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Abstract—The issue of prescribed-time attitude tracking
control is addressed for quadrotor UAVs with unknown external
disturbances. Firstly, a stability criterion theorem of practically
prescribed-time stabilization is proposed, and a rigorous proof
is derived. On this basis, a quadrotor attitude stabilization
controller employing the backstepping technology is proposed
to guarantee that the attitude errors converge to a small
vicinity of the origin within a specified time frame. This scheme
stands out from traditional fixed-time and finite-time controls
by offering the unique advantage of a preset convergence time
that is independent of both initial conditions and system design
parameters. The efficacy of the proposed control strategy is
demonstrated by simulation results.

Index Terms—Practically prescribed-time control, attitude
tracking control, backstepping, quadrotor UAV.

I. INTRODUCTION

W ITH the rapid development of technology, quadro-
tor unmanned aerial vehicles (UAVs) have become

indispensable tools in the military, civil and commercial
fields which are favored for their unique vertical takeoff
and landing capabilities, high mobility and adaptability to
complex environments [1], [2], [3], [4], [5]. The quadrotor
attitude control systems, as an important part of the carriers,
are vital to ensure that the quadrotor UAVs can complete
various flight tasks successfully. The increasingly diverse
flight tasks put forward higher performance requirements for
the quadrotor attitude control systems in terms of speediness,
stability, accuracy, robustness and disturbance immunity, and
also bring more new challenges to the formulation of the
quadrotor attitude control systems.

When the UAVs execute various tasks such as accurate
delivery, target tracking or visual surveillance, it must realize
the precise control of its combat attitude in a short time, es-
pecially the adjustment and maintenance of a specific attitude
in a predetermined time, which puts forward extremely high
requirements for the aviation control system. Furthermore,
during the flight of the UAVs, they will inevitably be affected
by some disturbances such as gravity and wind, which will
affect the attitude control effect of the quadrotors. Therefore,
to guarantee the stability of the quadrotor attitude control
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systems, it is necessary to address the challenge of quadrotor
interference. At present, many classical methods in the
control field have been utilized for the attitude control of
quadrotors, including PID control [6], [7], [8], [9], back-
stepping control [10], [11] and sliding mode control [12],
[13], [14], [15] and so on. In [8], a robust controller based
on PID is proposed, which not only has good robustness
but also realizes the power reduction of the controller. In
[11], the backstepping method is combined with command
filter, and a disturbance observer is also added to solve the
trouble of input saturation and filtering errors of quadrotor
UAVs. [13] adopts the two-loop integral sliding mode control
method and introduces an extended state observer to estimate
coupling dynamics, unpredictable uncertainties and external
disruptions effectively, which made the quadrotor achieve a
good trajectory tracking effect. Besides, popular algorithms
also include adaptive control [16], [17], [18], [19], model
predictive control [20], [21], [22], optimal control [23], [24],
[25] and the combination control method of the above control
algorithms [26], [27], [28], [29]. For example, [28] adopts a
self-adjust control method to self-adjust the PID controller
by using the adaptive mechanism based on second-order
sliding mode control, and uses the fuzzy compensator to
diminish the chattering phenomenon, which achieves a better
performance of the autonomous flight system. In [29], a
control strategy with finite-time control, adaptive control,
integral backstepping control and fast terminal sliding mode
control is developed by integrating the recursive control
method with the robust control technique, which improves
comprehensive performance in the face of uncertainty of the
quadrotor UAVs.

