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Abstract—Anomaly monitoring in distributed computing s-
cenarios is facing significant challenges due to issues of data
privacy and security. To enhance the efficiency of federated
learning, it is critical to develop a lightweight anomaly de-
tection model. We propose a lightweight anomaly detection
model based on federated learning, which ensures detection
efficiency while protecting data privacy. In the local model,
the model reduces network structure and accelerates inference
speed through model fusion. And through the decomposition
of the attention mechanism, the local features of the data are
enhanced, improving the detection accuracy. In the federated
framework, model compression is used to reduce the number
of communication rounds and the number of parameters per
round. Finally, comparative experiments on several publicly
available datasets have shown a significant improvement in
model performance compared to the baseline.

Index Terms—Federated Learning, Anomaly Detection, Time
Series, Privacy Protection.

I. INTRODUCTION

DUE to the continuous improvement of distributed com-
puting technology and the advancement of processing

algorithms, the demand for data anomaly detection is con-
stantly increasing. Therefore, anomaly detection has emerged
as a vital data mining task [1]. Moreover, the complexity
of industrial control systems (ICS) and Internet of Things
(IoT) devices has significantly escalated. Anomaly detection
in privacy protection mode can quickly identify unusual
system behavior, ensuring the continuity of system operation
and safeguarding the privacy and security of enterprises and
individuals [2].

At the same time, the lack of labeled data, the diversity
of abnormal phenomena, and the uniqueness of data in
various fields make it more difficult to establish a robust
and privacy based anomaly detection model [3]. Traditional
statistical modeling methods, such as SAND, use clustering
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and statistical analysis for anomaly detection. Contempo-
rary methods, such as LSTM-NDT [4], use short-term and
long-term memory neural networks for anomaly detection.
Transformers [5] use a multi-head attention mechanism to
encode input sequences, which has higher parallelism and
computational efficiency compared to traditional network
models. The generate adversarial networks (GAN) [6] model
can train a more accurate detection model without label data,
but it is difficult to converge and prone to pattern collapse. In
the field of user privacy protection, federated learning (FL)
[7] has emerged as a widespread method and has been widely
applied in IoT and healthcare.

We propose a lightweight anomaly detection model based
on federated learning, which ensures detection efficiency
while protecting data privacy. Our contributions of this work
can be summarized as follows: 1) We integrate the auto-
encoder and transformer into local anomaly detection, reduc-
ing the overall network structure and achieving a lightweight
model while accelerating inference speed. 2) We decompose
the multi-head attention mechanism in transformer into a
parallel structure consisting of attention blocks and convo-
lution blocks, enhancing the local features of the data and
improving detection accuracy. 3) We incorporate the model
compression algorithm into federated framework to reduce
the number of communication rounds and the number of
parameters per round, achieving model lightweight.

II. RELATED WORK

In the field of data mining, anomaly detection in time-
series data has always been a very important research area.
Currently, unsupervised machine learning methods are wide-
ly used for anomaly detection in time series data. LSTM-
NDT proposed by Tuli et al. [4] took use of LSTM to
predict data with input time series, and proposes an unsu-
pervised and non parametric threshold method to explain
the predictions generated by LSTM networks. Qi et al.
[8] put forward DAGMM by a deep automatic encoding
Gaussian mixture model for dimensionality reduction and
feature extraction in the feature space, and uses recursive
networks for modeling. ANNET proposed by Sivapalan et
al. [9] proposed a lightweight machine learning for anomaly
detection of edge sensors in the IoT framework. In this
work, it combines multi-layer perceptrons with long-term
and short-term memory networks to obtain global and in-
stantaneous features respectively, improving computational
efficiency while completing tasks. The core idea of Omni-
Anomaly proposed by Su et al. [10] is to reconstruct data
through the use of random recurrent neural networks and
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planar normalized flows, and to propose a new threshold
adjustment method (POT). Compared to previous methods,
this method significantly improves detection accuracy, but
significantly slows down inference speed.

