
 

  

Abstract—With advancements in positioning technology and 

the widespread adoption of wireless sensors, numerous wireless 

handheld and vehicular devices now come equipped with 

positioning capabilities. This has enabled a variety of new 

applications and generated large volumes of moving object 

data. The continuously changing location information of these 

moving objects requires efficient management in databases. 

Traditional database systems, which typically assume static 

attribute values until explicitly updated, face challenges in 

managing such dynamic, constantly changing location data 

efficiently. Current moving object indexing structures fall 

mainly into two categories: grid-based and tree-based indexing. 

However, each approach has inherent limitations. In this paper, 

we propose a novel indexing method that combines grid and 

quadtree structures and utilizes a deep learning model to 

intelligently determine when leaf nodes should be split or 

merged. Our method is not just a theoretical concept, but a 

practical solution that can be applied to a wide range of 

scenarios. Experimental results demonstrate that our method 

achieves higher throughput and reduces response times, 

particularly in skewed moving object distributions, offering 

significant improvements over existing indexing techniques. 

 
Index Terms—Moving Object, Grid-based Indexing, Tree-

based Indexing, Quadtree Structure, Deep Learning 

 

I. INTRODUCTION 

ith the ongoing advancement of mobile computing, 

location-based services, and GIS applications, interest 

in moving object databases has grown significantly among 

researchers [1]. The primary purpose of a moving object 

database is to provide real-time data updates and query 

services for moving objects, ensuring users receive query 

results with specific temporal and spatial accuracy within a 

defined range. For example, in taxi service applications, 

both users and taxis are considered moving objects. A 

typical query operation in this context involves 

recommending taxis within a specified distance to users [2]. 

Research on moving object databases mainly focuses on 

four areas: location modeling, query language, index 

structure, and uncertainty management [3][4][5][6]. 

Indexing technology for moving objects, which stores and 

retrieves their spatio-temporal locations, plays a crucial role 
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in the setup and querying of these databases. Effective 

indexing for moving objects is essential for efficient data 

management and enhanced query performance, making it a 

key area of research in moving object databases. 

Moving object indexing can be roughly divided into two 

types. One type is to partition index nodes based on the 

object distribution of data, represented by R-tree [7], its 

variants (R+- tree [8], R * - tree [9]), and index structures 

constructed by extended trees. The two variants of R-tree, 

TB tree [10] (Trajectory Bundle tree) and STR-tree, index 

the movement trajectory, which stores similar trajectory 

fragments in the same tree node, thereby reducing the 

number of query traversals. MV3R-tree [11] is a hybrid 

index structure that uses R-tree and its variants to index 

historical trajectories. STAR-tree can index moving objects' 

current and future positions, but it should be suitable for 

scenarios with infrequent updates. TPR-tree [12] is an index 

structure that indexes moving objects' current and future 

positions. Each node defines a spatial rectangle of future 

time points. However, the indexing performance will 

significantly reduce if the moving object does not move long. 

REXP tree [13] indexes moving objects' current and future 

positions. The index node identifies the expiration time of 

the motion vector. When the node fails, it is deleted 

according to a specific strategy to ensure the compactness 

and effectiveness of the index. TPR*-tree [14] is a variant of 

the TPR tree, which uses a different index node maintenance 

algorithm to make the structure more compact. 

Another type of indexing organizes nodes based on 

spatial partitioning, primarily using grids and their variants. 

The ST2B-tree [15] combines grid and B-tree methods, 

managing moving objects spatially according to density 

distribution and grid granularity, adapting to rapidly 

changing loads. The uniform grid index, P-Grid [16], 

divides the spatial area into equal-sized grids, assigning 

moving objects to different grid units based on their 

coordinates; each unit grid is linked to a data list that stores 

information about the objects within it. M-Grid [17] 

improves upon P-Grid by incorporating Hilbert curves to 

better address multidimensional data query challenges. D-

Grid [18] integrates speed information in its query process 

using a dual spatial grid index structure, accommodating the 

dynamic behavior of moving objects. 

The above two methods can be broadly categorized as 

tree-based and grid-based index structures. However, grid-

based index structures tend to underperform when objects 

are frequently moved or are unevenly distributed. While 

tree- based indexing can effectively handle object movement, 

its query performance often falls short of that provided by 

grid-based indexing. 

In our previous work [19], we introduced GAPI, a GPU-
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accelerated parallel indexing method for spatial moving 

objects. This method integrates grid and quadtree structures 

to track leaf node counts as objects enter and exit, allowing 

dynamic splitting and merging of leaf nodes as needed. 

Experimental results showed that GAPI significantly 

outperforms other indexing approaches; however, it still 

demands substantial computational resources and its 

performance is heavily dependent on GPU capacity. To 

overcome these limitations, this paper presents DLMOI 

(Deep Learning-based Moving Object Indexing), a novel 

indexing structure that combines grid and quadtree 

structures with deep learning to efficiently address the 

challenges of moving object indexing. The main 

contributions of this paper are as follows: 

1) The DLMOI proposed in this paper combines grid and 

quadtree indexes. It retains the grid index's rapid query 

capabilities while using the quadtree index to address 

the issue of spatial and temporal unevenness in the load 

of moving objects. 

