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Abstract—In the context of economic or managerial opera-
tional systems, the discussion often revolves around strategies
to enhance efficiency. However, efficiency and loss are two
sides of the same coin. Minimizing loss is crucial for the
optimal functioning of operational systems, as reducing losses
indirectly contributes to improving performance. Therefore, this
study first proposes a rule within an operational system on
how to evaluate and minimize losses under a multi-objective
consideration. In real-world scenarios, participating entities
and their levels of participation yield different effects across
various objectives. Hence, corresponding weighted derivative
rules are also introduced concerning participating entities,
their participation levels, and related marginal effects. The
mathematical correctness and practical applicability of these
rules are also validated through related axiomatic processes.

Index Terms—Operational systems, multi-objective consider-
ation, minimizing loss, rule, axiomatic process.

I. INTRODUCTION

The enhancement of efficiency is a critical topic frequently
addressed in economic or managerial operational systems.
For instance, strategies on how to maximize commercial
profits, increase production capacity in machines, or enhance
the efficacy of pharmaceuticals are commonly explored.
However, efficiency and loss are intricately linked. For
instance, evaluating commercial profits requires considering
production costs, assessing production capacity involves ma-
chine wear and tear, and evaluating pharmaceutical efficacy
entails considering physiological risks. When assessing how
to minimize losses, it often indirectly leads to enhancing
efficiency. For example, reducing production costs ultimately
increases net profits from product sales.

However, evaluating minimization of losses often ne-
cessitates considering multiple objectives. For instance, in
selling products, reducing manufacturing costs conflicts with
prolonging machine lifespan while simultaneously reducing
pollution from the production process. These objectives
sometimes clash, as extending machine lifespan and reducing
pollution inevitably affect costs. In game theory, multi-
objective analysis aims to derive equilibrium outcomes under
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various objectives. Under the field of mathematics, mathe-
matical multi-objective game-theoretical methods are wildly
applied to address such multi-objective consideration issues.
The rules governing such situations lack acceptable struc-
tures to express reasonable consequences that, unlike usual
perspectives or notions, evaluate numerous objective goals.
Various existing researches have explored multi-objective
situations. For instance, Bednarczuk et al. [1] transformed the
multiple-choice knapsack problem into a bi-objective opti-
mization problem, whose solution set encompasses solutions
of the original multiple-choice knapsack problem. Goli et al.
[3] addressed the optimization of the multivariate manufac-
turing portfolio problem under return uncertainty. The key
achievement stems from employing an enhanced artificial
intelligence-robust optimization hybrid approach, introducing
a new concept for assessing the risk of a manufacturing port-
folio. A bi-objective mathematical formulation (maximizing
return and minimizing risk) is also presented. By delving
into multi-attribute analysis techniques amidst diverse and
complex conditions (e.g., considering multiple perspectives
and incorporating multi-level participating entities), Guarini
et al. [4] aim to outline a methodology for selecting the most
suitable rule tailored to specific evaluation requirements,
often encountered in strategic decision-making contexts. A
resilient combinatorial optimization modeling approach by
Mustakerov et al. [14] is advanced for multi-choice yield
with diverse strategy maker prerequisites. This approach is
founded on formulating multi-attribute linear mixed-integer
optimization tasks. Tirkolaee et al. [18] highlighted the
multi-attribute multi-mode utility-constrained manufacturing
scheduling problem with compensation planning, where tasks
can be completed through various modes, aiming to minimize
completion time and maximize net present value simultane-
ously. Related studies also could be found in Cheng et al.
[2], Khorram et al. [12], and so on.

Under traditional game-theoretical evaluating processes,
participating entities typically consider participation or
non-participation scenarios. The equal allocation of non-
separable costs (EANSC, Ransmeier [16]) is a common
efficiency evaluating rule proposed within traditional game
theory. Moulin [13] defined the complement reduction and
related consistency, combining other properties to prove that
EANSC is a fair, just, and rational evaluating rule. To accom-
modate multi-objective considerations, participating entities
in operational systems must have varying levels of involve-
ment, necessitating a multi-choice evaluating behavior where
each participating entity has different levels of participation.
Under multi-choice situations, Hwang and Liao [7], Liao [8],
[9], [11], and Nouweland et al. [15] have proposed several
derivative evaluating rules and related axiomatic processes.
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In many operational systems, however, losses generated by
participating entities or their levels of involvement often
vary depending on the context. For example, the same
pharmaceutical may cause different physiological harms in
different treatment contexts, may interact differently with
other drugs, and the dosage administered can also influence
outcomes. Therefore, it is reasonable to assign corresponding
weights based on the context for participating entities or their
levels of involvement.

The above statements lead to a question:
• Can an evaluating rule be proposed based on multi-

objectives, varying levels of participation, and relative
weighting considerations on how to minimize losses
under operational systems?

To address this question, the primary results presented in
this study are as follows.

1) Inspired by evaluating notion of the EANSC, within
a multi-objective multi-choice structure, we propose a
rule for evaluating and minimizing loss under opera-
tional systems, termed as the minimal uniform evalu-
ation of indivisible losses (MUEIL).

2) Since losses generated by participating entities or their
levels of involvement often vary across different con-
texts, we define different weight functions for partic-
ipating entities and their levels of involvement. These
two weight functions are integrated into the concept
of the MUEIL, resulting in two weighted derivative
forms.

3) However, defining weight functions and assigning
weights to participating entities or their levels of in-
volvement may be somewhat artificial. Therefore, this
study utilizes marginal effects from participation as
substitutes for weights, deriving a natural weighted
form as a result.

4) Further, we extend the Moulin’s [13] reduction, its
corresponding consistency and different balance prop-
erties to the structure of multi-objective multi-choice
situations, and utilize related axiomatic processes to
demonstrate the mathematical correctness and practical
applicability of the evaluating rules proposed in this
study.

II. PRELIMINARIES

A. Definitions and notations

Let UPE denote the universe of participating entities, for
instance, the set comprised of all citizens of a country. Any
b ∈ UPE is identified as a participating entity of UPE, such
as a citizen in a country. For b ∈ UPE and ξb ∈ N, we define
Lb = {0, 1, · · · , ξb} to represent the set of participation
levels for participating entity b, and L+

b = Lb \ {0}, where
0 indicates no operation.

Consider P ⊆ UPE as the largest set encompassing
all participating entities of an interactive system within
UPE, like all employees of a company in a country. Let
LP =

∏
b∈P Lb be the product set of participation level

sets for every participating entity in P. For every Q ⊆ P,
a participating entity alliance Q corresponds, in a standard
manner, to the multi-choice alliance ẑQ ∈ LP, which is a
vector indicating ẑQq = 1 if q ∈ Q, and ẑQq = 0 if q ∈ P \Q.

Denote 0P as the zero vector in ℜP. For m ∈ N, also define
0m as the zero vector in ℜm and Mm = {1, 2, · · · ,m}.

A multi-choice circumstance is denoted as (P, ξ, χ),
where P ̸= ∅ is a finite set of participating entities,
ξ = (ξb)b∈P ∈ LP is a vector indicating the number of
participation levels for each participating entity, and χ :
LP → ℜ is a mapping with χ(0P) = 0 that assigns to each
participation level vector µ = (µb)b∈P ∈ LP the benefit that
participating entities can receive when operating at level µb.
A multi-objective multi-choice circumstance is denoted by
(P, ξ,Xm), where m ∈ N, Xm = (χt)t∈Mm

and (P, ξ, χt)
represents a multi-choice circumstance for each t ∈ Mm.
The family of all multi-objective multi-choice circumstances
is denoted as MMC.

