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Abstract—The present study models the ADME
process by a nonlinear compartmental fractional
differential system. The existence and uniqueness of
the proposed models are discussed. The models are
evaluated using the fde12 algorithm on MATLAB,
where a code is generated to minimize mean
squared error (MSE) and estimate the parameters
considered in the models via nonlinear regression
(optimization algorithm) PSO. The experimental
data-sets of Diclofenac delayed release and the drug
concentration based on the stated model, motivated
the authors to the present study. A comparative
study based on the suggested models is
demonstrated in the context of MSE. The
comprehensive results and evaluations are
demonstrated through statistical analysis.

Index Terms—Drug diffusion, FDE, commensurate,
nonlinear model, metabolism.

I. Introduction

THE authors have employed one-compartment
pharmacokinetics with its applications to drug

dissolution [1] to establish fractional calculus in PKPD.
[2], [3] have proven using multi-compartment linear
FDE to create a relationship between model predictions
and experimental results. In [4], identifying and
examining the differences between commensurate and
non-commensurate models helped advance the theory
of FDE in PK. As biological processes are modelled
appropriately using nonlinear functions over linear
models, authors in [5] explored a nonlinear function in
the fractional two-compartmental model for improving
the fit. Theorems related to the existence, uniqueness,
and stability of solutions in linear and nonlinear FDE
have been proved in [6],[7] and [8]. In the current
study, the authors have extended the concept of
nonlinear fractional models to anomalous drug diffusion
given in-vivo results of Diclofenac delayed-release drug
in six human volunteers contributions [9], [10].
In [11] and [12], the authors have provided an
algorithm, namely the predictor-corrector method of
Adams-Bashforth-Moulton for the numerical solution of
nonlinear FDE which has been extended to multi-term
FDE in 2003 for investigating mathematical models.
For the said algorithm, [13] addressed an extensive
error analysis and its convergence. Author in [14]
elaborated linear stability analysis of an algorithm,
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which was previously presented by researchers in [11]
and [12], further [14] developed routine fde12 in
MATLAB. In the present context, a modified algorithm
is illustrated to solve FDE models for drug diffusion
using fde12, which future researchers may utilize to
deal with linear and nonlinear compartmental models.
Further, the authors have suggested a modified
algorithm to estimate the parameters of the models
from the existing experimental data [9] to explore
regression using PSO MATLAB [15].

II. Motivation
A modified approach is provided by nonlinear FDEs,
which facilitate modelling complex dynamics and
memory effects commonly observed in tissue structure
and drug interactions. The study suggests using
FDE-based nonlinear models to model drug
distribution mechanisms more accurately. The
solution’s existence, uniqueness, and stability in the
proposed models are explored to guarantee their
reliability. The parameters are further assessed, and
their significance is investigated through hypothesis
testing to ensure that the investigated models provide
meaningful information regarding the consumption of
drugs.
The present work aims to create precise and
theoretically solid models with strong mathematical
characteristics and a good fit for experimental data. As
a result, the objective of strengthening
pharmacokinetic modelling, which will improve drug
efficacy, optimize drug distribution forecasts, and
enable safer therapeutic approaches, has been achieved.

III. Pre-requisite
In [16], authors defined Caputo’s fractional derivative of
any real number α of a continuous function ϕ (t) as

C
a D

α
t ϕ (t) = 1

Γ (α−m)

∫ t

a

ϕ(m) (η)
(t− η)α−m+1 dη (1)

for m − 1 < α < m, where m ∈ N and a is the lower
limit of t.
The linearity property of the Caputo derivative is given
as [16]:

C
a D

α
t (pϕ (t) + qψ (t)) = pC

a D
α
t (ϕ (t)) + qC

a D
α
t (ψ (t))

(2)
where p and q are arbitrary constants, ϕ (t) and ψ (t)
are continuous functions. Authors of [17] explored
corrector (3) and predictor (4) formulae, respectively,
for fractional Adams-Bashforth-Moullton method, used
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in PSO algorithm to solve FDE.
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for suitable values of ai,k+1.
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where

bi,k+1 = hα

α
[(k + 1 − i)α − (k − i)α]

for h = τ
N ; some positive integer N .

Remark 1.

|e−x − e−y| ≤ |x− y| for x, y ≥ 0. (5)

IV. FDE for drug diffusion
Fick’s law states that the material transfer rate over
the tissue is proportional to the concentration gradient
between the two locations [18]. The transfer procedures
in drug diffusion processes of complex systems adhere
to the power-law trends rather than Fick’s law, which
can be described through FDE. Fractional Calculus
accurately describes such anomalous drug diffusion
kinetics with the experimental data-set. FDE system
with the initial conditions for drug diffusion is
considered for k = 0, 1, 2, · · · , [α] as follows:

Dα [−→y (t)] = ϕ (t,−→y (t)) ; −→y (k) (tl) = −→ck (6)

where ϕ (t,−→y (t)) : [tl, τ ] × V → R2.
Considering V1 = [y1 (tl) − r1, y1 (tl) + r1] and
V2 = [y2 (tl) − r2, y2 (tl) + r2] such that
V = V1 × V2 ⊂ R2, t ∈ [tl, τ ] ,
τ > tl > 0, r1, r2 > 0 and 0 < α < 1.
In the present study, the authors have proposed two
compartmental models with ϕ (t,−→y (t)) as:

ϕ(t,−→y (t)) = (ϕ1(t,−→y (t)), ϕ2(t,−→y (t))) . (7)

In (7), the function ϕ1(t,−→y (t)) and ϕ2(t,−→y (t)) are
defined as

ϕ1(t,−→y (t)) = −k21f1 (y1 (t)) . (8)

ϕ2(t,−→y (t)) =k21f1 (y1 (t)) − k02y2 (t)
−K02f2 (y2 (t)) .