2) This paper introduces a deep learning-based split and 

merge model to address the time-consuming nature of 

quadtree index operations involving splitting and 

merging. Objects within the grid are represented as 

images, and a combination of convolutional neural 

networks and attention mechanisms is employed to 

determine whether leaf nodes require splitting or 

merging. 

3) Experimental results demonstrate that our method 

achieves higher throughput and reduces response times, 

especially in scenarios with skewed distributions of 

moving objects. Our process offers significant 

improvements over the best currently available indexing 

techniques. 

 

II. RELATED CONCEPTS AND TECHNOLOGIES 

A. Spatial Database 

The spatial database is a repository of geospatial data and 

associated attributes stored on a computer in a defined 

structural format. It serves three fundamental functions: 

storing and managing spatial data, data querying, and 

analysis and reasoning based on spatial data. The first 

function entails the efficient organization and management 

of geospatial data, facilitating the storage of vast quantities 

of spatial information in a structured and readily accessible 

manner. This organization ensures that data can be quickly 

retrieved and updated as needed. The second function allows 

users to extract specific information from the spatial 

database based on criteria such as location, attributes, or 

spatial relationships. The third function empowers users to 

conduct analytical tasks like spatial pattern recognition, 

proximity analysis, and spatial modeling. These analyses are 

crucial for understanding spatial relationships, making 

informed decisions, and addressing complex spatial 

challenges. 

Spatial data encompasses information used to describe 

spatial objects' shape, size, position, and other 

characteristics. It originates from various sources and comes 

in multiple forms. These data types can be categorized into 

the following categories: 

1) Attribute data. Attribute data describes an object's 

various non-spatial attributes, such as text, dates, 

numbers, and other relevant information. 

2) Graphical image data. A large amount of data in the 

spatial database system needs to describe the spatial 

attributes with the help of graphics and images. 

3) Spatial relationship data. Spatial relationship data 

describes the topological relationships between 

geographic elements or objects. It elucidates how 

different spatial entities are connected or related to each 

other in the real world. 

Spatial data structures are used to describe the structural 

relationship among spatial data. Based on the data storage 

methods employed in spatial data models, these structures 

are primarily categorized into vector and raster data. Vector 

Data Structures capture geographical entities by recording 

their coordinates, enabling a precise definition of location, 

length, and area. This approach is indispensable when the 

accuracy of spatial details is paramount, facilitating detailed 

geographic analyses and accurate mapping. Ra Raster Data 

Structures divide the geographical surface into uniformly 

sized, precisely adjacent grid cells. It offers a more intuitive 

representation of spatial data, simplifying implementation 

and supporting straightforward modifications and 

expansions. This method is beneficial for depicting 

continuous spatial phenomena. These spatial data structures 

allow geographic information to be effectively organized 

and analyzed, enhancing decision-making processes in 

diverse fields such as urban planning, environmental 

management, and resource allocation. 

Spatial databases support multiple spatial data types and 

spatial data models. Compared with traditional databases, 

spatial databases have the following characteristics: 

1) Vast Data Volumes: Spatial databases manage 

extensive data, encapsulating size, shape, position, and 

other details of real-world phenomena in specific data 

structures. The immense volume of spatial data requires 

specialized management techniques. 

2) Complexity and Diversity of Data: Spatial databases 

store not only spatial data but also accommodate a 

broad range of data types, including text, numerical 

values, dates, and symbols. This diversity allows for a 

comprehensive description of various scientific 

phenomena, enriched with graphical images and spatial 

relationship data for a complete representation. 

3) Highly accessible. In practical applications, spatial 

databases are not only repositories for spatial data but 

are also platforms for efficient retrieval and timely 

analysis of this stored information, ensuring that users 

can quickly access and utilize the data as needed. 

B. Grid Index  

The grid index [20] is a fundamental index structure 

characterized by its relatively simple construction principle. 

It divides the spatial range where the target spatial entity set 

is located into a series of cells of the same size and divides 

the spatial position into grids. Each cell in the grid index 

acts as a bucket, keeping track of the number of spatial 

entities within that cell. As new entities are processed, they 

are added to the corresponding grid cell, reflecting their 

current spatial position. 
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Grid indexes encompass vital operations such as creation, 

reconstruction, insertion, deletion, and update. During the 

initial creation of a grid index, an appropriate grid scale is 

determined based on the statistical characteristics of the data. 

Each spatial entity is decomposed into its respective grids, 

and its record is added to all relevant grids. This process 

continues until all entity records are accounted for. The 

grids it spans are identified during the insertion of a spatial 

entity, and the grid code of the spatial features is calculated. 

The entity's data are then recorded in the grid structure index 

table. Deleting an entity record involves removing all 

corresponding index records associated with that entity. 

When updating the index, the process consists of deleting 

the existing index record and adding the updated index 

record to reflect the changes made. 

Grid indexing has a meager operation cost, and the most 

essential query is also relatively simple. The process of 

using grid index queries can be divided into two steps. First, 

all the entity grids covered by the query area and included 

are retrieved to achieve rough queries. Then, based on the 

rough retrieval result set, records that do not meet the query 

requirements are eliminated through precise comparison. 