Over the past decade, there have been numerous study
results on finite-time control algorithms, which can be divid-
ed into traditional finite-time control, fixed-time control and
prescribed finite-time control [30]. Different from asymptot-
ically stable control algorithm, finite-time control can ensure
that the system variables of the systems reach the equilibrium
points within a finite time. Therefore, the finite-time control
algorithm can achieve good control effect. Fixed-time control
can be regarded as a special form of finite-time control.
In contrast to the traditional finite-time control, the biggest
benefit of fixed-time control is that it provides an upper
bound on the convergence time, regardless of the initial
conditions, which makes the fixed-time control more feasible
and effective in engineering. As a new finite-time control
method, prescribed-time control has attracted much attention
by scholars over the past few years. And its convergence time
upper bound can be related to only one control parameter.
In contrast, fixed-time control method involves too many
parameters to be adjusted. Soon afterwards, the theory of
arbitrary time control was initially introduced by Polyakov
in [31] for nonautonomous nonlinear systems, and the con-
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vergence time can be specified and without depending on
the initial state and control parameters. In fact, it can be
regarded as a new type of prescribed-time control theory.
In practical industrial processes, practically finite-time and
practically fixed-time control are commonly applied, which
can realize the convergence of system state variables to a
small region close to the equilibrium points in finite time or
fixed time.

Motivated by the preceding results, this study introduces
a stability criterion theorem for practically prescribed finite-
time and develops a control algorithm for attitude path
tracking of quadrotor UAVs under the effect of unknown
interferences, utilizing the backstepping method. In com-
parison to current tracking control algorithms, the primary
contributions of this research are evident in two distinct
aspects:

1) This study introduces, for the first time, the stability
criterion theorem for practically prescribed-time stabiliza-
tion, accompanied by a rigorous proof. Consequently, a new
practically prescribed-time attitude control strategy is devised
specifically for quadrotor UAVs.

2) In this design approach, backstepping technology is
integrated with practically prescribed-time control. The in-
corporation of the former simplifies the controller’s design
and facilitates its implementation. The latter ensures that
the quadrotor UAVs’ attitude could be stabilized within a
set time frame, despite external interferences. Moreover,
its convergence time remains unaffected by system design
parameters or initial conditions.

The remainder of this paper is divided into the following
sections. Section II provides the model description and the
relevant definitions and theorems. Section III gives the design
of the practically prescribed-time control controller with its
stability analysis. A sample numerical simulation is provided
to further validate the effectiveness of our proposed design
in Section IV. Conclusion of this paper is drawn in Section
V.

II. MODEL DESCRIPTION AND PRELIMINARIES

A. Notation

The definitions provided below are employed consistently
in this paper. [·]T represents the transpose of a matrix. The
notation diag(·) denotes a matrix with non-zero elements on-
ly on its diagonal. For ∀y ∈ Rn, ∥y∥ indicates the Euclidean
norm of a vector which is defined as ∥y∥ =

√
yTy.

B. Model Description

In this study, a quadrotor UAV is selected as the subject of
research. As illustrated in Fig.1, the structural layout of the
quadrotor is provided. The quadrotor is characterized by a
compact design with a symmetrical crossover frame and four
rotors. To describe the attitude orientation of the quadrotor,
two reference frames are introduced: the Body-fixed frame
and the Earth-fixed frame. The Euler angles in the Earth-fixed
frame describe the quadrotor’s attitude, denoted in terms of
the vector. Θ = [ϕ, θ, φ]T ∈ R3, in this case, ϕ denotes
the roll angle, θ denotes the pitch angle, and φ denotes
the yaw angle. Additionally, the angular velocity vector in
the Body-fixed frame is expressed as ω = [p, q, r]T ∈ R3.

Fig. 1. Quadrotor model framework.

Consequently, the 3-DOF dynamic model for the quadrotor’s
attitude system can be derived as{

Θ̇ = S(Θ)ϖ
Jϖ̇ = −ϖ × Jϖ + τ + dτ

(1)

where J =diag(Jxx, Jyy, Jzz) represents the inertia matrix,
dτ = [dϕ, dθ, dφ]

T is the disturbance torque, τ = [τ1, τ2, τ3]
T

denotes the system input, where τ1, τ2 and τ3 represent roll,
pitch and yaw torque, respectively. S(Θ) is interpreted as
the transfer matrix that maps the Body-fixed frame to the
Earth-fixed frame, denoted by