(9)

The nonlinear functions f1 (y1 (t)) and f2 (y2 (t))
mentioned in equations (8) and (9) are defined as

f1 (y1 (t)) = 1 − e− y1(t)
l

d
(10)

and
f2 (y2 (t)) = y2 (t)

Km + y2 (t) (11)

where −→y (t) = (y1 (t) , y2 (t)) ∈ R2. Pharmacokinetics
(PK) uses compartmental models to anticipate the safe
and efficient manner in which medications are provided

to a patient by assuring the interval of intake and
excretion. The core and the peripheral compartments
are thought to exchange the medicament. In the
context, y1 (t) and y2 (t) are drug concentration at time
t in first and second compartments respectively.
K02, k21, k02,Km[19], l and tl are as mentioned in the
Nomenclature APPENDIX A and d be real positive
constant. The nonlinear function (10) depicts the whole
concentration in the first compartment at time tl for a
suitable value of d and continuous decay towards zero
as the drug diffuses to the second compartment.
(6) is analogues to Volterra integral equation in the
form of

−→y (t) =
m−1∑
k=0

y(k) (tl)
tk

k!

+ 1
Γ (α)

t∫
tl

(t− v)α−1
ϕ (v,−→y (v)) dv.

(12)

The integration in (12) can be evaluated by using (3)
and (4).

V. Model Analysis
In the present section, authors explored the conditions
with uniqueness, existence, and stability of the proposed
model (6).

Definition 1.

∥−→y ∥1 = |y1| + |y2|. (13)

Proposition 1. Let ϕ(t,−→y (t)) : [tl, τ ] × V → R2 from
(7) be the nonlinear function in FDE (6), then
ϕ(t,−→y (t)) satisfies Lipschitz condition with respect to
−→y (t) = (y1 (t) , y2 (t))
i.e. ∥ϕ(t,−→y ) − ϕ(t,−→z )∥ ≤ L ∥−→y − −→z ∥.

Proof: Consider

∥ϕ(t,−→y ) − ϕ(t,−→z )∥ = |k21 {f1 (y1 (t)) − f1 (z1 (t))}|
+ |−k21 {f1 (y1 (t)) − f1 (z1 (t))} − k02 {y2 (t) − z2 (t)}
−K02 {f2 (y2 (t)) − f2 (z2 (t))}| from(13)

≤ 2d|k21||y1 (t) − z1 (t)| + |−k02||y2 (t) − z2 (t)|
+ |−K02||f2 (y2 (t)) − f2 (z2 (t))| from(5)

≤ 2d|k21||y1 (t) − z1 (t)| + |−k02||y2 (t) − z2 (t)|
+ |−K02||y2 (t) − z2 (t)|
for y2, z2 ≥ 0,Km > 1

≤ max {2d|k21|, |−k02| + |−K02|}
{|y1 (t) − z1 (t)| + |y2 (t) − z2 (t)|}

= L ∥y − z∥

where L = max {2d |k21|, |−k02| + |−K02|}.
Thus the function ϕ(t,−→y (t)) : [tl, τ ] ×V → R2 is locally
Lipchitz continuous.

Proposition 2. The function ϕ (t,−→y (t)) : [tl, τ ] × V →
R2 defined in Proposition 1 is bounded in [tl, τ ] ,
∞ > τ > tl > 0.

Proof: As f1 (y1 (t)) is bounded function between 0
to 1

d , y2 (t) and f2 (y2 (t)) are bounded functions between
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0 to cmax for the considered time interval. Thus linear
combination of bounded functions is bounded.

Proposition 3. The solution of model with
ϕ(t,−→y (t)) : [tl, τ ] × V → R2 as the nonlinear function
exists and unique in the interval [tl, τ ] , ∞ > τ > tl > 0
with y1 (t) , y2 (t) > 0 ∀ t ≥ 0.

Proof: As ϕ1(t,−→y (t)) and ϕ2(t,−→y (t)) are bounded,
completely continuous and locally Lipchitz continuous
on C1 (

R2
+

)
, the solution (y1 (t) , y2 (t)) for the model

(6) with ϕ(t,−→y (t)) as nonlinear function exists and is
unique on (tl, τ), where 0 < tl < τ < ∞ using theorem
1 [8].
Thus for the system (6) we get

y1 (t) = y1 (tl) + Iα (ϕ (t, y1 (t))) ≥ 0
y2 (t) = y2 (tl) + Iβ (ϕ (t, y2 (t))) ≥ 0.

Proposition 4. The solution of the model with
ϕ(t,−→y (t)) : [tl, τ ] × V → R2 as nonlinear function is
Mittag-Leffler stable.

Proof: To proceed with the proposition we consider
norm of ϕ(t,−→y (t)) for t ∈ [tl,τ ] as

∥ϕ(t,−→y (t))∥ = |−k12 (f1 (y1 (t)))|
+ |k12 (f1 (y1 (t))) − k02y2 (t) −K02 (f2 (y2 (t)))|

from(13)
≤ 2|k12||f1 (y1 (t))| + |k02||y2 (t)| + |K02||f2 (y2 (t))|
≤ |c1||y1 (t)| + |c2||y2 (t)|
where |c1| > 2|k12| and c2 = max {k02,K02}
= |c| ∥−→y (t))∥
where c = max {c1, c2} using(13).