The grid index structure has advantages such as ease of 

maintenance and high scalability. However, its performance 

is significantly influenced by the grid size. Larger grid 

partitions lead to more, on average, falling into each `cell 

and a higher percentage of entities being entirely distributed 

within a grid. As a result, when performing nearest neighbor 

queries, it becomes challenging to preliminarily determine 

the search range and locate the query object, leading to 

decreased index accuracy. On the other hand, smaller grid 

partitions result in greater data storage capacity and 

potential redundancy, with a lower average number of 

entities falling into each cell. However, this requires 

multiple range extensions during queries to determine the 

initial search range, which can lead to reduced query 

efficiency. In scenarios with uneven spatial data distribution, 

such as road network environments, the grid index structure 

may struggle to effectively partition an appropriate grid size. 

Consequently, it becomes challenging to strike a balance 

between accuracy and efficiency. 

C. Quadtree Index 

Quadtree [21] was proposed by Tayeb in 1998. A 

quadtree is a hierarchical structure that recursively divides a 

rectangular area. Specifically, it divides a rectangular space 

into four equal rectangles as its subspaces. In this recursive 

division, four h-1 power rectangular areas (h is the depth of 

division) stop until the number of objects in each rectangular 

area is less than or equal to the given bucket size. As a result 

of this recursive division, the quadtree has a single root node, 

and each intermediate node has four child nodes, with each 

node corresponding to a rectangle. This hierarchical 

structure allows for efficient spatial querying and indexing 

of spatial data. 

Quadtree finds extensive applications in various fields, 

including graphic image processing, 2D fast collision 

detection, and handling sparse data. It serves as a 

representation tool for spatial objects like point data, curves, 

surfaces, and volumes and as a spatial indexing technique. 

One of the commonly used methods in spatial indexing 

technology, Quadtree is a versatile and flexible data 

structure that can handle variables of arbitrary dimensions, 

not limited to two-dimensional data. 

Quadtree has proven to be a versatile and widely used 

spatial indexing technique, particularly suitable for datasets 

with non-uniform distributions or varying densities. It 

efficiently organizes spatial data, making it easier to perform 

operations like range queries and nearest-neighbor searches 

while reducing the number of comparisons and improving 

overall query performance. However, some problems exist 

with using the quadtree structure for indexing. With the 

deepening of its hierarchy, the query efficiency will drop 

sharply. 

 

III. DLMOI INDEX STRUCTURE 

A. Problem Definition 

Given a spatial plane 𝑆 , the moving objects set 𝑂 =
{𝑜1, 𝑜2, ⋯ , 𝑜𝑛}.Each of these objects is represented as 𝑜𝑖 =

{𝑜𝑖
𝑖𝑑 , 𝑜𝑖

𝑥 , 𝑜𝑖
𝑦

, 𝑜𝑖
𝑡}, 𝑜𝑖

𝑖𝑑is the unique identifier of 𝑜𝑖 , (𝑜𝑖
𝑥 , 𝑜𝑖

𝑦
) is 

its position, 𝑜𝑖
𝑡 is the last update time. Query operations set 

𝑄 = {𝑞1, 𝑞2, ⋯ , 𝑞𝑒}.Each query request is expressed as 𝑞𝑗 =

{𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑡𝑞} , (𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) 

defines a rectangular query box, 𝑡𝑞  is the time when the 

query started. The purpose of the moving objects database is 

to return the moving object located in the query box to the 

user when the query 𝑞𝑗 in 𝑄  arrives. 

This query method is called a range query, and other types 

of queries, such as k-nearest neighbor queries, can be 

transformed into a series of range queries. Therefore, this 

paper only discusses the support of index structure for this 

query type. 

B. Index Structure 

The main work of the moving objects database is to 

update moving objects' locations and return results 

according to query requirements. Therefore, the moving 

object index structure must efficiently meet two primary 

conditions: 

1)   Find the object through the object identifier 𝑜𝑖
𝑖𝑑. 

2)   Find and update the moving object according to the 

object position (𝑜𝑖
𝑥 , 𝑜𝑖

𝑦
). 

The auxiliary index method based on the hash table can 

support the condition 1). 

Definition 1 (auxiliary index) The auxiliary index uses 

the hash table ℋ to index all spatial objects according to the 

𝑜𝑖
𝑖𝑑  value. ℋ  stores key-value pairs of the form 

(𝑜𝑖
𝑖𝑑 , 𝑝_𝑏𝑘𝑡, 𝑖𝑑𝑥), where 𝑝_𝑏𝑘𝑡 is the memory space location 

of the bucket , 𝑜𝑖  is located in the hybrid index (see 

definition 2), and 𝑖𝑑𝑥 represents its relative location in the 

bucket. 

Figure 1 shows an example of auxiliary index. According 

to the nature of the hash table, the storage location of 𝑜𝑖  in 

the memory can be found according to 𝑜𝑖
𝑖𝑑  in constant time 

by using the auxiliary index. 

Grid-based and tree-based indexes have advantages and 

disadvantages in satisfying condition 2). 