Generative adversarial network is a structure with both
good generative and judgmental abilities, which reduces the
impact of insufficient label data. MAD-GAN proposed by Li
et al. [11] combines LSTM and GAN, where the generator
and discriminator play games with each other, while com-
bining prediction error and discriminator loss. This method
significantly improves performance and model robustness.
USAD proposed by Audibert et al. [12] proposed a combi-
nation of automatic encoders and generative adversarial net-
works, which achieves unsupervised anomaly detection with
high accuracy, fast speed, and low cost compared to previous
methods. With the increasing rise of graph convolutional neu-
ral networks and transformer structures, GDN proposed by
Deng et al. [13] considered the relationship between different
dimensions of high-dimensional data. In order to obtain the
correlation between different dimensions of data, attention
mechanism is combined with graph convolutional neural net-
works, which significantly improves the performance of this
method.TranAD proposed by Tuli et al. [14] combined the
transformer structure with the generative adversarial network,
which not only achieves parallel operation of data, greatly
improves calculation speed, but also improves model training
accuracy, making the overall model more stable. Based on the
comprehensive summary of the existing methods mentioned
above, we can find that mainstream methods require analysis
of server data to obtain the results of anomaly detection. In
this way, it puts forward new requirements for data privacy
protection.

Federated learning is a distributed machine learning tech-
nology aimed at breaking down data silos and unleashing
the potential of AI applications. It allows multiple partic-
ipants to achieve joint modeling by exchanging encrypted
machine learning intermediate results without disclosing the
underlying data and encryption form of the underlying data.
Federated learning gives consideration to AI application
and privacy protection, and is applicable to business in-
novation scenarios in finance, consumer Internet and other
industries. The existing federated learning methods mainly
include: FedAvg [15], FedProx, SCAFFOLD, and MOON.
FedAvg is the most fundamental federated learning algo-
rithm, and other algorithms add regularization to FedAvg
from different perspectives. In order to improve the real-
time performance of anomaly detection for edge device
failures, Liu et al. [16] combined federated learning with
attention based convolutional neural networks to improve
the real-time performance of industrial anomaly detection.
Mothukuri et al. [17] proposed an anomaly detection method
for the field of IoT security, which achieves strong privacy
based anomaly detection by sharing central server parameters
and updating local models. The recent advances in 5G and
mobile edge computing facilitate the rapid development of
the IOT, enabling collective intelligence with data support
from a massive number of IoT devices. Meanwhile, federated
leaning is prone to poor learning performance in large-
scale IoT scenarios. Cui et al. [18] proposed a blockchain
driven distributed asynchronous FL framework for anomaly
detection in IoT systems, which ensures data integrity and

prevents single points of failure while improving efficiency.
Furthermore, an improved differential private FL based on
generative adversarial networks was designed to optimize
the data utility throughout the entire training process. Das
et al. [19] highlight a high-level description of the current
IoT architecture. In this article, the author provides a more
in-depth discussion on the issue of anomaly detection in
distributed learning.

III. PROBLEM STATEMENT

We address the issue of anomalies at the overall level
of multivariate time series. Multi-dimensional time series
can be defined as X = [X1, X2, ..., Xn], where n is the
amount of data collected, and Xi = [Xi

1, X
i
2, ..., X

i
i ] is an

observation vector of the i(th) metric within a dimension-
ality of t. For entity-level multivariate time series anomaly
detection, our target is to determine whether the observation
Xt = [X1

t , X
2
t , ..., X

n
t ] at time t is anomalous or normal.

Compared to traditional centralized learning methods, fed-
erated learning is an emerging machine learning method
that allows multiple devices or computing nodes to train
models without sharing raw data. In federated learning,
model training is conducted on local devices, and only the
updated model parameters are aggregated to a central server
for aggregation. This distributed learning method can solve
the problems of data privacy protection and data security,
while reducing the need for data transmission and reducing
the computational burden on the central server. Specifical-
ly, we assume that the data is owned by C clients, i.e.,
X = [X(1), X(2), ..., X(C)], and that each client can only
access their own data when collaborating to train a model.
In a typical federated learning framework, each federated
learning client uses its own private dataset to train the local
model, and then each client sends its local model to the
server. Finally, the server aggregates the local model into
a global model, and this iterative cycle will continue several
times until the model converges.