Here ∥ϕ(t,−→y (t))∥ ≤ |c| ∥−→y (t)∥ = g (t, ∥−→y (t)∥) where
g ∈ C ([tl, τ ] ,R+) is monotonically increasing with
g (t, 0) = 0.
Consider FDE

Dαu (t) = g (t, u) , u (tl) = u0 (14)

where g (t, u) = c u (t).
Clearly, the zero solution of (14) is a Mittag-Leffler
system. Moreover for c ≤ 0, (14) is Mittag-Leffler
stable [8]. Hence the zero solution −→y (t) = (0, 0) of the
model (6) with ϕ(t,−→y (t)) : [tl, τ ] × V → R2 is
Mittag-Leffler stable for choice of u0 > ∥−→y (tl)∥ [20].

VI. Bi-compartmental Models
A. Model-1
A bi-compartmental biological system is deliberated in
this section by applying a para-vascular drug. For the
comparison between model results and the validation of
the proposed models, the following linear FDE is
represented by

Dαy1 (t) = −k21y1 (t) (15)

Dβy2 (t) = k21y1 (t) − k02y2 (t) . (16)

After certain time-lag the concentration starts due to
the delayed release drug, represented by the initial
conditions as

y1 (tl) = l, y2 (tl) = 0. (17)

The second compartment in the model (15)~(16) is
characterized by the kinetics of the drug having
movement in the body with the uniformity of plasma.
Authors in [21] evaluated FDE using the Homotopy
Analysis Method. In [8], authors have evaluated
(15)~(16) with initial conditions (17) using the
Adomian Decomposition Method (ADM) to estimate
the parameters such as rate of transfer of drug, rate of
elimination, order of FDE, etc. for the experimental
data-set of Diclofenac delayed release
concentration-vs-time. The authors have explored the
numerical way of evaluating proposed nonlinear FDE
models for drug diffusion in the present study.

B. Model-2
Diclofenac is metabolized primarily by cytochrome
P450 enzymes, particularly CYP2C9, in the liver,
transforming it into various metabolites [22]. Urinary
excretion accounts for the majority of drug and
metabolite disposal. Only one percent of the
unmodified Diclofenac is eliminated through urine, and
the residue is metabolized. Thus, Diclofenac is
generally released by metabolism [23], [24]. Hence
considering the metabolized factor by adapting
Michaelis-Menten equation in (16) along with (15), we
propose

Dβy2 (t) = k21y1 (t) −K02f2 (y2 (t)) (18)

incorporating the conditions mentioned in (17).

C. Model-3
(15) and (18) with (17) assume that the transfer rate
across one compartment to the next is proportional to
the amount of the initial compartment. In a
pharmacokinetic process, the transfer rate is defined as
the function of the amount of concentration (various
compartments) and time. Moreover, linear fractional
compartmental models exhibit linear combinations of
Mittag-Leffler functions of time as in [8]. Thus,
considering (10) as the function of concentration
satisfying necessary conditions of proposition (3) and
(4), we write:

Dαy1 (t) = −k21f1 (y1 (t)) (19)

Dβy2 (t) = k21f1 (y1 (t)) −K02f2 (y2 (t)) (20)

with (17). A choice of ϕ (t,−→y (t)) in (19)~(20) can result
in a set of concentration functions which can produce
data-fit with lesser MSE than the linear one and hence
enhancing the compartmental modelling for ADME.
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D. Model-4
Now considering nonlinear FDE along with eliminating
factor and metabolism parameter as explained in (18),
considering (19) and initial conditions (17), we present:

Dβy2 (t) =k21f1 (y1 (t)) − k02y2 (t) −K02f2 (y2 (t)) .
(21)

Remark 2.
1. In Model-4 if elimination parameter is dropped, we

get Model-3.
2. In Model-3 if nonlinearity in distribution

parameter is dropped, we get Model-2.
Thus, the solutions’ existence, uniqueness, and
stability for all proposed models are proved using
proposition (3) and (4), respectively.

VII. Modified algorithm
A code for generating function of mean squared error
in MATLAB is designed as:
1. function x=fdewp1(x0)
2. clc;
3. alpha=x0(1);
4. b=x0(2);
5. c=x0(3);
6. d=x0(4);
7. e=x0(5);
8. f=x0(6);
9. g=x0(7);
10. param=[b, c, d, e, f, g];
11. f_fun = @(t, y, par)
[-par(1)*((1-exp(-y(1)/par(6)))/par(5));
par(1)*((1-exp(-y(1)/par(6)))/par(5))
-par(2)*y(2)-(par(3)*y(2))/(par(4)+y(2))];
12. t0=0;
13. T=8;
14. y0=[x0(7); 0];
15. h=2(−5);
16. [t, y] =
fde12(alpha,f_fun,t0,T,y0,h,param);
17. sum=0;
18. t1 = [data];
19. yobs = [data];
20. for k=1:385
21. for j=1:number of observations
22. if (t1(j)==t(k))
23. g(j)=y(2,k);
24. sum=sum+(yobs(j)-y(2,k))2;
25. end
26. end
27. end
28. matrix = [t’, y(2,1:385)’];
29. writematrix(matrix, ‘path to store the
matrix’);
30. plot(t, y(2,1:385),t1,yobs,’▲’)
31. x=sum;
32. end