The grid-based index method can directly calculate the 

grid to which 𝑜𝑖  belongs according to (𝑜𝑖
𝑥 , 𝑜𝑖

𝑦
) . However, 
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when the spatial distribution of moving objects is uneven, 

the number of moving objects in the grid in the hotspot. 

 
Fig. 1.  Example of auxiliary index 

 

area is too large, and updating the object position 

information will cause hotspots. The grid is frequently 

locked, reducing the parallel performance of the grid in 

hotspots. 

The tree-based index method reduces object congestion in 

hotspot areas. Still, each query for 𝑜𝑖  by (𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) requires 

multiple queries from the tree root node to a series of 

intermediate nodes to leaf nodes, which reduces query 

efficiency. What has a more significant impact on the 

overall efficiency is that the tree index needs to constantly 

adjust the structure to adapt to the distribution of moving 

objects, and the calculation of whether the leaf nodes need 

to be adjusted and the adjustment operation itself will 

consume a lot of computing resources. 

To sum up, this paper proposes a hybrid index method 

combining grids and quadtrees, which avoids the 

shortcomings of the above two methods. 

Definition 2 (hybrid index) The hybrid index 𝒫 divides 

the space plane 𝑆 into 𝐺𝑛𝑢𝑚 = 2𝜌 × 2𝜌  grids. Each grid can 

be converted between grid nodes and quadtrees according to 

conditions. 

The goal of hybrid index is to balance the load of each 

cell by transforming the grid in the hotspot area into a 

quadtree. 𝜌  is the grid partitioning parameter, using the 

selection criteria given in [22]: 

𝜌 =
1

2
⌈𝑙𝑏𝑁 − 𝑙𝑏𝐶𝐿⌉                              (1) 

Where 𝑁 represents the total number of moving objects in 

the space, 𝐶L represents the capacity of leaf nodes. 

During execution, the number of moving objects in and 

out of each grid is dynamically judged. The grids that meet 

the splitting requirements are converted into quadtrees, and 

the quadtrees that meet the merging requirements are 

converted back to grids. The leaf nodes are also split and 

merged in each quadtree according to the conditions. 

Figure 2 shows an example of a hybrid index. The upper 

layer in the right half of figure 2 is a plane 𝑆 divided into 

 𝐺𝑛𝑢𝑚 = 2𝜌 × 2𝜌 grids, where the black grid represents the 

hotspot grid converted into a quadtree. The lower layers 

represent the spatial areas corresponding to the quadtree 

nodes at all levels, and the black nodes represent further 

subdivided areas. The left half of the figure shows one of the 

enlarged quadtrees, and the division of the quadtree to its 

grid is displayed above it. It can be seen that after 

converting to a quadtree, the region has been more finely 

divided. 

Each grid cell 𝑐𝑖  only contains a 𝑝𝑏𝑢𝑐𝑘𝑒𝑡  pointer, which 

points to a bucket list ℒ𝑖, which contains a series of buckets 

that store a fixed number of all moving objects belonging to 

the cell. Each quadtree node 𝜉i  is represented as  𝜉i =
{𝑝𝑏𝑢𝑐𝑘𝑒𝑡 , 𝑝𝑐1

, 𝑝𝑐2
, 𝑝𝑐3

, 𝑝𝑐4
} , where 𝑝𝑐1

, 𝑝𝑐2
, 𝑝𝑐3

 and 𝑝𝑐4
 are 

respectively pointers to child nodes in the four quadrants 

with the current node as the parent node. 

 
Fig. 2.  Example of hybrid index 

IV. NODE SPLIT AND MERGE MODEL  

The split and merge operations for grid and quadtree leaf 

nodes are fundamentally identical. Therefore, grid and leaf 

nodes will be collectively referred to as nodes in this section. 

A. Moving Object Mapping 

Traditional splitting and merging algorithms typically 

base decisions on the number of moving objects and the 

time required for updates, which often involves extensive 

computations and precise criteria for splitting and merging. 

This approach can be both time-consuming and prone to 

inaccurate splits. To address these challenges, this paper 

proposes a deep learning model to swiftly and accurately 

determine when nodes should be split or merged. 

A primary challenge when using deep learning models for 

the split and merge task is the variability in the number of 

objects per node. Within the same quadtree, some nodes 

may contain only a few objects, while others may contain 

many, causing substantial fluctuations in the model input 

size. 

To overcome this issue, this paper presents an innovative 

solution: mapping each node into a square image, with the 

moving objects within the node represented as points within 

this image. The mapping formula for the coordinates of the 

moving objects is as follows: 

�̅�𝑖
𝑥 =

(𝑜𝑖
𝑥 − 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡)

(𝑛𝑜𝑑𝑒. 𝑟𝑖𝑔𝑡 − 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡)
∗ 𝑙 

�̅�𝑖
𝑥 =

(𝑜𝑖
𝑥 − 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡)

(𝑛𝑜𝑑𝑒. 𝑟𝑖𝑔𝑡 − 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡)
∗ 𝑙                (2) 

Where  �̅�𝑖
𝑥 and  �̅�𝑖

𝑦
 is the coordinate of the moving object 

𝑖 mapped to the picture. 𝑜𝑖
𝑥 , 𝑜𝑖

𝑦
 is the original coordinate of 

the moving object 𝑖. 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡 represents the left boundary 

of the node. 𝑛𝑜𝑑𝑒. 𝑟𝑖𝑔𝑡 represents the right boundary of the 

node.    𝑛𝑜𝑑𝑒. 𝑓𝑙𝑜𝑜𝑟   represents the lower boundary of the 

node.  represents the upper boundary of the   represents the 

edge length of the picture. 