IV. PROPOSED METHOD

A. Lightweight Design for Proposed Model
We use the reconstructed transformer architecture for

anomaly detection in multivariate time series. By recon-
structing the data and setting the threshold, it is determined
whether the data is abnormal or normal. Fig. 1 shows the
framework of our lightweight anomaly detection model.
First, the data is normalized to the range of [0,1]. In order
to obtain the features of the data points within the local
range, we use the local context window sequence W for
training [10]. The length of each window sequence is set
to K, and for window sequences that do not meet the
length, they are filled by adding zeros before them. The
encoder is divided into two parts: the first part encodes the
complete sequence to obtain global features, the second part
encodes the window sequence to obtain local features, and
then undergoes data reconstruction through two decoders.
The encoder converts the input sequence into a multi-modal
matrix form and transforms the sequence using the scaled-dot
product attention [20] containing Q (query), K (key value),
and V (value) matrices, as shown in Eq. 1.

Attention(Q,K, V ) = softmax(
QKT

√
m

V ) (1)
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Fig. 1. Light-AD Model: a lightweight Anomaly Detection Model Based on Model Fusion and Attention Mechanism Decomposition

This process simplifies the inference operations of down-
stream neural networks by compressing the V-matrix into a
smaller representative embedding using the softmax function.
At the same time, the transformer uses a multi-head attention
mechanism to process the input sequence. The multi-head
attention mechanism refers to passing the input sequence
through feedback layers with different number of heads (hi)
to obtain different Qi, Ki, Vi, as shown in Eq. 2.

MultiHead(Q,K, V ) = Concat(H1, ...,Hh),

whereHi = Attention(Qi,Ki, Vi)
(2)

Then, merging and passing them into a linear layer, and final-
ly obtaining a matrix with the same dimension as the output
of scaled dot product attention. Essentially, it involves par-
allel computation of multiple independent attention blocks,
while simultaneously focusing on information from different
subspaces at different positions in the input sequence.

B. Training Processing

We first perform positional encoding on the complete
sequence(C) and window sequence(W). The encoded com-
plete sequence extracts global information through an auto-
encoder, and extracts local information through a convo-
lutional layer [21]. The encoded window sequence is first
subjected to a masked multi-head attention mechanism which
purpose is to hide data from subsequent positions and pre-
vent the model from viewing future data points as future
timestamp values during the training process. This is because
during model training, in order to achieve data parallel
operations, all complete sequences C and window sequences
W are inputted at once.

I1
1 = LayerNorm(I1 +AutoEncoder(I1)

I1
2 = LayerNorm(Mask(MultiHeadAtt(I2, I2, I2))

I = LayerNorm(MultiHeadAtt(I1
1 , I

1
1 , I

1
2 )

+ ConvLayer(I1
1 ))

(3)
The processed window sequence(W) and the complete se-
quence(C) are simultaneously input into the attention mecha-
nism, and then combined with the convolutional encoded rep-
resentation to map to the hidden space. Finally, it is inputted
into two decoders of the same architecture consisting of a
feedforward network layer and a sigmoid activation function.

The sigmoid activation function is used to generate outputs
within the range of [0,1]. The final result is that the model
obtains two outputs O1 and O2 by inputting the complete
sequence and window sequence, which is according to Oi =
Sigmoid(FeedForward(I)).

Algorithm 1 The Light-AD Model Training Algorithm
Require: Encoder E, Decoders D1 and D2, Training dataset
W , Evolutionary hyperparameter ε, Iteration limit N

1: Initialize weights E, D1, D2

2: n← 0
3: while n <N do
4: for t = 1 to N do
5: O1, O2 ← D1(E(Wt,~0)), D2(E(Wt,~0))
6: L = ε−n||O1 −Wt||2 + (1− ε−n||O2 −Wt||2)
7: Update weights of E, D1, D2 using L
8: n← n+ 1
9: end for

10: end while

Algorithm 2 The Light-AD Model Testing Algorithm
Require: Trained Encoder E, Decoders D1 and D2

Test Dataset Ŵ
1: for t = 1 to T̂ do
2: O1, O2 ← D1(E(Ŵ ,~0)), D2(E(Ŵ ,~0))
3: s = 1

2 ||O1 − Ŵ ||2 + 1
2 ||O2 − Ŵ ||2

4: yi = 1 if si ≥ POT (si)
5: y = ∨

i
yi

6: end for

The above model inevitably faces the same challenges
as other anomaly detection models, one of which is to
maintain the stability of training. We use the L2-norm of the
reconstructed output O1, O2, and the window sequence as
the reconstruction loss. The first decoder aims to reconstruct
the input as perfectly as possible, minimizing reconstruction
errors, and deceiving the second decoder. The second decoder
maximizes the same reconstruction error. As shown in Eq.
4, we use a loss function that combines reconstruction loss
and adversarial loss. The entire model training and testing
process is shown in Algorithms 1 and 2.