Remark 3.
1. For Model-3, line 11 in the above code can be

modified as f_fun = @(t, y, par)
[-par(1)*((1-exp(-y(1)/par(5)))/par(3));

par(1)*((1-exp(-y(1)/par(5)))/par(3))-
(par(2)*y(2))/(par(4)+y(2))];

2. For Model-2, f_fun = @(t, y, par) [-par(1)*y(1);
par(1)*y(1)-(par(2)*y(2))/(par(3)+y(2))];

3. For Model-1, f_fun = @(t, y, par) [-par(1)*y(1);
par(1)*y(1)-par(2)*y(2)];

4. The lines for defining parameters and displaying
estimated parameters are % as per the need of
model.

A code for minimizing the above function and hence
estimating parameters using PSO program [15] in
MATLAB is proposed as:
1. fun = @fdewp1;
2. lb = [];
3. ub = [];
4. nvars = 7;
5. nparticles = 30;
6. maxiter = 150;
7. options = optimoptions(‘particleswarm’,
‘Display’, ‘iter’, ‘UseParallel’, true);
8. [x, fval] = particleswarm(fun, nvars, lb,
ub, options);
9. disp(‘Optimization results:’)
10. disp([‘alpha = ’, num2str(x(1))])
11. disp([‘b = ’, num2str(x(2))])
12. disp([‘c = ’, num2str(x(3))])
13. disp([‘d = ’, num2str(x(4))])
14. disp([‘e = ’, num2str(x(5))])
15. disp([‘f = ’, num2str(x(6))])
16. disp([‘g = ’, num2str(x(7))])
17. disp([‘Minimum value = ’, num2str(fval)])

VIII. Observation
Utilizing the code presented in section VII, parameters
considered in the Model-1 ~Model-4 are estimated and
displayed in I ~IV respectively. Table I represents
estimated parameters of linear model (15)~(16), with
the initial conditions (17) to the experimental data of
Diclofenac delayed release time-concentration profile
for chosen six subjects. Predicted parameters from the
fitting of model (15) and (18), which includes the
metabolism parameter with (17) to the same
experimental data, are shown in Table II. We observe
that Km > 1 for all the subjects, as per the need of
proposition 1. MSE with the considered model is less
than that of linear. Equipped with model (19)~(20)
fitted to the same experimental data, Table III displays
estimated parameters, considering nonlinearity in the
distributing parameter with (17). MSE generated by
the modified algorithm reflects the efficacy of the
function (10). After fitting the nonlinear model (19)
and (21) with (17), alongside the elimination and
metabolism parameter, to the data from the
experiment, the estimated parameters are shown in
Table IV.
Based on the MSE values, Model-4 has the lowest MSE
compared to Model-1~3, which indicates that Model-4’s
predictions are closer to the actual Diclofenac plasma
concentration than other models. Including metabolic
parameter and adding nonlinear function in Model-4
likely contributed to its improved performance by
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Table I: Parameters estimation for Model-1

Subject α k21 k02 l (mg/ltr) MSE t-stats
1 0.9738 5.2108 2.5941 24.99 0.0144 -0.537937
2 0.966 2.8047 4.6108 22.024 0.0015 0.0989256
3 0.98349 6.1867 2.6965 30.01 0.0608 -1.43506
4 0.9780 6.2848 2.5013 24.99 0.0175 -0.966578
5 0.98166 1.609 4.537 16.2183 0.00898 0.418072
6 0.9896 6.1462 2.0753 15.25 0.1525 -1.25759

Mean 0.9797 5.2078 2.5545 18.8588
± ± ± ± ±

SD 0.0093 1.4546 1.0712 7.3528

Table II: Parameters estimation for Model-2

Subject α k21 K02 Km l (mg/ltr) MSE t-stats
1 0.8386 15.6006 23.2618 3.2320 21.4395 0.006 -1.07984
2 0.9572 11.3779 26.6082 9.7345 9.8352 0.0014 -0.872885
3 0.7620 15.12 14.99 1.01 18.6132 0.0131 -1.30657
4 0.7599 18.0517 19.9994 1.9539 20.6653 0.0046 -1.02123
5 0.98659 6.7153 18.0283 11.4291 4.9341 0.00895 -0.807238
6 0.694 13.3566 29.9790 2.1329 27.9751 0.0907 -1.13256

Mean 0.833 13.3704 22.1444 4.9154 17.2437
± ± ± ± ± ±

SD 0.1172 3.955 5.57286 4.477 8.399

Table III: Parameters estimation for Model-3

Subject α k21 K02 Km d l (mg/ltr) MSE t-stats
1 0.8332 20.1938 24.9233 2.6833 0.1914 23.8196 0.0058 -0.728406
2 0.9462 29.7637 24.1054 7.9439 0.4044 9.5402 0.0013 -0.0995952
3 0.8664 21.9630 24.9998 3.8145 0.0683 21.6874 0.0026 -1.38582
4 0.86 27.1314 29.9966 5.0579 0.1046 22.6426 0.0034 -1.00408
5 0.9592 31.4074 26.6165 13.3588 1.0511 5.8296 0.00888 1.10479
6 0.8071 24.3327 22.0482 2.5798 0.0761 20.15 0.0262 -1.07042