B. Model structures 

Figure 3 shows the structure of the node split and merge 

model, shorted as SMM. The model consists of three parts: a 

Convolutional neural network, an attention mechanism, and 

a fully connected layer. These three parts will be introduced 
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in detail next. 

In a quadtree index, the merging and splitting of nodes is 

related to the distribution of the objects they contain. After 

mapping the objects contained in the nodes to images, SMM 

utilizes a Convolutional Neural Network to extract features 

from these images. These features can be considered 

representations of the distribution of the objects. 

We believe that a node's merging and splitting often do 

not depend on itself but are also influenced by the object 

distribution of neighbor nodes and the entire grid space. 

As illustrated in Figure 3,  the node merge and split model 

considers not only the target distribution of the current node 

but also the target distribution of its three neighbor grids and 

the upper grid of that node. Input the current grid image, 

three neighbor grid images, and the upper grid image into 

five independent convolutional neural networks, 

respectively. The convolutional neural network of the 

current grid image and the three neighbor grid images share 

the same structure but have different parameters. Due to the 

higher number of objects in the upper grid, the upper grid 

image needs to be set at a larger size, requiring a more 

complex convolutional neural network to extract features. 

The features extracted from the three neighboring and 

upper grid images are then fed into an attention mechanism 

layer. This layer automatically learns and assigns varying 

weights to the input features, thus allowing the model to 

focus on more pertinent or significant information. This 

approach helps ascertain each feature's importance in 

merging or splitting the current node. We derive the final 

relevant node features by assigning weights based on their 

significance and summing them accordingly. 

Concatenate the node features with the relevant node 

features computed using the attention mechanism. Then, 

input the concatenated vector into a fully connected layer. 

This fully connected layer aims to analyze the features and 

determine whether the node should be merged or split. This 

transformation turns the node merging or splitting problem 

into a classification task with three categories: static, merge, 

and split. 

The node split and merge model uses cross-entropy as the 

loss function to train the model. The calculation formula is 

as follows: 

𝐿(𝑝, 𝑞) = − ∑ 𝑝𝑖 𝑙𝑜𝑔(𝑞𝑖)                       (3)

𝑀

𝑖=1

 

where M is the number of nodes, 𝑝𝑖  is the real probability 

distribution of nodes split and merging, and 𝑞𝑖  is the 

probability of node split and merge predicted by the model. 

V. DATA STRUCTURES AND ALGORITHMS 

A. Data structures 

The grid index in the hybrid index is implemented using a 

two-dimensional array: 
𝑎𝑟𝑟𝑎𝑦 < 𝑎𝑟𝑟𝑎𝑦 < 𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝑁𝑜𝑑𝑒 >, 𝑤𝑖𝑑𝑡ℎ >, ℎ𝑒𝑖𝑔ℎ𝑡 >    (4) 

Where 𝑤𝑖𝑑𝑡ℎ  and ℎ𝑒𝑖𝑔ℎ𝑡  represent the number of grid 

columns and rows respectively. The Node class is the parent 

class of Cell and QuadTree. The cell class represents a grid 

that contains only one 𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝐵𝑢𝑐𝑘𝑒𝑡 >  type 

pointer. The QuadTree class represents a quadtree: 
𝑆𝑡𝑟𝑢𝑐𝑡 𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒{ 
/∗  𝐵𝑢𝑐𝑘𝑒𝑡 𝑐ℎ𝑎𝑖𝑛 ℎ𝑒𝑎𝑑𝑒𝑟 𝑛𝑜𝑑𝑒 ∗/ 
𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝐵𝑢𝑐𝑘𝑒𝑡 > 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡; 
/∗  𝐶ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒 ∗/ 
𝑎𝑟𝑟𝑎𝑦 < 𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒 > ,4 > 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛; 
/∗ 𝑃𝑎𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 ∗/ 
𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒 ∗  𝑝𝑎𝑟𝑒𝑛𝑡; 
/∗  𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 ∗/ 
𝑖𝑛𝑡 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑓𝑙𝑜𝑜𝑟, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔; 
 }                                                                                                     (5) 

The objects in Cell or QuadTree are stored in a bucket 

linked list structure. Buckets are used to store moving 

objects on leaf nodes, with a fixed size. The number of 

buckets under each leaf node is determined by the number 

of moving objects. If the bucket is full when inserting an 

object, create a new bucket. If the bucket becomes empty 

when deleting an object, delete the bucket. The bucket 

structure is as follows: 