S(Θ) =

 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 (2)

The control inputs are calculated as
F
τ1
τ2
τ3

 =


cυ cυ cυ cυ
0 −cυl 0 cυl
cυl 0 −cυl 0
cτ −cτ cτ −cτ




W 2
1

W 2
2

W 2
3

W 2
4

 (3)

In (3), l stands for the arm length of the quadrotor. and F
represents the total thrust produced by four propellers along
the z-axis. cυ > 0 represents the lift performance coefficient,
and cτ > 0 represents the torque-related coefficient. The
angular velocity of the four motors is represented by Wi(i =
1, 2, 3, 4).

The goal of control in this article is to setup a practically
prescribed-time control strategy for (1) to ensure that the
attitude tracking errors approach a tiny range close to zero
within any given time even in the presence of unknown
disturbances.

C. Problem Formulation and Preliminaries

To execute the algorithm outlined in this paper, here, we
present several key definitions and lemmas that will be used
throughout the paper.

The following describes a dynamical system

ς̇(t) = f(t, ς, dυ), ς(t0) = ς0 (4)

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 247-252

 
______________________________________________________________________________________ 



in the given system, ς ∈ Rn represents the state vector,
dυ ∈ Rn is a vector of disturbances that are not known
but are constrained within certain bounds, and consider
f : R≥0 × Rn → Rn, a nonlinear function, where
f(t, 0; dυ) = 0, which indicates that the origin ς = 0
represents an equilibrium point of the system described by
(4). The time variable t takes values within the interval
[t0,∞). Let t0 ∈ R≥0 be the starting time.

Definition 1[32]
The origin of (4) is globally finite-time stable provided

that
1) it exhibits globally stable and asymptotically converges;
2) each solution ς(t; t0, ς0) = 0 of (4) reaches the origin

within a finite time, i.e., ∀t ≥ t0+T (t0, ς0) s.t. ς(t; t0, ς0) =
0,where T : R≥0 ×Rn → R≥0 is the settling time function.

Definition 2[33]
The origin of (4) is considered to be fixed-time stable if is

considered to be fixed-time stable if it meets the following
two conditions

1) it is global finite-time stability;
2) the settling time function has an upper bound, i.e.,

∃Tmax > 0, such that for all ς0 ∈ Rn and t0 ∈ R≥0,
T (t0, ς0) ≤ Tmax.

Definition 3[31]
The origin of system (4) is called arbitrary-time stable if
1) it exhibits fixed-time stability;
2) ∃Ts > 0 could be selected freely beforehand, for all

ς0 ∈ Rn and t0 ∈ R≥0, the convergence time function
T (t0, ς0) ≤ Ts.

Remark 1 Through the above definitions, it is found that,
in comparison to finite-time/fixed-time stability, the arbitrary
time stabilization is an advanced outcome since its settling
time is able to be predefined without taking into account
the system’s initial states and parameters. In addition, in a
certain sense, the arbitrary time stability is termed as the
prescribed-time stability since they belong to the category of
prescribed-time control.

Lemma 1[31] Considering (4), we let E ∈ Rn be a
domain that includes the point of stability ς = 0. Then,
γ1(ς) and γ2(ς) are two continuous functions with strictly
positive definiteness on D. It is assumed that there exists
a function with continuous derivatives and real outputs
ϑ : [t0, ts] × E → R≥0. Suppose that there exists a real
constant η > 1 such that

(i) γ1(ς) ≤ ϑ (t, ς) ≤ γ2(ς), ∀ς ∈ E
(ii)ϑ (t, 0) = 0, ∀t > ts
(iii)ϑ̇ ≤ −η(eϑ−1)

eϑ(ts−t)
, ∀ϑ ̸= 0, then the convergence point is

prescribed-time stability with arbitrary convergence moment
and the stability time of (4) is T ≤ ts − t0.