Mean 0.8668 22.6333 23.9365 4.0089 0.2074 18.7018
± ± ± ± ± ± ±

SD 0.0479 6.0789 4.0807 2.2164 0.1569 5.5754

Table IV: Parameters estimation for Model-4

Subject α k21 k02 K02 Km d l (mg/ltr) MSE t-stats
1 0.9177 24.9527 2.3153 14.9923 3.5140 0.1102 39.8253 0.0056 -0.887177
2 0.9515 39.6520 5.4214 26 1.7709 0.3848 49.9963 0.0011 0.178827
3 0.9640 16.8393 2.5873 14.829 18.4583 0.0533 37.7992 0.001 -1.63094
4 0.9478 29.99 3.0364 9.3637 13.117 0.0951 39.993 0.0023 -1.00323
5 0.9731 28.6252 8.9212 29.4916 14.6046 0.39164 39.5833 0.008858 0.396875
6 0.8039 29.3124 0.7676 29.3452 2.6895 0.0533 34.7122 0.0166 -1.08458
Mean 0.9332 27.953 2.9725 18.49185 9.7276 0.2754 33.7871
± ± ± ± ± ± ± ±
SD 0.0406 10.4287 1.8283 7.8033 8.1536 0.3515 13.3616

capturing more variability in the drug concentration.
The comparison shows that Model-4 outperforms other
model’s prediction accuracy, as indicated by the lower
MSE. Based on this analysis, Model-4 is recommended
for predicting drug concentration due to its superior
performance as measured by MSE.
In Figure 1, smooth curves represent the simulated
plasma concentration of Diclofenac delayed release by
models (15)~(16), (15) and (18), (19)~(20), (19) and
(21) with the initial conditions (17) whereas blue
triangles reflect experimental data conducted on

Subject 1 to 6. Mij represents simulation of jth model
on data-set of ith subject.

IX. Discussion
The main objective of the work is to present robust
nonlinear fractional order models, including
metabolism parameters, that could fit the experimental
data set of anomalous drugs. Further, it presents an
algorithm that could estimate the parameters while
minimizing the mean squared error function after
evaluating the presented models by fde12

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 236-246

 
______________________________________________________________________________________ 



0 2 4 6 80

5

10

15

M11

M12

M13

M14

Time

Pl
as

m
a

C
on

ce
nt

ra
tio

n

Obs data
M11
M12
M13
M14

(a) Subject 1

0 2 4 6 80

2

4

6

8

M21

M22

M23

M
24

Time

Pl
as

m
a

C
on

ce
nt

ra
tio

n

Obs data
M21
M22
M23
M24

(b) Subject 2

0 2 4 6 80

5

10

15

M31

M32

M33

M34

Time

Pl
as

m
a

C
on

ce
nt

ra
tio

n

obs data
M31
M32
M33
M34

(c) Subject 3

0 2 4 6 80

5

10

15

M41
M42

M43

M44

Time

Pl
as

m
a

C
on

ce
nt

ra
tio

n

obs data
M41
M42
M43
M44

(d) Subject 4

0 2 4 6 80

1

2

3

4

5

M51
M52

M53
M54

Time

Pl
as

m
a

C
on

ce
nt

ra
tio

n

obs data
M51
M52
M53
M54

(e) Subject 5

0 2 4 6 80

5

10

M61

M62

M63

M64

Time

Pl
as

m
a

C
on

ce
nt

ra
tio

n

obs data
M61
M62
M63
M64

(f) Subject 6

Figure 1: Plots of Diclofenac-concentration-verses time (h) for Subjects 1-6
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implementation on MATLAB. FO model is the
generalized case of integer order model fitting data-set
of all categories of drugs for different values of α. Risk
of toxicity or ineffectiveness of the treatment is
involved in the process of ADME, where control of
drug concentration in plasma is mandatory. In order to
forecast the parameters influencing the sequence of
events for each individual, one requires a PK model.
A function is created to define mean squared error with
the parameters involved in the models, and the related
study is further explored. As per the proposed models,
the drug absorbed in the first compartment after a
certain time-lag is treated as a parameter, because it
differs for different subjects as observed in the
experimental data. The range for time is specified as 8
hours, depending on the sample taken. The step size, h
is considered to be

( 1
2
)5. The fde12 code is

implemented on above discussed factors
([t, y] = fde12(alpha,f_fun,t0,T,y0,h,param)).
The regression is done using the particle swarm
algorithm, where PSO parameters are set as a number
of particles equal to 30, and the maximum number of
iterations is 150. The optimization results by the PSO
algorithm for concentration data of six subjects are
referred from [9] and are displayed in Table I~IV for
various models. The authors conducted a
study/experiment on six healthy volunteers using a
slow-release 100 mg single dose of oral Diclofenac
tablet formulation.
Anatomical regions of the body represented by a
two-compartmental model in this text include the
bloodstream and a tissue compartment. As mentioned
in the main results, it is often believed that these
compartments’ drug distribution and elimination
procedures are alike. Therefore, assuming that both
compartments have a similar fractional order is
biologically logical. Hence, the order is similar in both
equations while analyzing them for real data.
Model-1 to Model-4 represented by (15)~(16), (15) and
(18), (19)~(20), (19) and (21) respectively with the
initial conditions (17) were fitted to the Diclofenac
delayed release profile taken from literature for six
subjects. The parameter estimates are presented in
Table I~IV with respective mean squared errors for the
respective models. MSE reveals that the fitting with
the nonlinear model with metabolic parameter is
proved effective over the domain research done in the
recent past. The fractional profile first seems quicker
from the first to the second compartment but
subsequently slows down. The power-law kinetics of the
final state in the fractional case leads to slower kinetics.
Considering the null hypothesis with the mean of the
residuals as zero, the t-test is performed to validate the
proposed models. The mod of t-value is compared with
the t-table value at 95% LOS and ‘n minus
parameters’ degree of freedom. The comparison
indicates the robustness of the models considered in
the study.