𝑆𝑡𝑟𝑢𝑐𝑡 𝐵𝑢𝑐𝑘𝑒𝑡{ 
/∗  𝐴𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 ∗/ 
𝑆𝑖𝑡𝑒[𝑚𝑎𝑥_𝑠𝑖𝑧𝑒] 𝑠𝑖𝑡𝑒𝑠; 
/∗  𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑐𝑘𝑒𝑡 ∗/ 
𝑖𝑛𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡; 
/∗  𝑁𝑒𝑥𝑡 𝑏𝑢𝑐𝑘𝑒𝑡 ∗/ 
𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝐵𝑢𝑐𝑘𝑒𝑡 > 𝑏𝑢𝑐𝑘𝑒𝑡; 
}                                                                                                      (6) 
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Where, the Site class stores moving objects data, 

including 𝑖𝑑 , 𝑥 , 𝑦 , and update time 𝑡𝑢 . It can be inferred 

from the content contained in the Site class that the data of 

one of its objects needs to occupy at least 128 bits (4 int 

values on a 32-bit machine) of memory space. If no 

protection measures are taken, access conflicts may occur 

between different threads when reading and writing the Site 

class in parallel. The traditional method to avoid access 

conflicts is to lock the Site object when reading or writing it. 

Since the Site class is the most frequently used class in the 

DLMOI index, to avoid the impact of locking on 

performance, the four data in the Site class were merged into 

one_ m128i type object, using the Intel MMX instruction set 

_ mm_ Load_ Si128 and_ mm_ Set_ Epi32 operation reads 

and writes the content, and uses_ mm_ Extract_ Epi32 

extracts the corresponding data. This way, DLMOI indexes 

can correctly read and write Site data in parallel without 

locking. 

B. Algorithms 

With the continuous updating of objects, the structure of 

Quadtree also changes. The insertion algorithm of objects 

inserts them into appropriate nodes based on coordinates. 

The deletion algorithm finds the bucket based on the object 

ID and deletes it. The splitting and merging of cells is the 

key operation of balancing the Quadtree, only the cells that 

meet the conditions of splitting and merging can be splited 

and merged. 

1) Spatial Object Insertion Algorithm 

The algorithm for inserting object 𝑜𝑖  into a leaf node is 

shown in Algorithm 1: 

 
TABLE  Ⅰ  

ADD TO LEAF ALGORITHM 

Algorithm 1. (𝒂𝒅𝒅_𝒕𝒐_𝒍𝒆𝒂𝒇)  Insert object 𝑜𝑖 into leaf node  

Input: moving object 𝑜𝑖 = {𝑜𝑖
𝑖𝑑 , 𝑜𝑖

𝑥, 𝑜𝑖
𝑦

, 𝑜𝑖
𝑡} 

Output: No output. Leaf nodes are updated after the operation completes 

1. 𝑐𝑢𝑟_𝑙𝑒𝑎𝑓 =   𝑔𝑒𝑡_𝑙𝑒𝑎𝑓(𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) 

/* Find the inserted leaf node by position (𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) */ 

2.     𝑖𝑓(𝑖𝑠_𝑓𝑢𝑙𝑙(𝑐𝑢𝑟_𝑙𝑒𝑎𝑓. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡)) 

3.         𝑛_𝑏𝑢𝑐𝑘𝑒𝑡 = 𝑛𝑒𝑤 𝐵𝑢𝑐𝑘𝑒𝑡(); 

4.         𝑖𝑛𝑠𝑒𝑟𝑡_𝑏𝑢𝑐𝑘𝑒𝑡(𝑛_𝑏𝑢𝑐𝑘𝑒𝑡); 

5. 𝑖𝑛𝑠𝑒𝑟𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑜𝑖)       

/* Insert the object 𝑜𝑖 into the current node's bucket */ 

 

During the process of object movement, as the position 

changes, the object will continuously move between various 

nodes. The main purpose of Algorithm 1 is to insert an 

object into a leaf node. The idea is to find the leaf node that 

the object should be inserted into based on its position 

(𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) , and judge the bucket state of the node. If the 

bucket is not full, insert object 𝑜𝑖  directly into the bucket. If 

the bucket is full, create a new bucket n_bucket and insert 

the newly created bucket into the bucket list of the current 

node. Then insert the object 𝑜𝑖into the bucket, and add 1 to 

the number of objects stored in the bucket. 

2) Space Object Deletion Algorithm 

The algorithm for deleting object 𝑜𝑖  from a leaf node is 

shown in Algorithm 2: 

 

 

 

TABLE  Ⅱ  
REMOVE FROM LEAF ALGORITHM 

Algorithm 2. (𝒓𝒆𝒎𝒐𝒗𝒆_𝒇𝒓𝒐𝒎_𝒍𝒆𝒂𝒇)  Remove object 𝑜𝑖 from leaf node  

Input: moving object 𝑜𝑖 = {𝑜𝑖
𝑖𝑑 , 𝑜𝑖

𝑥, 𝑜𝑖
𝑦

, 𝑜𝑖
𝑡} 

Output: No output. Leaf nodes are updated after the operation completes 

1. 𝑏𝑢𝑐𝑘𝑒𝑡 = 𝑔𝑒𝑡_𝑏𝑢𝑐𝑘𝑒𝑡(𝑜𝑖
𝑖𝑑) 

2. 𝑑𝑒𝑙𝑒𝑡𝑒_𝑓𝑟𝑜𝑚_𝑏𝑢𝑐𝑘𝑒𝑡(𝑜𝑖) 

3.  𝑖𝑓(𝑖𝑠_𝑒𝑚𝑝𝑡𝑦(𝑏𝑢𝑐𝑘𝑒𝑡)) 

4.     𝑑𝑒𝑙𝑒𝑡𝑒_𝑏𝑢𝑐𝑘𝑒𝑡(𝑏𝑢𝑐𝑘𝑒𝑡); 

          /* Delete empty buckets */ 

 

When moving object positions are updated, objects that 

no longer belong to the scope of the current leaf node need 

to be inserted into their new owning leaf nodes and deleted 

from the current node. 