L = ε−n||O1 −W ||2 + (1− ε−n||O2 −W ||2 (4)
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C. The Model in Distributed Computing

We elaborate on the combination of federated learning
framework and the aforementioned anomaly detection model,
as shown in Fig. 2. Model aggregation can be achieved
through various algorithms, including simple average aggre-
gation algorithms, which as the name suggests are directly
averaged on all client side training data, as shown in Eq. 5.

wt+1 =
K∑

k=1

nk
n
wk,t (5)

There are also weighted average aggregation algorithms,
which are weighted according to the quality of the model or
the amount of its training data before averaging each model,
as shown in Eq.6.

ww,T+∆T =
k∑

k=1

nk
n

(
wK

T − η
T+∆T∑
t=T

Gk
t

)
(6)

And gradient descent algorithms, etc, as shown in Eq.7.

wt+1 =
K∑

k=1

nk
n
(wk,t − η∇fk(wk,t) + µ(wk,t − wt)) (7)

Before the formal start of training, the central server first dis-
tributes the anomaly detection model with initial parameters
to each client, and then each client trains the obtained model
using their own private dataset.

Fig. 2. Combination of Federated Framework and Light-AD Model

The parameter aggregation method we use is the FedAvg
algorithm [15]. It also uses the sparse ternary compression
method (STC) for gradient compression [22]. The con-
ventional Topk sparsity method transfers sparse elements
with full accuracy. Sattler et al. demonstrated that when
sparsification is combined with quantization of non-zero el-
ements, higher compression gains can be achieved as shown
in Algorithm 3, when the Topk sparse element Tmasked

is obtained, it is quantified as the average of the sparse
elements, so only a ternary tensor containing three values

{-µ,0,µ} needs to be passed in the end. If the gradients of
each layer are treated as a matrix, the results obtained using
Topk and sparse ternary compression are shown in Fig.2.
The original gradient is a dense matrix, and the color depth
represents the size of the values. By using the Topk method, a
sparse matrix with larger values is obtained, while the values
with smaller values are set to 0. Sparse ternary compression
quantizes based on Topk, further improving the compression
rate.

Sattler et al. used sparse ternary compression in FL to
bi-directionally compress the communication gradients, and
used an error feedback mechanism to accumulate errors for
the next round of training.

ĝti = STC{gti + errort−1}
errort = gti − ĝti

(8)

Among them, gti is the original gradient obtained from the
t-th round of training for the i-th client, ĝti is the compressed
gradient, and errort is the error before and after compres-
sion. This method achieves convergence speed similar to non-
compression algorithms and greatly reduces communication
volume in each round. Therefore, we will also use sparse
ternary compression for gradient compression.

Algorithm 3 Sparse Ternary Compression
Input:tensor T ∈ Rn, sparsness ratio : p
Output:T ∗

1.k ← max(np, 1)
2.v ← topk(|T |)
3.mask ← (|T | ≥ v) ∈ {0, 1}n
4.Tmasked ← mask

⊙
T

5.µ← 1
k

∑n
i=1 |Tmasked

i |
6.T ∗ ← µ× sign(Tmasked)

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets, Experiment Settings and Evaluation Metrics

We use three publicly available datasets for experimental
comparison, as shown in Table I.

1) PSM: a dataset proposed by eBay consisting 26 dimen-
sional time series data from application servers.

2) MBA: a collection of electrocardiogram recordings
from four patients,containing multiple instances of two d-
ifferent kinds of anomalies.

3) SMD: a five-week dataset of stacked traces of the
resource utilizations of 28 machines from a compute cluster.

We uses the POT method in experiments to ensure smaller
errors and more stable results [23], and uses the AdamW op-
timizer to train our model with an initial learning rate of 0.01
and step-scheduler with step size of 0.5. The hyperparameter
values set in the experiment are as follows: Window size =
10, Number of layers in transformer encoders = 1, Number
of layers in feed-forward unit of encoders = 2, Hidden units
in encoder layers = 64, Dropout in encoders = 0.1. The
only hyperparameter specific to the dataset is the number
of headers in the multi header attention, which remains the
same size as the dimension of the dataset. The time series
is divided into 80% training data and 20% validation data
in experiment. To avoid overfitting the model, we use early
stopping criteria to train the model, which means that once
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TABLE I
DETAILED INFORMATION OF DATASETS AND PERFORMANCE COMPARISON BETWEEN THE NEW MODEL AND TRANAD ON NON-IID DATA