A rule is defined as a mapping ρ that assigns to each
(P, ξ,Xm) ∈ MMC an element

ρ
(
P, ξ,Xm

)
=

(
ρt
(
P, ξ,Xm

))
t∈Mm

,

where ρt
(
P, ξ,Xm

)
=

(
ρtb
(
P, ξ,Xm

))
b∈P ∈ ℜP and

ρtb
(
P, ξ,Xm

)
represents the remuneration of participating en-

tity b when b operates in
(
P, ξ, χt

)
. Let (P, ξ,Xm) ∈ MMC,

Q ⊆ P, and µ ∈ ℜP. We define N(µ) = {b ∈ P|µb ̸= 0} and
µQ ∈ ℜQ as the restriction of µ to Q. Given b ∈ P, we also
define µ−b to represent µP\{b}. Additionally, σ = (µ−b, i) ∈
ℜP is defined by σ−b = µ−b and σb = i.

Based on the claim of evaluating how to minimize various
losses during operational processes, this study introduces
derivative the concepts of the EANSC within the framework
of multi-objective multi-choice circumstances.

Definition 1: The minimal uniform evaluation of indi-
visible losses (MUEIL), ∆, is defined by

∆t
b(P, ξ,X

m) = ∆t
b(P, ξ,X

m) +
1

|P|
[
χt(ξ)−

∑
k∈P

∆t
k(P, ξ,X

m)
]

for every (P, ξ,Xm) ∈ MMC, for every t ∈ Mm and for
every b ∈ P. The value

∆t
b(P, ξ,X

m) = min
q∈L+

b

{χt(ξ−b, q)− χt(ξ−b, q − 1)}

is the minimal marginal level-loss among all participation
levels of participating entity b in (P, ξ, χt).1 Under the notion
of ∆, all participating entities firstly evaluate its minimal
marginal level-losses, and further assess the rest of losses
equally.

As mentioned in the introduction, related concept of
weights often becomes important consideration under various
allocating processes. For example, allocating proportions for
weights may be related to asset allocation, where weights can
represent the relative investment risk of various asset plans
under the investment circumstance. Similarly, weights can be
applied in insurance contracts, where the risk of various in-
surance items relative to different employment circumstances
may result in different weighted premium costs. Even if
the insurance items and employment circumstances for a
particular insurance product are fixed, the premium costs of
insurance items may vary in weighted proportions relative to
different insured parties. Therefore, it is quite reasonable to

1This study utilizes bounded multi-choice circumstances, treated as the
circumstances (P, ξ, χt) such that, there exists Bt

χ ∈ ℜ such that χt(µ) ≤
Bt

χ for every µ ∈ LP. It could be utilized to assure that ∆t
b(P, ξ, χ

t) is
well-defined.
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assign weights to “participating entities” or their “participa-
tion levels” to differentiate their relative differences.

Let Ω : UPE → R+ be a positive map. Then Ω is treated
as a weight function for participating entities. Similarly, let
Ξ : ∪b∈UPEL+

b → R+ be a positive map. Then Ξ is treated as
a weight function for participation levels. Based on these
two kinds of weight functions, three weighted extensions of
the MUEIL could be considered as follows.

Definition 2:
• The 1-minimal weighted evaluation of indivisible

losses (1-MWEIL), ∆Ω, is defined as follows: For
every (P, ξ,Xm) ∈ MMC, for every weight function
for participating entities Ω, for every t ∈ Mm, and for
every participating entity b ∈ P,

∆Ω,t
b (P, ξ,Xm)

= ∆t
b(P, ξ,X

m) +
Ω(b)∑

k∈P
Ω(k)

[
χt(ξ)−

∑
k∈P

∆t
k(P, ξ,X

m)
]
.

According to the definition of ∆Ω, all participating
entities initially evaluate their minimal marginal level-
losses, and the remaining losses are assessed propor-
tionally via weights for participating entities.

• The 2-minimal weighted evaluation of indivisible
losses (2-MWEIL), ∆Ξ, is defined as follows: For
every (P, ξ,Xm) ∈ MMC, for every weight function
for participation levels Ξ, for every t ∈ Mm, and for
every participating entity b ∈ P,

∆Ξ,t
b (P, ξ,Xm)

= ΓΞ,t
b (P, ξ,Xm) + 1

|P|
[
χt(ξ)−

∑
k∈P

ΓΞ,t
k (P, ξ,Xm)

]
,

where

ΓΞ,t
b (P, ξ,Xm) = min

q∈L+
b

{Ξ(q) · [χt(ξ−b, q)− χt(ξ−b, q − 1)]}

is the minimal weighted marginal level-loss among all
participation levels of participating entity b. By defini-
tion of ∆Ξ,t, all participating entities initially evaluate
their minimal weighted marginal level-losses, and the
remaining losses are assessed equally.

• The bi-weighted evaluation of indivisible losses
(BWEIL), ∆Ω,Ξ, is defined by for every (P, ξ,Xm) ∈
MMC, for every weight function for participating enti-
ties Ω, for every weight function for participation levels
Ξ, for every t ∈ Mm and for every participating entity
b ∈ P,

∆Ω,Ξ,t
b (P, ξ,Xm)

= ΓΞ,t
b (P, ξ,Xm) +

Ω(b)∑
k∈P

Ω(k)

[
χt(ξ)−

∑
k∈P

ΓΞ,t
k (P, ξ,Xm)

]
.

Based on the definition of ∆Ω,Ξ, all participating en-
tities initially evaluate their minimal weighted marginal
level-losses, and the remaining losses are assessed pro-
portionally via weights for participating entities.

B. Motivating and practical examples

As mentioned in the introduction, each participating entity
can choose different participation levels relative to differ-
ent real-world situations. Moreover, multi-objective game-
theoretical analysis considers how the operational processes
and outcomes of systems operate in equilibrium when mul-
tiple criteria are simultaneously involved. Related concepts
have been applied in many fields, including industrial engi-
neering, ecological assessments, drug trials, logistics man-
agement, and decision-making sciences, where balancing
and formulating equilibrium strategies are needed under

considerations of multiple objectives. For example, in the
plant assessment process of a technology company, how to
reduce costs while delaying machine wear and tear, reducing
pollution emissions, and resource consumption, but still
maintaining or even improving efficiency. In many cases,
three or more objectives may be involved. Therefore, this
study focuses on the framework of multi-objective multi-
choice considerations.

However, it may not always be appropriate to consider
the importance of participating entities or their participation
levels as equal under different circumstances. Therefore, it
is very reasonable to assign relative weights to participating
entities or their participation levels under operating processes
and distributing processes relative to different operational
circumstances. Thus, the advantage of the evaluating rules
proposed in this study lie in considering multiple objectives,
multiple participation levels, and relative weighting, confirm-
ing that the global value of each participating entity can be
derived through evaluating minimization of losses.