Remark 2 Based on Lemma 1, it can be seen that for
a system to be prescribed-time stable, its solutions must
asymptotically approach equilibrium points within a finite
time. Nevertheless, in many existing studies on adaptive
finite-time control for uncertain nonlinear systems, such as
quadrotor UAV systems, guaranteed practical prescribed-
time stability is often not achieved due to various technical
challenges. As a result, the goal of our work is to address
and resolve this issue.

Theorem 1 For each solution ς(t, ς0) and (4), assume
that there exists a Lyapunov function ϑ(ς) satisfying the
following differential inequality

ϑ̇(ς) ≤ −η(1− e−ϑ)

ts − t
+ ϵ (5)

given that η > 1 is a system parameter, and 0 < ϵ < ∞,
then the system is practically prescribed-time stable.

Proof The equation (5) can be expressed as

ϑ̇(ς) ≤ −η(1− e−ϑ)

ts − t
+
ηϱ(1− e−ϑ)

ts − t
−ηϱ(1− e−ϑ)

ts − t
+ϵ (6)

When t → ts, since −ηϱ(1−e−ϑ)
ts−t + ϵ < 0, we can get

V̇ (ς) ≤ −η(1− e−ϑ)

ts − t
+

−ηϱ(1− e−ϑ)

ts − t
(7)

where 0 < ϱ < 1 is a auxiliary parameter.
By mathematical means, (7) is rerepresented as

dϑ

dt
≤ −η̃(1− e−ϑ)

ts − t
(8)

where η̃ = η(1− ϱ) ≥ 1.
The solution to (8) is

ϑ (ς) ≤ ln
(
C (ts − t)

η̃
+ 1

)
(9)

where C is integral constant. From (9), we have

ϑ̇(ς) ≤ −η̃C (ts − t)
η̃−1

C (ts − t)
η̃
+ 1

(10)

From (10), we could know that when t → ts, ϑ̇(ς) → 0.
Obviously, from (9), at t → ts, we have ϑ (ς) = 0. As a
result, it implies that for ∀t ≥ ts, ϑ (ς) = 0 is maintained.
This completes the proof.

Assumption 1 Suppose dτ = [dϕ, dθ, dφ]
T in (4) is

bounded and ∥dτ∥ ≤ δ, where δ represents a known positive
constant.

Assumption 2 The reference signal Θd along with its first
derivative Θ̇d exhibit continuity and boundedness.

Assumption 3 The quadrotor features a symmetrical struc-
ture and rigid propeller assemblies.

Assumption 4 All states of the quadrotor model are
available, and ϕ ∈

(
−π

2 ,
π
2

)
and θ ∈

(
−π

2 ,
π
2

)
are always

true.

III. PRESCRIBED-TIME CONTROLLER DESIGN

In this paper, the backstepping method and the practically
prescribed-time stable theory that we present in Theorem
1 are integrated into the quadrotor UAVs system, which
not only ensures the attitude tracking errors tend to a tiny
neighborhood around zero by a predefined time, but also
solves the system external interference problem. First, the
system (4) is rewritten as{

Θ̇ = S(Θ)ϖ
ϖ̇ = J−1(−ϖ × Jϖ + τ + dτ )

(11)

Firstly, according to the normal design steps of the back-
stepping method, the following tracking errors are defined

z1 = Θ−Θd (12)
z2 = ϖ − α (13)
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where Θd = [ϕd, θd, φd]
T is a reference trajectory vector.