X. Comparison and analysis
In the present section, t-stats, p-value, and confidence
interval at 95% LOS have been computed for the

estimated parameters of all the proposed regression
models, using Mathematica 13.0 to process the
significance of the parameters. Observation made from
table (V), the comparatively narrow confidence ranges
for subjects 1, 3, 4, and 6 show that the estimates are
precise. The CI for the second parameter for subject 5,
which contains 0, indicates that the result for this
parameter may not be significant, which can suggest
that the estimations for this subject are more variable
or imprecise than those for other subjects. Table (VI)
shows that the t-stats for subjects 1, 3, 4, and 6 are
extremely high, suggesting that the outcomes are not
likely to be the result of chance. The variations found
in the data are pretty significant. The t-stats for
subjects 2 and 5 are slightly lower than the others.
Thus, this indicates that the effect might be less than
that of the other subjects, even though they are still
significant. The dataset’s p-values are all exceedingly
small, ranging between 10−3 and 10−53, substantially
lower than the 0.05 cut-off, which suggests that the
null hypothesis is firmly rejected for all subjects and
parameters. From Table (VII), we see that t-stats for
subject 2 in the parameters Km and d and for subject
4 in d are low, whereas for all other parameters, it is
very high. The p-value for all the parameters is far
below the threshold of 0.05. Table (VIII) shows that
the results from subjects 1, 3, 4, and 6 are consistently
robust and reliable. Subject 5 exhibits marginally more
significant variability, especially about k02 parameter.
Subject 2 exhibits the most variability and contains
non-significant parameters such as K02 and Km.
Overall, as per the models for the considered subjects,
a high t-statistic and a low p-value have been observed
for all estimated parameters, which suggests that the
parameters are significantly different from zero at 95%
LOS. Given that there is a statistically significant
association between the related predictor and response
variable, it is unlikely that the outcome is an effect of
random chance. As a result, the authors state that
these predictor variables contribute significantly to the
model and need to be considered during the present
text’s analysis. Comprehending and forecasting a
drug’s pharmacokinetics requires knowledge about
ADME parameter rates. A high transfer/distribution
rate seen in Tables V~VIII indicates rapid absorption,
which can lead to quicker onset of action. It determines
how fast Diclofenac reaches its target sites. The higher
metabolism rate indicates how fast the drug is broken
down into active or inactive metabolites for the
mentioned drug. A lower elimination rate is seen,
leading to slower clearance of the drug from the body.
The right amount of drug must be maintained in the
body for the intended therapeutic effect. During drug
development, the understanding of optimizing the rate
of transfer parameters is always intended to ensure
safer and more effective drugs.
For the matter of presentation, Subject i depicted in
the graphs is the same as Sub i mentioned in the
Tables V~VIII, where i = 1, 2, · · · , 6.
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Table V: Statistical analysis for Model-1

Model 1 α k21 k02 l (mg/ltr)
Sub 1: t-stats 2271.17 354.213 90.3076 47.9479

p-value 4.32758 ∗ 10−53 9.2981 ∗ 10−38 1.72627 ∗ 10−26 2.74189 ∗ 10−21

CI (0.968224, 0.975726) (5.14496, 5.40605) (2.46117, 2.99029) (22.4728, 32.5272)
Sub 2: t-stats 1423.51 8.02476 9.65034 16.5291

p-value 2.12145 ∗ 10−25 2.15948 ∗ 10−5 4.80817 ∗ 10−6 4.84199 ∗ 10−8

CI (0.969829, 0.978311) (2.56811, 19.9941) (1.08752, 4.99228) (10.2599, 22.5703)
Sub 3: t-stats 1321.36 85.6937 40.5473 24.7004

p-value 1.27514 ∗ 10−48 4.66471 ∗ 10−26 6.43559 ∗ 10−20 6.65454 ∗ 10−16

CI (0.980199, 0.993291) (5.28463, 6.48888) (1.9085, 2.9612) (16.451, 34.549)
Sub 4: t-stats 873.697 451.912 73.4919 47.9479

p-value 3.30411 ∗ 10−45 9.0913 ∗ 10−40 8.56368 ∗ 10−25 2.74189 ∗ 10−21

CI (0.963382, 0.982908) (6.21819, 6.46417) (2.34249, 2.97693) (22.4728, 32.5272)
Sub 5: t-stats 393.739 6.12083 7.0751 6.9287

p-value 2.23819 ∗ 10−20 0.000174775 5.82338 ∗ 10−5 6.84468 ∗ 10−05

CI (0.965509, 0.996391) (−0.0326401, 5.21402) (0.436264, 6.60154) (1.3299, 23.8895)
Sub 6: t-stats 1380.79 118.398 62.1561 39.2301

p-value 5.52781 ∗ 10−49 1.01421 ∗ 10−28 2.03957 ∗ 10−23 1.19682 ∗ 10−19

CI (0.979865, 0.992385) (5.88627, 6.8275) (1.9168, 2.54616) (13.9782, 22.0218)