To illustrate the concept of multi-objective multi-choice
scenarios, let us consider a concise example in the con-
text of ”risk management.” Let P represent the set formed
by all participating entities in the operational organization
(P, ξ,Xm). The function χt can be seen as a risk evaluat-
ing, evaluating the risk value of each overall participation
level vector α = (αb)b∈P ∈ LP, which presents the risk
generated by each entity b ∈ P when operating with a
specific participation level αb ∈ Lb in the organizational sub-
department (P, ξ, χt). Using this corresponding framework,
an operational organization (P, ξ,Xm) can be expanded to a
multi-objective multi-choice circumstance, where χt repre-
sents each risk evaluating function, and Lb represents the set
formed by all participation levels of each participating entity
b. Subsequently, we will further propose how to apply the
rules defined in this study for minimizing losses in practical
applications.

In the operational system example mentioned above, all
participating entities not only incur their unique losses within
the overall operational circumstance but may also experience
different effects due to interactions with other participating
entities. These effects can lead to mutual resistance, exacer-
bated losses, or unpredictable damages. As demonstrated in
the example above, the mapping χt can be seen as an eval-
uation of loss effects, where the collaborative participation
levels of all participating entities can be represented by the
vector α = (αb)b∈P ∈ LP.

• According to the evaluating notion of the MUEIL
defined in Definition 1, one could first evaluate the min-
imal marginal level-losses caused by the participation
levels of each participating entity, and the remaining
losses will be shared by all participants.

• However, since each type of participating entity may
incur different relative loss effects relative to differ-
ent operational departments or related businesses, it is
reasonable to generate weights via weight function for
participating entities Ω. Initially evaluating the minimal
marginal level-losses caused by the participation levels
of each participating entity, the remaining losses should
be allocated based on the relative weighted proportions
of each participating entity, which is the evaluating
notion of the 1-MWEIL in Definition 2.
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• On the other hand, since the participation levels of each
participating entity may result in different loss effects
relative to different operational departments or related
businesses, these participation levels naturally exhibit
varying degrees of relativity. Therefore, it is reason-
able to generate weights through weight function for
participation levels Ξ. Initially evaluating the minimal
weighted marginal level-losses caused by the participa-
tion levels of each participating entity, the remaining
losses will be shared by all participating entities, which
is the evaluating notion of the 2-MWEIL in Definition
2.

• If we combine the concepts of the 1-MWEIL and the
2-MWEIL, initially evaluating the minimal weighted
marginal level-losses caused by the participation levels
of each participating entity, the remaining loss effects
should be allocated based on the relative weighted
proportions of each participating entity, which is the
evaluating notion of the BWEIL in Definition 2.

III. AXIOMATIC PROCESSES

A. Axiomatic results for the MUEIL and its weighted exten-
sions

Inspired by the axiomatic concepts due to Hart and Mas-
Colell [5] and Moulin [13], several axiomatic results for
the MUEIL, the 1-MWEIL, the 2-MWEIL, and the BWEIL
are presented below to demonstrate mathematical correctness
and the practicality of these rules.

Definition 3: A rule ρ fits the multi-objective effective-
ness (MOEIS) requirement if, for every (P, ξ,Xm) ∈ MMC
and for every t ∈ Mm, the sum of remunerations evaluated
via ρ to all participating entities in P coincides with the
overall effect χt(ξ). The MOEIS requirement ensures that
all participating entities evaluate whole the losses entirely.

Lemma 1: The rules ∆, ∆Ω, ∆Ξ, ∆Ω,Ξ fit MOEIS.
Proof of Lemma 1: Let (P, ξ,Xm) ∈ MMC, t ∈ Mm, Ω

be weight function for participating entities and Ξ be weight
function for participation levels. By Definition 2,∑

b∈P
∆Ω,Ξ,t

b (P, ξ,Xm)

=
∑
b∈P

ΓΞ,t
b (P, ξ,Xm)

+
∑
b∈P

[
Ω(b)∑

k∈P
Ω(k)

[
χt(ξ)−

∑
k∈P

ΓΞ,t
k (P, ξ,Xm)

]]
=

∑
b∈P

ΓΞ,t
b (P, ξ,Xm) +

∑
b∈P

Ω(b)∑
k∈P

Ω(k)

[
χt(ξ)−

∑
k∈P

ΓΞ,t
k (P, ξ,Xm)

]
=

∑
b∈P

ΓΞ,t
b (P, ξ,Xm) + χt(ξ)−

∑
k∈P

ΓΞ,t
k (P, ξ,Xm)

= χt(ξ).

The proof is done. If all the weights for participating
entities are set to 1 in the above proof process, the MOEIS
requirement of 2-MWEIL can be verified. Similarly, if all
the weights for participation levels are set to 1 in the
above proof process, the MOEIS requirement of 1-MWEIL
can be completed. Furthermore, if all the weights for both
participating entities and participation levels are set to 1 in
the above proof process, the MOEIS requirement of MUEIL
can be finished.

To characterize the EANSC, Moulin [13] proposed the
concept of the complement reduction, where each coalition
within a subgroup can only receive its payoff if the coalition’s
payoff matches the original payoff of all non-participating

entities outside the subgroup. The derived definition of
complement reduction under multi-objective multi-choice
circumstances is introduced as follows.

Definition 4:
• Let (P, ξ,Xm) ∈ MMC, K ⊆ P, and ρ be a rule.

The reduced circumstance (K, ξK ,Xm
K,ρ) is defined

by Xm
K,ρ = (χt

K,ρ)t∈Mm , and for every µ ∈ LK ,

χt
K,ρ(µ) =

{
0 if µ = 0K ,
χt

(
µ, ξP\K

)
−

∑
b∈P\K

ρtb(P, ξ,X
m) otherwise,

• Moreover, a rule ρ satisfies the multi-objective
bilateral consistency (MOBCY) requirement if
ρtb(K, ξK ,Xm

K,ρ) = ρtb(P, ξ,Xm) for every (P, ξ,Xm) ∈
MMC, for every t ∈ Mm, for every K ⊆ P with
|K| = 2, and for every b ∈ K.

Lemma 2: The rules ∆, ∆Ω, ∆Ξ, ∆Ω,Ξ fit MOBCY.
Proof of Lemma 2: Let (P, ξ,Xm) ∈ MMC, K ⊆ P,

t ∈ Mm, Ω be weight function for participating entities and
Ξ be weight function for participation levels. Let |P| ≥ 2
and |K| = 2. By Definition 2,

∆Ω,Ξ,t
b (K, ξK ,Xm

K,∆Ω,Ξ )

= ΓΞ,t
b (K, ξK ,Xm

K,∆Ω,Ξ )

+
Ω(b)∑

k∈K
Ω(k)

·
[
χt
K,∆Ω,Ξ (ξK)−

∑
k∈K

ΓΞ,t
k (K, ξK ,Xm

K,∆Ω,Ξ )
]

(1)
for every b ∈ K and for every t ∈ Mm. By definitions of
ΓΞ,t and χt

K,∆Ω,Ξ ,

ΓΞ,t
b (K, ξK ,Xm

K,∆Ω,Ξ )

= min
q∈L+

b

{Ξ(q)[χt
K,∆Ω,Ξ (ξK\{b}, q)− χt

K,∆Ω,Ξ (ξK\{b}, q − 1)]}

= min
q∈L+

b

{Ξ(q)[χt(ξ−b, q)− χt(ξ−b, q − 1)]}

= ΓΞ,t
b (P, ξ,Xm).