As shown in Algorithm 2, the bucket where the object is 

located is found according to the unique object identifier 𝑜𝑖
𝑖𝑑, 

the object is deleted from the bucket, and the number of 

objects stored in the bucket is reduced by 1. After object 𝑜𝑖  

is deleted, if the bucket where object 𝑜𝑖  used to be is empty, 

the bucket will also be deleted. 

3) Cell Split Algorithm 

The algorithm of Cell Split Algorithm is shown in 

Algorithm 3. 
TABLE  Ⅲ  

SPLIT ALGORITHM 

Algorithm 3. (𝒔𝒑𝒍𝒊𝒕)  split the cell 

Input: quadtree leaf node  𝑠_𝑛𝑜𝑑𝑒 =  {𝑝_𝑏𝑢𝑐𝑘𝑒𝑡, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛,

𝑝𝑎𝑟𝑒𝑛𝑡, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑓𝑙𝑜𝑜𝑟, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔} 

Output: No output. Quadtree structure is updated after the operation 

completes 

1. 𝑥_𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡)/2; 

2. 𝑦_𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑓𝑙𝑜𝑜𝑟 + 𝑐𝑒𝑖𝑙𝑖𝑛𝑔)/2; 

3.  𝑠_𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[0] =

𝑛𝑒𝑤 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒 (𝑥_𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑔ℎ𝑡, 𝑦_𝑚𝑖𝑑𝑑𝑙𝑒, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔); 

/* Initialize 𝑠_𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 [1 - 3] in a similar way*/ 

4. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ(𝑐ℎ𝑖𝑙𝑑 𝑖𝑛 𝑠_𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) 

5.    𝑐ℎ𝑖𝑙𝑑. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑠_𝑛𝑜𝑑𝑒; 

6.    𝑠_𝑛𝑜𝑑𝑒. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡. 𝑜𝑖 → 𝑐ℎ𝑖𝑙𝑑. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡; 

7. 𝑖𝑓(𝑠_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡 𝑖𝑛 𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) 

8.   𝑑𝑒𝑙𝑒𝑡𝑒_𝑓𝑟𝑜𝑚_𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑠_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡); 

9. 𝐼𝑛𝑠𝑒𝑟𝑡_𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑠_𝑛𝑜𝑑𝑒); 

 

According to the split and merge algorithm introduced in 

Section 3, when leaf nodes are considered to be split, the 

quadtree index structure should divide leaf nodes 𝑠_𝑛𝑜𝑑𝑒 

into four sub grids.  

The split of sub grids is based on the principle of evenly 

dividing top, bottom, left, and right, where 𝑥_𝑚𝑖𝑑𝑑𝑙𝑒 =
(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡)/2 , 𝑦_𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑓𝑙𝑜𝑜𝑟 + 𝑐𝑒𝑖𝑙𝑖𝑛𝑔)/2 , as 

shown in lines 1-2. After the split is completed, the parent 

nodes of all children are set as the current leaf node, and all 

objects in the split node 𝑠_𝑛𝑜𝑑𝑒  are moved to the 

corresponding child's bucket. If the parent of the split node 

belongs to the 𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list before the node is not 

split, split it from the 𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list and then add 

the current node to the 𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list. 

4) Cell Merge Algorithm 

According to the split and merge algorithm introduced in 

Section 3, when leaf nodes are considered to be merged, the 

quadtree index structure merges four grids into one. It 

should be noted that since the merge operation involves 

other nodes, it will only merge when more than half of the 
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surrounding four nodes are judged to be merged. 

The algorithm of Cell Merge Algorithm is shown in 

Algorithm 4: 
TABLE  Ⅳ 

MERGE ALGORITHM 

Algorithm 4. (𝒎𝒆𝒓𝒈𝒆)  merge the cell  

Input: quadtree leaf node 𝑚_𝑛𝑜𝑑𝑒 =  {𝑝_𝑏𝑢𝑐𝑘𝑒𝑡, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛,

𝑝𝑎𝑟𝑒𝑛𝑡, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑓𝑙𝑜𝑜𝑟, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔} 

Output: No output. Quadtree structure is updated after the operation 

completes 

1. 𝑖𝑓(𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚_𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑖𝑠_𝑙𝑒𝑎𝑓()) 

/* Find the inserted leaf node by position (𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) */ 

2.    𝑚_𝑛𝑜𝑑𝑒. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝑐ℎ𝑖𝑙𝑑. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡; 