Table VI: Statistical analysis for Model-2

Model 2 α k21 K02 Km l (mg/ltr)
Sub 1: t-stats 132.875 20.8626 30.2895 12.5982 65.2736
p-value 3.93522 ∗ 10−16 6.25429 ∗ 10−9 2.27982 ∗ 10−10 5.08245 ∗ 10−7 2.34685 ∗ 10−13

CI (0.788863,
0.866057)

(12.3731,
22.8319)

(16.9384,
25.6538)

(1.42942,
4.19792)

(19.0005,
22.9875)

Sub 2: t-stats 207.066 4.36805 16.128 9.02866 7.39883
p-value 7.26976 ∗ 10−18 0.0018022 6.00063 ∗ 10−8 8.31879 ∗ 10−6 4.10849 ∗ 10−5

CI (0.92526,
0.98236)

(-4.20192,
24.2622)

(15.6773,
35.2476)

(2.51747,
13.5417)

(1.83923,
20.8244)

Sub 3: t-stats 92.7185 30.5145 28.8548 9.63593 121.394
p-value 1.04756 ∗ 10−26 1.31833 ∗ 10−17 3.73425 ∗ 10−17 9.53262 ∗ 10−9 6.31296 ∗ 10−29

CI (0.723905,
0.875065)

(12.473,
22.5266)

(11.5921,
21.7075)

(0.153874,
3.25194)

(17.9127,
20.7008)

Sub 4: t-stats 421.651 23.2655 65.6799 71.6181 231.905
p-value 1.20837 ∗ 10−20 2.38315 ∗ 10−9 2.21962 ∗ 10−13 1.01988 ∗ 10−13 2.62288 ∗ 10−18

CI (0.748996,
0.771344)

(12.9162,
22.297)

(17.8404,
21.5583)

(1.78263,
2.12041)

(20.1295,
21.235)

Sub 5: t-stats 219.836 3.76945 13.0326 14.189 62.879
p-value 4.24278 ∗ 10−18 0.0044202 3.80041 ∗ 10−7 1.82634 ∗ 10−7 3.28306 ∗ 10−13

CI (0.947988,
1.00299)

(-9.39694,
38.5683)

(8.17934,
23.0141)

(5.06332,
12.9176)

(4.69711,
5.72435)

Sub 6: t-stats 44.353 13.884 179.199 16.214 84.44
p-value 7.52413 ∗ 10−12 2.20364 ∗ 10−7 2.66901 ∗ 10−17 5.72862 ∗ 10−8 2.32112 ∗ 10−14

CI (0.617648,
0.818312 )

(8.22288,
21.4846)

(28.8011,
30.8647)

(1.52917,
3.42169)

(24.6231,
28.5242)

XI. Conclusion
In the present study, authors have explored different
linear and nonlinear models considering with and
without metabolic parameters to study the release
profile of Diclofenac delayed release. The existence and
uniqueness of the suggested models have been
discussed. The algorithm is presented to evaluate the
considered models numerically and estimate the study
parameters. Diclofenac concentration-vs-time graphs
are plotted for various models, which are further

compared w.r.t MSE. The t-test on residuals performed
on the models validates the proposed models. The
importance of the metabolism parameter is showcased
in the continuous curves plotted. The existing linear
models are now generalized to the nonlinear models in
the present text.
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Table VII: Statistical analysis for Model-3

Model 3 α k21 K02 Km d l (mg/ltr)

Sub 1: t-stats 130.391 162.704 31.5927 24.4694 15.0092 69.3142

p-value 4.663 ∗ 10−16 6.363 ∗ 10−17 1.565 ∗ 10−10 1.523 ∗ 10−9 1.122 ∗ 10−7 1.368 ∗ 10−13

CI (0.7835,
0.8617)

(19.348,
20.8805)

(21.8031,
32.4459)

(1.922,
3.226)

(0.0959,
0.2309)

(21.5571,
25.7909)

Sub 2: t-stats 241.795 12.2408 15.4445 5.7108 5.94061 13.3507

p-value 1.801 ∗ 10−18 6.5 ∗ 10−7 8.751 ∗ 10−8 0.00029 0.0002178 3.088 ∗ 10−7

CI (0.927,
0.9757)

(12.2687,
37.436)

(15.4354,
36.128)

(-0.5961,
14.5745)

(-0.0176,
0.8315)

(4.6017,
12.5765)

Sub 3: t-stats 69.9628 41.4767 39.012 12.086 15.5976 61.4025

p-value 1.258 ∗ 10−13 1.372 ∗ 10−11 2.374 ∗ 10−11 7.245 ∗ 10−7 8.031 ∗ 10−8 4.064 ∗ 10−13

CI (0.7708,
0.9206)

(19.4225,
26.247)

(19.8505,
27.3493)

(-0.5556,
6.943)

(-3.6631,
3.8356)

(19.7737,
24.2137)

Sub 4: t-stats 238.689 9.76035 69.8137 23.6667 5.11001 68.6253

p-value 2.023 ∗ 10−18 4.377 ∗ 10−6 1.282 ∗ 10−13 2.047 ∗ 10−9 0.000636 1.496 ∗ 10−13

CI (0.8296,
0.8738)