(2)
Based on equations (1), (2) and definitions of χt

K,∆Ω,Ξ and
∆Ω,Ξ,

∆Ω,Ξ,t
b (K, ξK ,Xm

K,∆Ω,Ξ )

= ΓΞ,t
b (P, ξ,Xm)

+
Ω(b)∑

k∈K
Ω(k)

[
χt
K,∆Ω,Ξ (ξK)−

∑
k∈K

ΓΞ,t
k (P, ξ,Xm)

]
= ΓΞ,t

b (P, ξ,Xm) +
Ω(b)∑

k∈K
Ω(k)

[
χt(ξ)−

∑
k∈P\K

∆Ω,Ξ,t
k (P, ξ,Xm)

−
∑

k∈K
ΓΞ,t
k (P, ξ,Xm)

]
= ΓΞ,t

b (P, ξ,Xm)

+
Ω(b)∑

k∈K
Ω(k)

[ ∑
k∈K

∆Ω,Ξ,t
k (P, ξ,Xm)−

∑
k∈K

ΓΞ,t
k (P, ξ,Xm)

]
(MOEIS of ∆Ω,Ξ)

= ΓΞ,t
b (P, ξ,Xm)

+
Ω(b)∑

k∈K
Ω(k)

[ ∑
k∈K

Ω(k)∑
p∈P

Ω(p)

[
χt(ξ)−

∑
p∈P

ΓΞ,t
P (P, ξ,Xm)

]]
= ΓΞ,t

b (P, ξ,Xm) +
Ω(b)∑

p∈P
Ω(p)

[
χt(ξ)−

∑
p∈P

Γt
P(P, ξ,X

m)
]

= ∆Ω,Ξ,t
b (P, ξ,Xm)

for every b ∈ K and for every t ∈ Mm. If all the
weights for participating entities are set to 1 in the above
proof process, the MOBCY requirement of 2-MWEIL can
be verified. Similarly, if all the weights for participation
levels are set to 1 in the above proof process, the MOBCY
requirement of 1-MWEIL can be completed. Furthermore, if
all the weights for both participating entities and participation
levels are set to 1 in the above proof process, the MOBCY
requirement of MUEIL can be finished.

Definition 5: • A rule ρ satisfies the multi-objective
rule for circumstances (MORC) requirement if
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ρ(P, ξ,Xm) = ∆(P, ξ,Xm) for every (P, ξ,Xm) ∈
MMC with |P| ≤ 2.

• rm A rule ρ satisfies the 1-weighted rule for circum-
stances (1WRFC) if ρ(P, ξ,Xm) = ∆Ω(P, ξ,Xm) for
every (P, ξ,Xm) ∈ MMC with |P| ≤ 2 and for every
weight function Ω for participating entities.

• A rule ρ satisfies the 2-weighted rule for circum-
stances (2WRFC) if ρ(P, ξ,Xm) = ∆Ξ(P, ξ,Xm) for
every (P, ξ,Xm) ∈ MMC with |P| ≤ 2 and for every
weight function Ξ for levels.

• A rule ρ fits bi-weighted rule for circumstances
(BWRC) if ρ(P, ξ,Xm) = ∆Ω,Ξ(P, ξ,Xm) for every
(P, ξ,Xm) ∈ MMC with |P| ≤ 2, for every weight
function for participating entities Ω and for every weight
function for participation levels Ξ.

• The requirements of MORC, MORC, 1WRFC, 2WRFC,
BWRC are generalized analogues of the two-entry rule
standard proposed by Hart and Mas-Colell [5].

Inspired by the axiomatic concepts due to Hart and Mas-
Colell [5] and Moulin [13], the MOBCY requirement would
be adopted to characterize these evaluating rules.

Theorem 1:

1) On MMC, the MUEIL is the unique rule fitting MORC
and MOBCY.

2) On MMC, the 1-MWEIL is the unique rule fitting
1WRFC and MOBCY.

3) On MMC, the 2-MWEIL is the unique rule fitting
2WRFC and MOBCY.

4) On MMC, the BWEIL is the unique rule fitting BWRC
and MOBCY.

Proof of Theorem 2: By Lemma 2, the rules ∆, ∆Ω,
∆Ξ, ∆Ω,Ξ fit MOBCY. Clearly, the rules ∆, ∆Ω, ∆Ξ, ∆Ω,Ξ

fit MORC, 1WRFC, 2WRFC and BWRC respectively.
To present the uniqueness of result 4, suppose that ρ fits

BWRC and MOBCY. By BWRC and MOBCY of ρ, it is
easy to clarify that ρ also fits MOEIS, thus we omit it. Let
(P, ξ,Xm) ∈ MMC, Ω be weight function for participating
entities and Ξ be weight function for participation levels. By
BWRC of ρ, ρ(P, ξ,Xm) = ∆Ω,Ξ(P, ξ,Xm) if |P| ≤ 2. The
situation |P| > 2: Let b ∈ P, t ∈ Mm and K = {b, p} with
p ∈ P \ {b}.

ρtb(P, ξ,X
m)−∆Ω,Ξ,t

b (P, ξ,Xm)

= ρtb(K, ξK ,Xm
K,ρ)−∆Ω,Ξ,t

b (K, ξK ,Xm
K,∆Ω,Ξ )

(MOBCY of ∆Ω,Ξ,t and ρ)
= ∆Ω,Ξ,t

b (K, ξK ,Xm
K,ρ)−∆Ω,Ξ,t

b (K, ξK ,Xm
K,∆Ω,Ξ, ).

(BWRC of ρ)

(3)

Similar to equation (2)

ΓΞ,t
b (K, ξK ,Xm

K,ρ) = ΓΞ,t
b (P, ξ,Xm) = ΓΞ,t

b (K, ξK ,Xm
K,Γ∆,Ξ, ). (4)

By equations (3) and (4),

ρtb(P, ξ,X
m)−∆Ω,Ξ,t

b (P, ξ,Xm)

= ∆Ω,Ξ,t
b (K, ξK ,Xm

K,ρ)−∆Ω,Ξ,t
b (K, ξK ,Xm

K,∆Ω,Ξ, )

=
Ω(b)

Ω(b)+Ω(p)
·
[
χt
K,ρ(ξK)− χt

K,∆Ω,Ξ (ξK)
]

=
Ω(b)

Ω(b)+Ω(p)
·
[
ρtb(P, ξ,X

m) + ρtp(P, ξ,Xm)

−∆Ω,Ξ,t
b (P, ξ,Xm)−∆Ω,Ξ,t

p (P, ξ,Xm)
]
.

Thus,

Ω(p) ·
[
ρtb(P, ξ,X

m)−∆Ω,Ξ,t
b (P, ξ,Xm)

]
= Ω(b) ·

[
ρtp(P, ξ,Xm)−∆Ω,Ξ,t

p (P, ξ,Xm)
]
.

By MOEIS of ∆Ω,Ξ,t and ρ,[
ρtb(P, ξ,X

m)−∆Ω,Ξ,t
b (P, ξ,Xm)

]
·
∑
p∈P

Ω(p)

= Ω(b) ·
∑
p∈P

[
ρtp(P, ξ,Xm)−∆Ω,Ξ,t

p (P, ξ,Xm)
]

= Ω(b) ·
[
χt(ξ)− χt(ξ)

]
= 0.