α ∈ R3×1 represents the virtual control law.
Step 1. First Lyapunov candidate function is chosen as

V1 =
1

2
zT1 z1 (14)

Taking the derivative of V1 yields

V̇1 = zT1 ż1 = zT1

(
S(Θ)ϖ − Θ̇d

)
(15)

= zT1

(
S(Θ)(z2 + α)− Θ̇d

)
(16)

Now, we design the following virtual control law

α =

{
S−1(Θ)

(
−η1(ε−e−z1 )

ts−t + Θ̇d

)
, if t0 ≤ t < ts

S−1(Θ)Θ̇d − c1z1, otherwise
(17)

with the help of (17), one obtains

V̇1 =

{
zT1 S(Θ)z2 − zT1

η1(ε−e−z1 )
ts−t , if t0 ≤ t < ts

−c1z
T
1 z1 − zT1 S(Θ)z2, otherwise

(18)

where ε = [1, 1, 1]T, ts indicates the moment when the
settling time occurs, irrespective of system parameters and
initial states.

Step 2. Choosing the following Lyapunov function

V2 =
1

2
zT1 z1 +

1

2
zT2 z2 (19)

Taking the derivative of V2 results in

V̇2 = zT1 ż1 + zT2 ż2 (20)
= V̇1 + zT2

(
J−1(−ϖ × Jϖ + τ + dτ )− α̇

)
Now the attitude control law τ is built as

τ =


ϖ × Jϖ+

J
(
α̇− ST(Θ)z1 − η2(ε−e−z2 )

ts−t

)
, if t0 ≤ t < ts

ϖ × Jϖ + J
(
α̇− ST(Θ)z1 − c2z2 − z2

)
, otherwise

(21)
Then, based on (21), (20) is rewritten as

V̇2 =

 −zT1
η1(ε−e−z1 )

ts−t − zT2
η2(ε−e−z2 )

ts−t

+zT2 J
−1dτ , if t0 ≤ t < ts

−c1z
T
1 z1 − c2z

T
2 z2 + zT2 J

−1dτ − zT2 z2, otherwise
(22)

When t0 ≤ t < ts, using the following inequality

zT2 J
−1dτ ≤

∥∥J−1
∥∥ ∥dτ∥√zT1 z1 + zT2 z2

≤ δ
∥∥J−1

∥∥√2V2 (23)

otherwise, using the Young’s inequality

zT2 J
−1dτ ≤

∥∥zT2 ∥∥2 + δ
∥∥J−1

∥∥
4

(24)

we can obtain

V̇2 ≤


−zT1

η1(ε−e−z1 )
ts−t − zT2

η2(ε−e−z2 )
ts−t

+δ
∥∥J−1

∥∥√2V2, if t0 ≤ t < ts

−c1z
T
1 z1 − c2z

T
2 z2 +

δ∥J−1∥
4 , otherwise

(25)

So far, the main results of this paper can be given as follows.

Theorem 2 For (1) with Assumption 1, 2 and 3, if the
virtual control law (17) and the actual control law (21) are
selected, the system (1) not only satisfies that the tracking
errors in the closed-loop system tend to the tiny neighbor-
hood near zero but also has a great interference suppression
performance against the external interferences.

Proof
First, let us have a discussion about the situation of t0 ≤

t < ts.
From (25), it can be obtained

V̇2 ≤ −zT1
η1(ε− e−z1)

ts − t
−zT2

η2(ε− e−z2)

ts − t
+δ

∥∥J−1
∥∥√2V2

(26)
apparently, V̇2 ≤ −z1

η1(ε−e−z1 )
ts−t + δ

∥∥J−1
∥∥√2V2 or V̇2 ≤

−z2
η2(ε−e−z2 )

ts−t + δ
∥∥J−1

∥∥√2V2.
According to (19), we could easily know√

V2 ≤ max{∥z1∥ , ∥z2∥} (27)

It can be devided into two cases that
√
V2 ≤ ∥z1∥ or√

V2 ≤ ∥z2∥. Let us take
√
V2 ≤ ∥z1∥ as an example, i.e.,

assuming max{∥z1∥ , ∥z2∥} = ∥z1∥, then we can get

V̇2 ≤ −2η1
√
V2(ε− e

√
V2)

ts − t
+ δ

∥∥J−1
∥∥√2V2 (28)