(8.9226,
39.9705)

(26.6855,
31.8853)

(3.3929,
5.8006)

(-0.02334,
0.2426)

(20.9167,
25.07)

Sub 5: t-stats 139.211 20.3803 12.7685 7.60711 19.2462 6.94707

p-value 2.588 ∗ 10−16 7.689 ∗ 10−9 4.53 ∗ 10−7 0.000033 1.273 ∗ 10−8 6.706 ∗ 10−5

CI (0.9096,
0.9944)

(21.4119,
40.1266)

(12.6268,
36.4484)

(1.8279,
17.9077)

(0.669,
1.3046)

(0.834,
14.6365)

Sub 6: t-stats 255.138 20.1333 141.082 42.6483 19.6094 156.004

p-value 1.11 ∗ 10−18 8.562 ∗ 10−9 2.295 ∗ 10−16 1.069 ∗ 10−11 1.08 ∗ 10−8 9.289 ∗ 10−17

CI (0.7876,
0.8268)

(15.1611,
28.6474)

(20.058,
25.177)

(2.404,
3.222)

(0.04979,
0.0958)

(19.9736,
21.6264)

Table VIII: Statistical analysis for Model-4

Model 4 α k21 k02 K02 Km d l (mg/ltr)

Sub 1: t-stats 110.6 47.7627 15.9269 80.0792 5.74398 37.4839 27.545

p-value 2.05 ∗ 10−15 3.873 ∗ 10−12 6.694 ∗ 10−8 3.738 ∗ 10−14 0.000278401 3.395 ∗ 10−11 5.315 ∗ 10−10

CI (0.861279,
0.963541)

(20.8152,
27.0229)

(1.33829,
3.04343)

(13.6449,
15.9342)

(-0.30278,
7.96476)

(0.0851594,
0.118901)

(29.8828,
47.2354)

Sub 2: t-stats 483.307 19.2581 6.23111 5.66878 3.4361 8.54934 10.5238

p-value 3.538 ∗ 10−21 1.2669 ∗ 10−8 0.000153051 0.0003062 0.00743619 1.297 ∗ 10−5 2.335 ∗ 10−6

CI (0.950246,
0.974934)

(24.3772,
47.5147)

(0.0286753,
10.7479)

(-1.77352,
39.7713)

(-1.56391,
5.45533)

(0.117727,
0.738353)

(16.122,
62.3196)

Sub 3: t-stats 385.891 13.6853 23.7082 9.06127 7.05812 14.0216 55.9173

p-value 2.682 ∗ 10−20 2.495 ∗ 10−7 2.016 ∗ 10−9 8.076 ∗ 10−6 0.000059328 2.023 ∗ 10−7 9.415 ∗ 10−13

CI (0.944581,
0.975419)

(11.7632,
31.2381)

(2.15673,
3.68353)

(3.78854,
20.1899)

(1.64234,
25.3099)

(0.0433153,
0.111945)

(34.0354,
42.5211)

Sub 4: t-stats 688.285 30.7622 29.0886 5.31164 9.7271 16.0251 123.686

p-value 1.468 ∗ 10−22 1.985 ∗ 10−10 3.27 ∗ 10−10 0.00048632 4.502 ∗ 10−6 6.345 ∗ 10−8 7.498 ∗ 10−16

CI (0.939741,
0.956819)

(21.1175,
31.774)

(2.42918,
3.74464)

(-1.43053,
18.5769)

(5.01187,
22.6157)

(0.0484579,
0.109582)

(37.3622,
41.3042)

Sub 5: t-stats 180.115 11.5822 5.5844 8.04798 10.7219 7.97626 29.8344

p-value 2.549 ∗ 10−17 1.04 ∗ 10−6 0.00034102 2.11 ∗ 10−5 1.997 ∗ 10−6 2.266 ∗ 10−5 2.609 ∗ 10−10

CI (0.928597,
0.994783)

(11.8097,
38.9983)

(-0.589582,
11.3218)

(4.39325,
33.8297)

(5.07958,
18.9979)

(0.113417,
0.904003)

(28.6234,
43.6346)

Sub 6: t-stats 86.8778 32.5366 5.38366 16.2776 7.41463 10.8735 40.2908

p-value 1.797 ∗ 10−14 1.203 ∗ 10−10 0.000442371 5.536 ∗ 10−8 4.04 ∗ 10−5 1.774 ∗ 10−6 1.779 ∗ 10−11

CI (0.779275,
0.899005)

(22.6643,
33.3309)

(-0.142279,
2.02362)

(19.3868,
43.2288)

(0.573825,
6.42014)

(0.0317722,
0.116008)

(31.5271,
42.9901)
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Appendix

Nomenclature

Symbol Quantity
t time
FDE Fractional differential equations
α, β non-integer order
Γ Gamma function
ϕ(n) nth order derivative of the function
N set of natural numbers∑

summation
kij drug transfer rate from jth compartment to ith

compartment
k0j drug elimination rate from jth compartment
K0j drug metabolism rate from jth compartment
Km Michaelis-Menten parameter
[ ] greatest integer not greater than
! factorial
tl time-lag
l initial concentration in the first compartment

at time tl

τ upper bound of the time domain
MSE mean squared error
R2 set of ordered pairs with real elements
∥∥ norm of the function in a normed space
sup supremum
cmax maximum drug concentration in the second

compartment
CI Confidence interval
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