(b) show a comparison of the numerical
solution with the exact solution and maximum of absolute
error, respectively. We assume that ∆t = 1/500 and
∆x = 1/100 for α = 0.1 at t = 0.5667, 0.9 and 1. It can
be seen that the errors between the exact solution and the
computed solution are of order 10−3 at all times.

Problem 4: We consider the following two dimensional
fractional time diffusion-reaction equation

∂αφ(x, y, t)

∂tα
= Dx

∂2φ

∂x2
+Dy

∂2φ

∂y2
−Rφ+Q(x, y, t),

(x, y) ∈ Ω× (0, T ], φ|∂Ω = 0,

φ(x, y, 0) = sinπx sinπy, (x, y) ∈ Ω
(83)

where Q(x, y, t) = 25t1.6

12Γ(1−α) (t2 + 2) sinπx sinπy,R =

0.01,Ω = {(x, y)|0 < x < 1, 0 < y < 1} and ∂Ω is the
boundary of Ω.

After rearranging, the implicit FTCS scheme of Eq. (83)
can be written as follows.

φk+1
i,j + P1(φk+1

i+1,j − φ
k+1
i−1,j) + P2(φk+1

i,j+1 + φk+1
i,j−1)

= P3

(
φki,j −

k∑
s=1

bsφ
k+1−s
i,j +

k∑
s=1

bsφ
k−s
i,j

)
+ P4

(
ταΓ(2− α)Qk+1

i,j

) (84)

where bs = (s+ 1)1−α − s1−α

r1 =
τα

(∆x)2
Γ(2− α), r2 =

τα

(∆y)2
Γ(2− α),

P1 = −r1/(1 + 2r1 + 2r2 + ταΓ(2− α)R),

P2 = −r2/(1 + 2r1 + 2r2 + ταΓ(2− α)R),

P3 = 1/(1 + 2r1 + 2r2 + ταΓ(2− α)R),

P4 = τα/(1 + 2r1 + 2r2 + ταΓ(2− α)R).

Comparisons of numerical solutions for α = 0.6, 0.7, 0.8
and 0.9 with R = 0.01 and R = 10 are shown in Figs. 10
(a)-(b), respectively. It can be seen that α = 0.6 gives the
maximum of the solutions for the middle range of x values
for both R = 0.01 and R = 10. Comparisons of numerical
solutions for R = 0.01 and R = 10 are shown for α =
0.6, 0.7, 0.8 and 0.9 in Figs. 11 (a)-(d), respectively. It can
be seen that R = 10 gives a lower value of the solution φ
than R = 0.01 for all values of α.

V. CONCLUSIONS

In this article, we have studied the implicit forward
time central space (FTCS) finite difference method for
solving integer-order three-dimensional advection-diffusion-
reaction equations and for solving Caputo fractional-time
two-dimensional advection-diffusion-reaction equations. We
have proved consistency, stability and convergence of the
integer-order method and consistency and stability for the
fractional-order method. For the integer-order applications,
we have solved 3-D air pollutant concentration problems for
two cases of air pollution in traffic tunnels for a range of
different source terms Q and reaction terms R. For case 1,
we assumed that Q = R = 0, that there was advection
in the x and y directions and diffusion in the x, y and z
directions. We then compared our numerical solutions of
Dx = Dy = Dz = 0.2 with previously published results of
Kusuma et al. [42] and found that there was good agreement.
For case 2, we considered that Q and R were non-zero, that
there was advection in the x and y directions and diffusion
in the x, y and z directions. We found that, as expected, an
increase in diffusion resulted in a more uniform spread of
pollution and that for a given pollution source Q an increase
in the reaction term R increased the rate of reduction of
the pollutant concentrations in the tunnel. For the integer-
order method, we have shown that with suitable choices
of time and space step sizes the implicit FTCS method is
an efficient, accurate and convergent numerical method for
solving 3D advection-reaction-diffusion equations. For the
Caputo fractional-time method, we considered ADRE models
for 1-D and 2-D problems and obtained numerical solutions
using the implicit FTCS finite difference method. In the 1-D
problems, good agreement was found between the numerical
solutions and known exact solutions. For the 2-D problems,
we assumed that α = 0.6, 0.7, 0.8, 0.9 and R = 0.01, 10.

In a comparison of α = 0.6, 0.7, 0.8 and 0.9 with
R = 0.01 and R = 10, we found that α = 0.6 gives the
maximum of the solutions for the middle range of x values
for both R = 0.01 and R = 10. For R = 0.01 and R = 10
with α = 0.6, 0.7, 0.8 and 0.9, we found that R = 10 gives
a lower value of the solution φ than R = 0.01 for all values
of α.
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