3.    𝑑𝑒𝑙𝑒𝑡𝑒_𝑛𝑢𝑙𝑙_𝑏𝑢𝑐𝑘𝑒𝑡(𝑚_𝑛𝑜𝑑𝑒. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡); 

4.    𝑖𝑓(𝑚_𝑛𝑜𝑑𝑒 𝑖𝑛 𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) 

5.       𝑑𝑒𝑙𝑒𝑡𝑒_𝑓𝑟𝑜𝑚_𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑚_𝑛𝑜𝑑𝑒); 

6.    𝑖𝑓(𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑐ℎ𝑖𝑙𝑑 𝑖𝑠_𝑙𝑒𝑎𝑓()) 

7.       𝑖𝑛𝑠𝑒𝑟𝑡_𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑚_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡); 

 

As shown in Algorithm 4, when a node meets the merge 

condition, all the buckets of its children are linked and 

assigned to the bucket of the current node. Adjust the bucket 

chain of the current node and delete empty buckets. If the 

current node belongs to a 𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠  list, then 

delete the current node 𝑚_𝑛𝑜𝑑𝑒  from 𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

list. After merging, if the parent node of the current node 

belongs to the merge_ Candidates list, then the current 

node's parent node 𝑚_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡  joining 

𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list. 

VI. EXPERIMENT AND RESULT 

This section compares the DLMOI index structure with 

the state-of-the-art M-Grid [17] and index structure and our 

previously proposed GAPI [19] index structure. 

A. Datasets 

The experimental simulation environment is Win10 

system. The experimental code is implemented by C++ and 

python. The spatial object data is generated by MOTO 

(http://moto.sourceforge.net), an open-source moving object 

generation tool based on the Brinkhoff [22] algorithm. The 

experimental parameters are shown in Table Ⅴ. 
TABLE  Ⅴ  

EXPERIMENT PARAMETERS 

parameter Experimental value Defaults 

Total area/km2 200 000×200 000 — 

Query area/km2 0.25, 1, 4, 16, 32 4 

number of CPU threads 20 20 

update/query ratio 250, 500, 1 000, 2 000 1 

number of spatial objects/106 4 000, 8 000, 16 000 10 

update interval/s 10, 20, 40, 80, 160 10 

B. Experimental Analysis 

Figure 4 illustrates the experimental results concerning 

the impact of the update/query ratio on throughput. As this 

ratio increases, all three indexing structures—DLMOI, 

GAPI, and M-Grid—demonstrate a rising trend in 

throughput. In most scenarios, the throughput of DLMOI 

and GAPI exceeds that of M-Grid. However, when the 

update/query ratio is low, the throughput for DLMOI and 

GAPI falls below that of M-Grid. This suggests that DLMOI 

and GAPI are primarily optimized for update operations. 

 In scenarios where query operations significantly exceed 

update operations, DLMOI and GAPI show lower 

throughput than M-Grid. This is attributed to the Quadtree 

index employed by DLMOI and GAPI, which requires 

traversing from the root node to the leaf nodes, thus 

increasing query time. Additionally, DLMOI consistently 

outperforms GAPI in throughput across all update/query 

ratios. 

 

 
Fig. 4.  Effect of throughput on update/query ratio 

 

Figure 5 presents the experimental results on the impact 

of query area on throughput. As shown, DLMOI 

consistently outperforms both M-Grid and GAPI across all 

scenarios. As the query area expands, there is a noticeable 

decline in overall throughput. This trend can be attributed to 

the growing computational demands of larger query areas, 

which increasingly affect the system’s transaction 

processing efficiency. 

 
Fig. 5.  Effect of throughput on size of queried area  

 

 
Fig. 6.  Effect of throughput on the interval between updating 

 

Figure 6 displays the experimental results on the impact 

of update interval on throughput. As the update interval 

increases, objects are more likely to move out of their 

current nodes, resulting in a significant drop in throughput 

for M-Grid. In contrast, DLMOI and GAPI maintain stable 
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throughput levels due to their composite indexing strategies 

that integrate grid- and Quadtree-based structures. These 

systems also sustain high throughput during node splits and 

merges, highlighting the effectiveness of the deep learning-

based split and merge model. Additionally, Figure 6 shows 

that DLMOI consistently outperforms both M-Grid and 

GAPI across all scenarios. 

Figure 7 presents the experimental results on how the 

number of moving objects affects throughput. Throughput 

gradually declines across all three indexing methods as the 

number of moving objects increases. Despite this trend, 

DLMOI maintains superior throughput compared to GAPI 

and M-Grid, underscoring the effectiveness of its deep 

learning-based models for splitting and merging, which 

efficiently manage larger volumes of moving objects. 

 
Fig. 7.  Effect of throughput on the number of moving objects 

VII. CONCLUSION 

Building on the grid index, this paper introduces a hybrid 

indexing method incorporating quadtree technology, 

effectively mitigating the shortcomings associated with both 

tree-based and grid-based indexing systems. The paper 

introduces a deep learning-based split and merge model to 

overcome the time-intensive challenges associated with 

quadtree index splitting and merging. Experimental results 

show that this novel approach achieves higher throughput 

and reduced response times, outperforming traditional 

indexing methods. 
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