Dataset Train Test Dimensions Clients Method Avg time AUC-ROC AUC-PR Precision Recall F1

MBA 100000 100000 2 24

TranAD [14] + Fedavg [15] 10.05 0.40 0.29 0.24 0.06 0.10
AE-Global 8.44 0.50 0.39 0.35 0.23 0.27

Attention Split 10.93 0.49 0.40 0.51 0.13 0.21
Light-AD 9.45 0.42 0.31 0.27 0.07 0.10

C-Fed 9.20 0.45 0.33 0.35 0.10 0.15

PSM 2653 2611 25 24

TranAD + Fedavg 47.93 0.53 0.31 0.34 0.09 0.15
AE-Global 39.45 0.56 0.33 0.38 0.09 0.15

Attention Split 50.77 0.56 0.33 0.39 0.09 0.15
Light-AD 44.67 0.56 0.34 0.39 0.13 0.19

C-Fed 42.50 0.60 0.36 0.46 0.05 0.10

SMD 708405 708420 38 28

TranAD + Fedavg 233.67 0.69 0.23 0.60 0.10 0.18
AE-Global 190.04 0.68 0.23 0.81 0.10 0.18

Attention Split 247.56 0.68 0.23 0.81 0.10 0.18
Light-AD 210.43 0.68 0.18 0.24 0.21 0.23

C-Fed 238.24 0.69 0.28 0.70 0.19 0.29

the validation accuracy begins to decrease, the training stops.
All dimensions of the dataset are scaled to the range of [0,1]
to standardize the data.

We choose Average time of a global epoch (Avg time),
AR (AUC-ROC:Area under the ROC Curve) and AP (AUC-
PR:Area under the Precision-Recall Curve), Precision, Recall
and F1-score as evaluation metrics. They are calculated as
follows: Precision = TP

TP+FP , Recall = TP
TP+FN , F1 =

2×(Precision×Recall)
Precision+Recall . We search for the best threshold that

has the highest F1-score for each experiment.

TABLE II
PERFORMANCE COMPARISON ON IID-DATA

Dataset Method Avg time AUC-ROC AUC-PR Precision Recall F1

MBA

TranAD +Fedavg 10.94 0.39 0.30 0.24 0.06 0.10
AE-Global 6.98 0.50 0.39 0.35 0.22 0.27

Attention Split 9.52 0.49 0.39 0.49 0.13 0.20
Light-AD 10.68 0.41 0.30 0.26 0.07 0.11

C-Fed 10.77 0.43 0.32 0.32 0.08 0.13

PSM

TranAD+Fedavg 126.75 0.61 0.36 0.42 0.13 0.20
AE-Global 116.66 0.58 0.36 0.42 0.15 0.23

Attention Split 154.96 0.60 0.39 0.70 0.05 0.10
Light-AD 118.81 0.58 0.36 0.43 0.14 0.21

C-Fed 118.28 0.58 0.36 0.43 0.14 0.21

SMD

TranAD+Fedavg 233.35 0.68 0.21 0.42 0.11 0.17
AE-Global 195.89 0.68 0.23 0.81 0.10 0.18

Attention Split 247.26 0.68 0.19 0.51 0.06 0.11
Light-AD 205.82 0.68 0.18 0.24 0.21 0.23

C-Fed 237.17 0.69 0.28 0.70 0.19 0.29

B. Numerical Results and Analysis

We compared the performance of our model on three
publiclyavailabledatasetsforiidandnon-iiddata,and theresult-
sareshowninTableIandTableII. We mainly analyze non-iid da-
ta in experiments. As shown in the table, replacing the global
encoder with an auto-encoder (AE-Global) can significantly
reduce the average training time of the model, and there is
a certain improvement in various accuracy indicators. For
each global epoch in the MBA dataset, the average run time
is reduced by 16.02%, with 25.00% increase in precision
metric. For the PSM dataset, the average runtime is reduced
by 17.69% and the precision metric increases by 5.66%. Only
decomposing the Transformer multi-head attention blocks
(Attention Split) has a slight impact on the average running
time of the model, but there is a certain improvement in the

accuracy of various aspects of the model. For each global
epoch in the MBA dataset, the average run time increases
by 8.76%, with 22.50% increase in precision metric. For the
PSM dataset, the average runtime increases by 5.93% and
results in 5.66% increase in the precision metric.