Hence, ρtb(P, ξ,Xm) = ∆Ω,Ξ,t
b (P, ξ,Xm) for every b ∈ P

and for every t ∈ Mm. If all the weights for participating
entities are set to 1 in the above proof process, the proof of
outcome 3 could be verified. Similarly, if all the weights for
participation levels are set to 1 in the above proof process, the
proof of outcome 2 could be completed. Furthermore, if all
the weights for both participating entities and participation
levels are set to 1 in the above proof process, the proof of
outcome 1 could be presented.

In the following some instances are exhibited to display
that every of the requirements applied in Theorem 1 is
independent of the rest of requirements.

Example 1: We focus on the rule ρ as follows. For every
(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating entity
b ∈ P,

ρtb(P, ξ,X
m) =

{
∆Ω,Ξ,t

b (P, ξ,Xm) if |P| ≤ 2,
0 otherwise.

Clearly, ρ fits BWRC, but it does not fit MOBCY.
Example 2: We focus on the rule ρ as follows. For every

(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating entity
b ∈ P,

ρtb(P, ξ,X
m) =

{
∆Ξ,t

b (P, ξ,Xm) if |P| ≤ 2,
0 otherwise.

Clearly, ρ fits 2WRFC, but it does not fit MOBCY.
Example 3: We focus on the rule ρ as follows. For every

(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating entity
b ∈ P,

ρtb(P, ξ,X
m) =

{
∆Ω,t

b (P, ξ,Xm) if |P| ≤ 2,
0 otherwise.

Clearly, ρ fits 1WRFC, but it does not fit MOBCY.
Example 4: We focus on the rule ρ as follows. For every

(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating entity
b ∈ P,

ρtb(P, ξ,X
m) =

{
∆t

b(P, ξ,X
m) if |P| ≤ 2,

0 otherwise.

Clearly, ρ fits MORC, but it does not fit MOBCY. ∆Ω

Example 5: We focus on the rule ρ as follows. For every
(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating entity
b ∈ P, ρtb(P, ξ,Xm) = 0. Clearly, ρ fits MOBCY, but it does
not fit MORC, 1WRFC, 2WRFC and BWRC.

B. Different generalization and revised consistency

In Section 2 and Section 3.1, this study respectively
proposes weighted rules for evaluating the corresponding
weighted allocating notions concerning participating entities
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and their participation levels. However, the fairness or legiti-
macy of these weighted functions may be questioned, mean-
ing the relative weighting of participating entities or their
participation levels may seem somewhat arbitrary. Therefore,
replacing weighted functions with relative minimal marginal
level-losses in different situations appears to be more rea-
sonable.

By substituting “minimal marginal level-losses” for
“weights”, the following loss evaluating notion can be de-
fined differently from previous ones.

Definition 6: The multi-choice multi-objective interior
rule (MMOIR), ∆I , is defined as follows: for every
(P, ξ,Xm) ∈ MMC∗, for every t ∈ Mm, and for every
participating entity b ∈ P,

∆I,t
b (P, ξ,Xm)

= ∆t
b(P, ξ,X

m) +
∆t

b(P,ξ,X
m)∑

k∈P
∆t

k
(P,ξ,Xm)

·
[
χt(ξ)−

∑
k∈P

∆t
k(P, ξ,X

m)
]
,

where

MMC∗ = {(P, ξ,Xm) ∈ MMC|
∑
k∈P

∆t
k(P, ξ,X

m) ̸= 0 ∀ t ∈ Mm}.

Based on definition of ∆I , all participating entities ini-
tially evaluate their minimal marginal level-losses, and the
remaining losses then assessed proportionally based on these
minimal marginal level-losses.

Next, one would like to axiomatize the MMOIR using re-
lated notion of consistency. It is straightforward to verify that∑
k∈K

∆t
k(P, ξ,Xm) = 0 for some (P, ξ,Xm) ∈ MMC, for

some K ⊆ P, and for some t ∈ Mm, i.e., ∆I,t(K, ξK ,Xm
K,∆)

doesn’t exist for some (P, ξ,Xm) ∈ MMC, for some K ⊆ P,
and for some t ∈ Mm. Therefore, we focus on the multi-
objective revised consistency as follows.

Definition 7:

• A rule ρ fits the multi-objective revised-consistency
(MORCON) if (K, ξK ,Xm

K,ρ) and ρ(K, ξK ,Xm
K,ρ) ex-

ist for some (P, ξ,Xm) ∈ MMC, for some K ⊆ P, and
for some t ∈ Mm, and it holds that ρb(K, ξK ,Xm

K,ρ) =
ρb(P, ξ,Xm) for every b ∈ K.

• A rule ρ fits the multi-objective interior standard
(MOIS) if ρ(P, ξ,Xm) = ∆I(P, ξ,Xm) for every
(P, ξ,Xm) ∈ MMC with |P| ≤ 2.

Similar to Theorem 1, the related axiomatic process of ∆I

can also be presented as follows.
Lemma 3: The rule ∆I fits MOEIS on MMC∗.

Proof of Lemma 3: Let (P, ξ,Xm) ∈ MMC, t ∈ Mm, Ω
be weight function for participating entities and Ξ be weight
function for participation levels. By Definition 6,∑

b∈P
∆I,t

b (P, ξ,Xm)

=
∑
b∈P

∆t
b(P, ξ,X

m)

+
∑
b∈P

[
∆t

b(P,ξ,X
m)∑

k∈P
∆t

K
(P,ξ,Xm)

[
χt(ξ)−

∑
k∈P

∆t
b(P, ξ,X

m)
]]

=
∑
b∈P

∆t
b(P, ξ,X

m) + χt(ξ)−
∑
k∈P

∆t
K(P, ξ,Xm)

= χt(ξ).

The proof is done.
Lemma 4: The rule ∆I fits MORCON on MMC∗.

Proof of Lemma 4: Let (P, ξ,Xm) ∈ MMC∗, K ⊆ P,
t ∈ Mm, Ω be weight function for participating entities and
Ξ be weight function for participation levels. Let |P| ≥ 2

and |K| = 2. By Definition 6,

∆I,t
b (K, ξK ,Xm

K,∆I )

= ∆t
b(K, ξK ,Xm

K,∆I )

+
∆t

b(K,ξK ,Xm
K,∆I )∑

k∈K
∆t

K
(K,ξK ,Xm

K,∆I
)

[
χt
K,∆I (ξK)

−
∑

k∈K
∆t

k(K, ξK ,Xm
K,∆I )

]
(5)

for every b ∈ K and for every t ∈ Mm. By definitions of
∆I and χt

K,∆I ,

∆t
b(K, ξK ,Xm

K,∆I )

= min
q∈L+

b

{χt
K,∆I (ξK\{b}, q)− χt

K,∆I (ξK\{b}, q − 1)}

= min
q∈L+

b

{χt(ξ−b, q)− χt(ξ−b, q − 1)}

= ∆t
b(P, ξ,X

m).

