

Abstract—With advancements in positioning technology and

the widespread adoption of wireless sensors, numerous wireless

handheld and vehicular devices now come equipped with

positioning capabilities. This has enabled a variety of new

applications and generated large volumes of moving object

data. The continuously changing location information of these

moving objects requires efficient management in databases.

Traditional database systems, which typically assume static

attribute values until explicitly updated, face challenges in

managing such dynamic, constantly changing location data

efficiently. Current moving object indexing structures fall

mainly into two categories: grid-based and tree-based indexing.

However, each approach has inherent limitations. In this paper,

we propose a novel indexing method that combines grid and

quadtree structures and utilizes a deep learning model to

intelligently determine when leaf nodes should be split or

merged. Our method is not just a theoretical concept, but a

practical solution that can be applied to a wide range of

scenarios. Experimental results demonstrate that our method

achieves higher throughput and reduces response times,

particularly in skewed moving object distributions, offering

significant improvements over existing indexing techniques.

Index Terms—Moving Object, Grid-based Indexing, Tree-

based Indexing, Quadtree Structure, Deep Learning

I. INTRODUCTION

ith the ongoing advancement of mobile computing,

location-based services, and GIS applications, interest

in moving object databases has grown significantly among

researchers [1]. The primary purpose of a moving object

database is to provide real-time data updates and query

services for moving objects, ensuring users receive query

results with specific temporal and spatial accuracy within a

defined range. For example, in taxi service applications,

both users and taxis are considered moving objects. A

typical query operation in this context involves

recommending taxis within a specified distance to users [2].

Research on moving object databases mainly focuses on

four areas: location modeling, query language, index

structure, and uncertainty management [3][4][5][6].

Indexing technology for moving objects, which stores and

retrieves their spatio-temporal locations, plays a crucial role

Manuscript received Jan 26, 2024; revised Nov 21, 2024.

Xiaofeng Liu is an experimenter of State Key Experimental Center of

Computer Science,Shenyang, China,110000. (e-mail: centos@vip.qq.com).

Ji Li is a PhD candidate of Northeastern University, Shenyang,

China,110000. (e-mail: 408567077@qq.com).

Chuanwen Li is a professor of Northeastern University, Shenyang,
China, 110000. (corresponding author to provide. phone: 024-83687385;

fax: 024-23890977; e-mail: lichuanwen@mail.neu.edu.cn).

Liangyu Chu is a postgraduate student of Northeastern University,
Shenyang, China,110000. (e-mail: 1173087496@qq.com).

in the setup and querying of these databases. Effective

indexing for moving objects is essential for efficient data

management and enhanced query performance, making it a

key area of research in moving object databases.

Moving object indexing can be roughly divided into two

types. One type is to partition index nodes based on the

object distribution of data, represented by R-tree [7], its

variants (R+- tree [8], R * - tree [9]), and index structures

constructed by extended trees. The two variants of R-tree,

TB tree [10] (Trajectory Bundle tree) and STR-tree, index

the movement trajectory, which stores similar trajectory

fragments in the same tree node, thereby reducing the

number of query traversals. MV3R-tree [11] is a hybrid

index structure that uses R-tree and its variants to index

historical trajectories. STAR-tree can index moving objects'

current and future positions, but it should be suitable for

scenarios with infrequent updates. TPR-tree [12] is an index

structure that indexes moving objects' current and future

positions. Each node defines a spatial rectangle of future

time points. However, the indexing performance will

significantly reduce if the moving object does not move long.

REXP tree [13] indexes moving objects' current and future

positions. The index node identifies the expiration time of

the motion vector. When the node fails, it is deleted

according to a specific strategy to ensure the compactness

and effectiveness of the index. TPR*-tree [14] is a variant of

the TPR tree, which uses a different index node maintenance

algorithm to make the structure more compact.

Another type of indexing organizes nodes based on

spatial partitioning, primarily using grids and their variants.

The ST2B-tree [15] combines grid and B-tree methods,

managing moving objects spatially according to density

distribution and grid granularity, adapting to rapidly

changing loads. The uniform grid index, P-Grid [16],

divides the spatial area into equal-sized grids, assigning

moving objects to different grid units based on their

coordinates; each unit grid is linked to a data list that stores

information about the objects within it. M-Grid [17]

improves upon P-Grid by incorporating Hilbert curves to

better address multidimensional data query challenges. D-

Grid [18] integrates speed information in its query process

using a dual spatial grid index structure, accommodating the

dynamic behavior of moving objects.