Let µ =
√
V2, we can further obtain µ̇ = V̇2

2
√
V2

, then

µ̇ ≤ − η(eµ − ε)

eµ(ts − t)
+

γ

2
(29)

where γ =
√
2δ

∥∥J−1
∥∥, η = η1

2 and η ≥ 1. Obviously, γ
2

is a known positive constant. According to Theorem 1, (29)
satisfies practically prescribed-time stable which leads to the
stabilization of µ within the given time ts. From the above
content, it can be inferred that V2 also converges to zero
within prescribed-time ts. Note that if max{∥z1∥ , ∥z2∥} =
∥z2∥, then the same result can be achieved. Thus, when t0 ≤
t < ts, the criterion for practically prescribed-time described
in Theorem 1 is satisfied.

Secondly, we are attention to the situation of t ≥ ts.
When t ≥ ts, (25) can be rewritten as

V̇2 ≤ −AV2 +D (30)

where A = c1 + c2, D =
δ∥J−1∥

4 . Thus, similar to [34],
the attitude tracking errors tends to a tiny neighborhood near
zero and remains near zero.

In summary, the control strategy we designed achieves the
practically prescribed-time when external interferences are
present and can continue to maintain stability after a given
time even if the interference is always present. At this point,
the proof of Theorem 2 is completed.

IV. SIMULATION STUDIES

This section demonstrates a MATLAB/Simulink-based nu-
merical simulation to verify the effectiveness of the designed
controller in attitude tracking control for the quadrotor UAV.
Setting the simulation time to be 30s, the nominal inertia mo-
ment is J =diag(0.039, 0.039, 0.071)kg·m2, the disturbance
torgue dτ = [−0.5 cos t, 0,−0.5 sin t]T and the parameters
assumed for simulation are c1 = 5, c2 = 5, η1 = 1.76,
η2 = 2.32 for ts = 6s and ts = 12s, respectively. The
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initial values of the Euler angle and angular rate are gave
as Θ(0) = [0.3, 0.2,−0.4]Trad and ϖ(0) = [0, 0, 0]Trad/s,
respectively. In addition, Θd = [0.3 sin(t), 0.3 cos(t), 0]Trad
is selected as the desired value of the Euler angles.

Emphasize here, the simulation results reflect the reality.
As depicted in Fig.2, it is evident that for a final time ts = 6s,
the Euler angle closely follows the anticipated trajectory
within the specified duration. The curves of tracking errors
are shown in Fig.3. Obviously, the proposed methodology
evidently facilitates swift and precise attitude tracking behav-
ior within ts = 6s. This further substantiates the interference
rejection performance of the theory practically prescribed-
time stability. Additionally, for ts = 6s, the response plots
of the practical control laws denoted as τ1, τ2 and τ3 are
illustrated in Fig.4.

To distinctly verify and emphasize the effectiveness of the
control approach outlined in this document, we additionally
illustrate the simulation outcome for ts = 12s. The outcomes
of the simulation are depicted in Fig.5. and the curves of
tracking errors are shown in Fig.6. It is evident that the
system states converge within ts = 12s. Concurrently, for
ts = 12s, the plots representing the actual control laws
labeled as τ1, τ2 and τ3 are exhibited in Fig.7. The above
results verify that the outstanding tracking performance has
been attained utilizing our suggested approach.
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Fig. 2. Trajectories of Θ and Θd, ts = 6s.

V. CONCLUSION

A practically prescribed-time attitude stability control
method is proposed for the attitude system of quadrotor
UAVs with external interference. The convergence time is
independent of any initial conditions and parameters, and
the desired trajectory of the attitude system of the quadrotor
UAV is achieved within a given time. At the same time,
the external interference problem of the system has been
effectively solved by adopting the practically prescribed-time
theory. As a future work, we are intention to integrate more
methods, such as adaptive control, sliding mode control and
active disturbance rejection technology, into the actual preset
time stability theory proposed in this paper, so as to solve
more external and internal uncertainties and achieve better
trajectory tracking effect.
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