(6)

Based on equations (5), (6) and definitions of χt
K,∆I and

∆I ,

∆I,t
b (K, ξK ,Xm

K,∆I )

= ∆t
b(P, ξ,X

m)

+
∆

I,t
b

(P,ξ,Xm)∑
k∈K

∆
I,t
k

(P,ξ,Xm)

[
χt
K,ΓΩ,Ξ (ξK)−

∑
k∈K

∆t
k(P, ξ,X

m)
]

= ∆t
b(P, ξ,X

m) +
∆

I,t
b

(P,ξ,Xm)∑
k∈K

∆
I,t
k

(P,ξ,Xm)

[
χt(ξ)

−
∑

k∈P\K
∆I,t

k (P, ξ,Xm)−
∑

k∈K
∆t

k(P, ξ,X
m)

]
= ∆t

b(P, ξ,X
m)

+
∆

I,t
b

(P,ξ,Xm)∑
k∈K

∆
I,t
k

(P,ξ,Xm)

[ ∑
k∈K

∆I,t
k (P, ξ,Xm)

−
∑

k∈K
∆t

k(P, ξ,X
m)

]
(MOEIS of ∆I )

= ∆t
b(P, ξ,X

m)

+
∆

I,t
b

(P,ξ,Xm)∑
k∈K

∆
I,t
k

(P,ξ,Xm)

[ ∑
k∈K

∆
I,t
k

(P,ξ,Xm)∑
p∈P

Ω(p)

[
χt(ξ)

−
∑
p∈P

∆t
P(P, ξ,X

m)
]]

= ∆t
b(P, ξ,X

m)

+
∆

I,t
b

(P,ξ,Xm)∑
p∈P

Ω(p)

[
χt(ξ)−

∑
p∈P

Γt
P(P, ξ,X

m)
]

= ∆I,t
b (P, ξ,Xm)

for every b ∈ K and for every t ∈ Mm.
Theorem 2: On MMC∗, the MMOIR is the only rule

fitting MOIS and MORCON.
Proof of Theorem 2: By Lemma 4, the rule ∆I fits

MORCON. Clearly, the rule ∆I fits MOIS.
To present the uniqueness, suppose that ρ fits MOIS

and MORCON. By MOIS and MORCON of ρ, it is easy
to clarify that ρ also fits MOIS, thus we omit it. Let
(P, ξ,Xm) ∈ MMC∗, Ω be weight function for participating
entities and Ξ be weight function for participation levels. By
MOIS of ρ, ρ(P, ξ,Xm) = ∆Ω,Ξ(P, ξ,Xm) if |P| ≤ 2. The
situation |P| > 2: Let b ∈ P, t ∈ Mm and K = {b, p} with
p ∈ P \ {b}.

ρtb(P, ξ,X
m)−∆I,t

b (P, ξ,Xm)

= ρtb(K, ξK ,Xm
K,ρ)−∆I,t

b (K, ξK ,Xm
K,∆I )

(MORCON of ∆I,t and ρ)
= ∆I,t

b (K, ξK ,Xm
K,ρ)−∆I,t

b (K, ξK ,Xm
K,∆I ).

(MOIS of ρ)

(7)

Similar to equation (2)

∆t
b(K, ξK ,Xm

K,ρ) = ∆t
b(P, ξ,X

m) = ∆t
b(K, ξK ,Xm

K,∆I ). (8)
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By equations (7) and (8),

ρtb(P, ξ,X
m)−∆I,t

b (P, ξ,Xm)

= ∆I,t
b (K, ξK ,Xm

K,ρ)−∆I,t
b (K, ξK ,Xm

K,∆I, )

=
∆t

b(K,ξK ,Xm
K,ρ)

∆t
b
(K,ξK ,Xm

K,ρ
)+∆t

p(K,ξK ,Xm
K,ρ

)

[
χt
K,ρ(ξK)− χt

K,∆I (ξK)
]

=
∆t

b(K,ξK ,Xm
K,ρ)

∆t
b
(K,ξK ,Xm

K,ρ
)+∆t

p(K,ξK ,Xm
K,ρ

)

[
ρtb(P, ξ,X

m) + ρtp(P, ξ,Xm)

−∆I,t
b (P, ξ,Xm)−∆I,t

p (P, ξ,Xm)
]
.

Thus,

∆t
p(K, ξK ,Xm

K,ρ) ·
[
ρtb(P, ξ,X

m)−∆I,t
b (P, ξ,Xm)

]
= ∆t

b(K, ξK ,Xm
K,ρ) ·

[
ρtp(P, ξ,Xm)−∆I,t

p (P, ξ,Xm)
]
.

By MOEIS of ∆I and ρ,

[
ρtb(P, ξ,X

m)−∆I,t
b (P, ξ,Xm)

]
·
∑
p∈P

∆t
p(K, ξK ,Xm

K,ρ)

= ∆t
b(K, ξK ,Xm

K,ρ) ·
∑
p∈P

[
ρtp(P, ξ,Xm)−∆I,t

p (P, ξ,Xm)
]

= ∆t
b(K, ξK ,Xm

K,ρ) ·
[
χt(ξ)− χt(ξ)

]
= 0.

Hence, ρtb(P, ξ,Xm) = ∆I,t
b (P, ξ,Xm) for every b ∈ P and

for every t ∈ Mm.

In the following some examples are exhibited to display
that every of the properties applied in Theorem 2 is indepen-
dent of the rest of properties.

Example 6: We focus on the rule ρ as follows. For every
(P, ξ,Xm) ∈ MMC∗, for every t ∈ Mm and for every
participating entity b ∈ P,

ρtb(P, ξ,X
m) =

{
∆I,t

b (P, ξ,Xm) if |P| ≤ 2,
0 otherwise.

Clearly, ρ fits MOIS, but it does not fit MORCON.

Example 7: We focus on the rule ρ as follows. For every
(P, ξ,Xm) ∈ MMC∗, for every t ∈ Mm and for every
participating entity b ∈ P, ρtb(P, ξ,Xm) = 0. Clearly, ρ fits
MORCON, but it does not fit MOIS.

In the following, an instance is provide to present (*) how
the new rules would distribute effects differently than the
previous rules and (**) differently from each other.

Example 8: Let (P, ξ,Xm) ∈ MMC with P = {a, b, c},
m = 2, ξ = (2, 1, 1), La = {0, 1a, 2a}, Lb = {0, 1b}, Lc =
{0, 1c}, Ω(a) = 3, Ω(b) = 2, Ω(c) = 4, Ξ(1a) = 2, Ξ(2a) =
3, Ξ(1b) = 6, Ξ(1c) = 5.

Further, let χ1(2, 1, 1) = 6, χ1(1, 1, 1) = 8, χ1(2, 1, 0) =
4, χ1(2, 0, 1) = 3, χ1(2, 0, 0) = 10, χ1(1, 1, 0) = 4,
χ1(1, 0, 1) = −5, χ1(0, 1, 1) = 5, χ1(1, 0, 0) = −2,
χ1(0, 1, 0) = 3, χ1(0, 0, 1) = −4, χ2(2, 1, 1) = 10,
χ2(1, 1, 1) = 4, χ2(2, 1, 0) = 6, χ2(2, 0, 1) = 7,
χ2(2, 0, 0) = 5, χ2(1, 1, 0) = −4, χ2(1, 0, 1) = 5,
χ2(0, 1, 1) = 4, χ2(1, 0, 0) = 8, χ2(0, 1, 0) = −3,
χ2(0, 0, 1) = 4 and χ1(0, 0, 0) = 0 = χ2(0, 0, 0). By