By combining auto-encoder and attention mechanism de-
composition (Light-AD), for each global epoch in the MBA
dataset, the average run time is reduced by 5.97%, with
12.50% increase in precision metric. For the PSM dataset,
the average runtime is reduced by 6.80% and the precision
metric increases by 14.71%. After compression federated
framework (C-Fed), for each global epoch in the MBA
dataset, the average run time is reduced by 8.36%, resulting
in 45.83% in precision metric. For the PSM dataset, the
average run time is reduced by 11.33%, resulting in 35.29%
in precision metric.
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Fig. 3. Comparison of Model Performance Before and After Local Model
Improvement Based on IID Data and Non-IID Data

For datasets of different sizes, the training time of the
model is significantly different, but compared with the o-
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Fig. 5. Comparison of Model Performance under Different Sparsity Rates
(p) for Non-IID Data and IID Data

riginal model, the new model reduces the running time and
do not affect the accuracy of anomaly detection, ensuring
the normal function of anomaly detection. From the current
experimental results, we can demonstrate that the new model
has significant effects in terms of lightweight models.

Fig. 3 displays the variation in model performance with
the number of global iterations before and after improving
the local model based on non-iid and iid data. Experimental
results show that the model metrics continuously improve
until they tend to stabilize as the number of iterations
increases. The improved model has a certain improvement
in performance compared to the baseline, whether based on
iid or non-iid data. When the iteration reaches 1000 rounds,
the baseline AR reaches 0.59 based on iid and non-iid data,
while the improved model AR can reach 0.61. Similar to the
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Fig. 6. Performance Comparison of Models Before and After Compression
under Different Client Partitions Based on IID Data and Non-IID Data

AR curves, the overall curves show that the improved model
performs better than the baseline. The good performance
of the model on independent data is due to its statistical
independence, which makes the training process faster and
the effect better.

Fig. 4 shows the variation of various model indicators with
the number of global iterations before and after introducing
STC based on non-iid and iid data. When the number of
iterations reaches 1000 rounds, the baseline AR reaches 0.59,
while the improved model AR can reach 0.65. Similar to
the AR curves, the baseline AP reaches 0.37, while the
AR of the improved model can reach 0.39. Based on non-
iid data, the baseline AP reaches 0.38, while the improved
model can reach 0.42. Overall, the overall curves show that
the improved model performs better than the baseline. The
model’s better performance on independent data is due to its
statistical independence, which makes the training process
faster and the effect better.

As shown in Fig. 5, comparison of models at different p
based on iid and non-iid data shows that the STC algorithm
improves the detection accuracy of the model overall. Com-
pared to baseline, C-Fed accuracy improved significantly
at different sparsity rates. For example,when p is equal to
0.25, the AR of C-Fed on iid data reaches0.66, which is
about 73.68% higher than the baseline,and the AP of C-
Fed on iid data reaches 0.57, whichis about 96.55% higher
than the baseline. AR on C-Fed reaches 0.50 and AP on C-
Fed reaches 0.39 based on non-iid data. Moreover, compared
to iid data, the algorithm performs better on independently
distributed data, which is due to the influence of dataset
features.

As shown in Fig. 6, experimental results based on iid and
non-iid data under different client partitions (beta) show that
C-Fed has a significant improvement over baseline, and dif-
ferent beta has no significant impact on overall performance,
with results fluctuating within a certain range. In addition,
under a specific client partition, C-Fed performs better on iid
data than on non-iid data, due to the characteristics of the
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client data. Overall, a large number of experimental results
indicate that compared to the baseline, the improved model
achieves light weight while ensuring the accuracy of various
indicators.

VI. CONCLUSION

We propose a lightweight FL-based anomaly detection
model that ensures accuracy in anomaly detection while
protecting data privacy. First, we reduce the network structure
and computational complexity of the local model through
model fusion and attention mechanism decomposition. Sec-
ondly, we compress the model on the federated framework
using gradient compression algorithm, reducing the number
of communications required for convergence and the amount
of data transmitted per round, without affecting the accu-
racy of anomaly detection. Finally, the results of various
experiments show that our model has significant optimization
compared to the baseline.
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