Definitions 1, 2, 6,

∆1
a(P, ξ,Xm) = 5

3 , ∆1
b(P, ξ,Xm) = 8

3 ,

∆1
c(P, ξ,Xm) = 5

3 , ∆2
a(P, ξ,Xm) = 1,

∆2
b(P, ξ,Xm) = 4, ∆2

c(P, ξ,Xm) = 5,

∆Ω,1
a (P, ξ,Xm) = 15

9 , ∆Ω,1
b (P, ξ,Xm) = 25

9 ,
∆Ω,1

c (P, ξ,Xm) = 14
9 , ∆Ω,2

a (P, ξ,Xm) = 1,

∆Ω,2
b (P, ξ,Xm) = 33

9 , ∆Ω,2
c (P, ξ,Xm) = 48

9 ,

∆Ξ,1
a (P, ξ,Xm) = −10

3 , ∆Ξ,1
b (P, ξ,Xm) = 26

3 ,
∆Ξ,1

c (P, ξ,Xm) = 2
3 , ∆Ξ,2

a (P, ξ,Xm) = −28
3 ,

∆Ξ,2
b (P, ξ,Xm) = 26

3 , ∆Ξ,2
c (P, ξ,Xm) = 32

3 ,

∆Ω,Ξ,1
a (P, ξ,Xm) = −30

9 , ∆Ω,Ξ,1
b (P, ξ,Xm) = 106

9 ,
∆Ω,Ξ,1

c (P, ξ,Xm) = −22
9 , ∆Ω,Ξ,2

a (P, ξ,Xm) = −84
9 ,

∆Ω,Ξ,2
b (P, ξ,Xm) = 106

9 , ∆Ω,Ξ,2
c (P, ξ,Xm) = 68

9 ,

∆I,1
a (P, ξ,Xm) = 12

7 , ∆I,1
b (P, ξ,Xm) = 18

7 ,
∆I,1

c (P, ξ,Xm) = 12
7 , ∆I,2

a (P, ξ,Xm) = 0,

∆I,2
b (P, ξ,Xm) = 30

7 , ∆I,2
c (P, ξ,Xm) = 40

7 .

IV. BALANCE REQUIREMENT

In this section, related balance properties would be pro-
posed to characterized the rules introduced in this study.

Definition 8:

• A rule ρ satisfies the multi-objective balance
(MOBAL) requirement if

ρta(P, ξ,Xm)− ρtb(P, ξ,Xm)
= ∆t

a(P, ξ,Xm)−∆t
b(P, ξ,Xm)

for every (P, ξ,Xm) ∈ MMC, for every t ∈ Mm, and
for every a, b ∈ P.

• The multi-objective balance requirement asserts that
the disparity in remuneration allocated to any two
participating entities should coincide with the difference
between their respective minimal marginal level losses
under any multi-objective multi-choice circumstance.

Lemma 5: The rule satisfies ∆ satisfies MOBAL on
MMC.

Proof: Let (P, ξ,Xm) ∈ MMC. For every a, b ∈ P,

∆t
a(P, ξ,Xm)−∆t

b(P, ξ,X
m)

= ∆t
a(P, ξ,Xm) + 1

|P|
[
χt(ξ)−

∑
k∈P

∆t
k(P, ξ,X

m)
]

−∆t
b(P, ξ,X

m) + 1
|P|

[
χt(ξ)−

∑
k∈P

∆t
k(P, ξ,X

m)
]

= ∆t
a(P, ξ,Xm)−∆t

b(P, ξ,X
m).

(9)

Hence, the rule satisfies ∆ satisfies MOBAL on MMC.
Theorem 3: On MMC, the MUEIL ∆ is the unique rule

fitting MOEIS and MOBAL.
Proof of Theorem 3: By Lemmas 1 and 5, the rules ∆

fits MOEIS and MOBAL respectively.
To present the uniqueness, suppose that ρ fits MOEIS and

MOBAL. Let (P, ξ,Xm) ∈ MMC, Ω be weight function for
participating entities and Ξ be weight function for partici-
pation levels. By MOEIS of ρ, ρ(P, ξ,Xm) = ∆(P, ξ,Xm)
if |P| ≤ 1. The situation |P| ≥ 2: Let b ∈ P, t ∈ Mm and
K = {b, p} with p ∈ P \ {b}. By applying MOBAL of ρ,

ρtb(P, ξ,X
m)− ρtp(P, ξ,Xm)

= ∆t
b(P, ξ,X

m)−∆t
p(P, ξ,Xm)

= ∆t
b(P, ξ,X

m)−∆t
p(P, ξ,Xm).

(10)
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By MOEIS of ∆Ξ and ρ,
|P|ρtb(P, ξ,X

m)− χt(ξ)
= |P|ρtb(P, ξ,X

m)−
∑
p∈P

ρtp(P, ξ,Xm)

=
∑
p∈P

[
ρtb(P, ξ,X

m)− ρtp(P, ξ,Xm)
]

=
∑
p∈P

[
∆t

b(P, ξ,X
m)−∆t

p(P, ξ,Xm)
]

= |P|∆t
b(P, ξ,X

m)−
∑
p∈P

∆t
p(P, ξ,Xm)

= |P|∆t
b(P, ξ,X

m)− χt(ξ).

Hence, ρtb(P, ξ,Xm) = ∆t
b(P, ξ,Xm) for every b ∈ P and

for every t ∈ Mm.
In the following some instances are exhibited to display

that every of the requirements applied in Theorem 3 is
independent of the rest of requirements.

Example 9: We focus on the rule ρ as follows. For every
(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating entity
b ∈ P, ρtb(P, ξ,Xm) = χt(ξ)

|P| . Clearly, ρ fits MOEIS, but it
does not fit MOBAL.

Example 10: We focus on the rule ρ as follows. For every
(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating entity
b ∈ P, ρtb(P, ξ,Xm) = ∆t

b(P, ξ,Xm). Clearly, ρ fits MOBAL,
but it does not fit MOEIS.

In the context of multi-objective considerations, the same
participation level adopted by a single participating entity
may yield varying effects relative to different objectives.
Therefore, the subsequent requirement is to incorporate
weighted considerations into the previously proposed multi-
objective balance requirement. Specifically, the disparity
in remuneration allocated to any two participating entities
should coincide with the difference between their respective
weighted minimal marginal level losses.

Definition 9:
• A rule ρ satisfies the weighted multi-objective balance

(WMOBAL) requirement if

ρta(P, ξ,Xm)− ρtb(P, ξ,Xm)

= ΓΞ,t
a (P, ξ,Xm)− ΓΞ,t

b (P, ξ,Xm)

for every (P, ξ,Xm) ∈ MMC, for every t ∈ Mm, and
for every a, b ∈ P.

• The multi-objective balance requirement asserts that
the disparity in remuneration allocated to any two
participating entities should coincide with the difference
between their respective weighted minimal marginal
level losses.

Lemma 6: The rule satisfies ∆Ξ satisfies WMOBAL on
MMC.

Proof: Let (P, ξ,Xm) ∈ MMC. For every a, b ∈ P,

∆Ξ,t
a (P, ξ,Xm)−∆Ξ,t

b (P, ξ,Xm)

= ΓΞ,t
a (P, ξ,Xm) + 1

|P|
[
χt(ξ)−

∑
k∈P

ΓΞ,t
k (P, ξ,Xm)

]
−ΓΞ,t

b (P, ξ,Xm) + 1
|P|

[
χt(ξ)−

∑
k∈P

ΓΞ,t
k (P, ξ,Xm)

]
= ΓΞ,t

a (P, ξ,Xm)− ΓΞ,t
b (P, ξ,Xm).

(11)

Hence, the rule satisfies ∆Ξ satisfies WMOBAL on MMC.

Theorem 4: On MMC, the MUEIL ∆Ξ is the unique rule
fitting MOEIS and WMOBAL.

Proof of Theorem 3: By Lemmas 1 and 5, the rules
∆Ξ fits MOEIS and WMOBAL respectively.

To present the uniqueness, suppose that ρ fits MOEIS and
WMOBAL. Let (P, ξ,Xm) ∈ MMC, Ω be weight function
for participating entities and Ξ be weight function for partic-
ipation levels. By MOEIS of ρ, ρ(P, ξ,Xm) = ∆Ξ(P, ξ,Xm)
if |P| ≤ 1. The situation |P| ≥ 2: Let b ∈ P, t ∈ Mm and
K = {b, p} with p ∈ P \ {b}. By applying WMOBAL of ρ,

ρtb(P, ξ,X
m)− ρtp(P, ξ,Xm)

= ΓΞ,t
b (P, ξ,Xm)− ΓΞ,t

p (P, ξ,Xm)

= ∆Ξ,t
b (P, ξ,Xm)−∆Ξ,t

p (P, ξ,Xm).

(12)

By MOEIS of ∆Ξ and ρ,

|P|ρtb(P, ξ,X
m)− χt(ξ)

= |P|ρtb(P, ξ,X
m)−

∑
p∈P

ρtp(P, ξ,Xm)

=
∑
p∈P

[
ρtb(P, ξ,X

m)− ρtp(P, ξ,Xm)
]

=
∑
p∈P

[
∆Ξ,t

b (P, ξ,Xm)−∆Ξ,t
p (P, ξ,Xm)

]
= |P|∆Ξ,t

b (P, ξ,Xm)−
∑
p∈P

∆Ξ,t
p (P, ξ,Xm)

= |P|∆Ξ,t
b (P, ξ,Xm)− χt(ξ).

Hence, ρtb(P, ξ,Xm) = ∆Ξ,t
b (P, ξ,Xm) for every b ∈ P and

for every t ∈ Mm.
In the following some instances are exhibited to display

that every of the requirements applied in Theorem 3 is
independent of the rest of requirements.

Example 11: We focus on the rule ρ as follows. For every
(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating entity
b ∈ P, ρtb(P, ξ,Xm) = χt(ξ)

|P| . Clearly, ρ fits MOEIS, but it
does not fit WMOBAL.

Example 12: We focus on the rule ρ as follows. For every
(P, ξ,Xm) ∈ MMC, for every weight function for partici-
pating entities Ω, for every weight function for participation
levels Ξ, for every t ∈ Mm and for every participating
entity b ∈ P, ρtb(P, ξ,Xm) = ΓΞ,t

b (P, ξ,Xm). Clearly, ρ fits
WMOBAL, but it does not fit MOEIS.

Remark 1: Based on Definitions 2, 6, 8, 9, it is easy
to check that the 1-MWEIL, the BWEIL and the MMOIR
violates the multi-objective balance requirement and the
weighted multi-objective balance requirement.

V. CONCLUSIONS

In contrast to existing studies, this research defines dif-
ferent weighted functions for participating entities and their
respective participation levels simultaneously in the context
of multi-objective multi-choice scenarios, thereby proposing
loss evaluating rules such as the MUEIL, the 1-MWEIL, the
2-MWEIL, and the BWEIL, along with its related axiomatic
processes. Unlike subjective weighted functions, this study
naturally utilizes minimal marginal level-losses instead of
traditional weights, introducing the MMOIR and its related
axiomatic processes within the framework of multi-objective
multi-choice settings. It is necessary to compare and analyze
the findings of existing literature with the results of this study.

1) Traditional evaluating rules mostly focus on participat-
ing patterns of either participation or non-participation
for participating entities.
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2) The MUEIL, the 1-MWEIL, the 2-MWEIL, the
BWEIL, and the MMOIR and related axiomatic pro-
cesses proposed in this study have not been appeared
in previous research literature.

• Under the evaluating notions of the MUEIL and
the 2-MWEIL, after evaluating the different mini-
mal marginal level-losses of all participating enti-
ties, the remaining loss effects are shared among
all participating entities.

• Under the evaluating notions of the 1-MWEIL
and the BWEIL, after evaluating the different
minimal marginal level-losses of all participating
entities, the remaining loss benefits are allocated
based on the relative weighted proportions of each
participating entity.

• The evaluating notions of the 2-MWEIL and the
BWEIL consider weights for participation levels
in evaluating the different minimal marginal level-
losses for all participating entities, which is not
considered in the MUEIL and the 1-MWEIL.

• Participating entities and their participation levels
are crucial in multi-objective multi-choice circum-
stances. Therefore, weights should be applied to
both participating entities and their participation
levels. Under the evaluating notion of the BWEIL,
the minimal weighted marginal level-losses of par-
ticipating entities are first evaluated, and then the
remaining losses are allocated based on the relative
weighted proportions of participation factors.

• However, using weighted functions for evaluating
may lack naturalness. Therefore, in the evaluat-
ing notion of the MMOIR, the minimal marginal
level-losses of all participating entities are first
evaluated, and then the remaining losses are borne
based on the corresponding proportions due to the
minimal marginal level-losses.

The multi-objective balance requirement and the weighted
multi-objective balance requirement, as proposed in
Definitions 8 and 9, can be regarded as two distinct types
of symmetry requirements. The multi-objective balance
requirement implies that the disparity in remuneration
allocated to any two participating entities should be
symmetric with the difference between their respective
minimal marginal level losses. Conversely, the weighted
multi-objective balance requirement suggests that the
disparity in remuneration between any two participating
entities should be symmetric with the difference between
their respective weighted minimal marginal level losses.

The loss evaluating rules proposed in this study have
several advantages.

• Traditional evaluating criteria under traditional circum-
stances often consider the non-participation or universal
participation of all participating entities. However, this
study takes into account that all participating entities
can operate at different participation levels.

• In some studies on evaluating rules under multi-choice
circumstances, although the participation levels of par-
ticipating entities are considered, the evaluation is based
on related evaluating results of specific participating

entities at specific participation levels. In this study,
however, the overall impact generated by all participa-
tion levels of each participating entity is observed.

• To reflect real-world scenarios, the BWEIL conducts
loss evaluation based on the weighting of participat-
ing entities and their participation levels simultane-
ously. Furthermore, considering potential issues regard-
ing the fairness or legitimacy of weighted functions, the
MMOIR utilizes relative minimal marginal level-losses
instead of weighting.

Nevertheless, the rules proposed in this study have
some limitations. As emphasized in the advantages, each
participating entity has different participation levels.
Although it is possible to consider the overall effect of
all participation levels of each participating entity, it is
not possible to evaluate the effect of specific participating
entities at specific participation levels. Future research should
explore alternative rules that simultaneously consider both
overall effect and relative effect of a specific participation
level.

The findings of this study also motivate further research.
• In addition to the EANSC, alternative rules for evaluat-

ing losses under multi-objective multi-choice scenarios
derived from existing evaluating rules can be consid-
ered.

Readers are encouraged to conduct further research based on
the aforementioned motivations.
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