The above two methods can be broadly categorized as

tree-based and grid-based index structures. However, grid-

based index structures tend to underperform when objects

are frequently moved or are unevenly distributed. While

tree- based indexing can effectively handle object movement,

its query performance often falls short of that provided by

grid-based indexing.

In our previous work [19], we introduced GAPI, a GPU-

DLMOI: A Moving Object Indexing Method

Using Deep Learning

Xiaofeng Liu, Ji Li, Chuanwen Li, and Liangyu Chu

W

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 207-214

__

mailto:1115063992@qq.com

accelerated parallel indexing method for spatial moving

objects. This method integrates grid and quadtree structures

to track leaf node counts as objects enter and exit, allowing

dynamic splitting and merging of leaf nodes as needed.

Experimental results showed that GAPI significantly

outperforms other indexing approaches; however, it still

demands substantial computational resources and its

performance is heavily dependent on GPU capacity. To

overcome these limitations, this paper presents DLMOI

(Deep Learning-based Moving Object Indexing), a novel

indexing structure that combines grid and quadtree

structures with deep learning to efficiently address the

challenges of moving object indexing. The main

contributions of this paper are as follows:

1) The DLMOI proposed in this paper combines grid and

quadtree indexes. It retains the grid index's rapid query

capabilities while using the quadtree index to address

the issue of spatial and temporal unevenness in the load

of moving objects.

2) This paper introduces a deep learning-based split and

merge model to address the time-consuming nature of

quadtree index operations involving splitting and

merging. Objects within the grid are represented as

images, and a combination of convolutional neural

networks and attention mechanisms is employed to

determine whether leaf nodes require splitting or

merging.

3) Experimental results demonstrate that our method

achieves higher throughput and reduces response times,

especially in scenarios with skewed distributions of

moving objects. Our process offers significant

improvements over the best currently available indexing

techniques.

II. RELATED CONCEPTS AND TECHNOLOGIES

A. Spatial Database

The spatial database is a repository of geospatial data and

associated attributes stored on a computer in a defined

structural format. It serves three fundamental functions:

storing and managing spatial data, data querying, and

analysis and reasoning based on spatial data. The first

function entails the efficient organization and management

of geospatial data, facilitating the storage of vast quantities

of spatial information in a structured and readily accessible

manner. This organization ensures that data can be quickly

retrieved and updated as needed. The second function allows

users to extract specific information from the spatial

database based on criteria such as location, attributes, or

spatial relationships. The third function empowers users to

conduct analytical tasks like spatial pattern recognition,

proximity analysis, and spatial modeling. These analyses are

crucial for understanding spatial relationships, making

informed decisions, and addressing complex spatial

challenges.

Spatial data encompasses information used to describe

spatial objects' shape, size, position, and other

characteristics. It originates from various sources and comes

in multiple forms. These data types can be categorized into

the following categories:

1) Attribute data. Attribute data describes an object's

various non-spatial attributes, such as text, dates,

numbers, and other relevant information.

2) Graphical image data. A large amount of data in the

spatial database system needs to describe the spatial

attributes with the help of graphics and images.

3) Spatial relationship data. Spatial relationship data

describes the topological relationships between

geographic elements or objects. It elucidates how

different spatial entities are connected or related to each

other in the real world.

Spatial data structures are used to describe the structural

relationship among spatial data. Based on the data storage

methods employed in spatial data models, these structures

are primarily categorized into vector and raster data. Vector

Data Structures capture geographical entities by recording

their coordinates, enabling a precise definition of location,

length, and area. This approach is indispensable when the

accuracy of spatial details is paramount, facilitating detailed

geographic analyses and accurate mapping. Ra Raster Data

Structures divide the geographical surface into uniformly

sized, precisely adjacent grid cells. It offers a more intuitive

representation of spatial data, simplifying implementation

and supporting straightforward modifications and

expansions. This method is beneficial for depicting

continuous spatial phenomena. These spatial data structures

allow geographic information to be effectively organized

and analyzed, enhancing decision-making processes in

diverse fields such as urban planning, environmental

management, and resource allocation.

Spatial databases support multiple spatial data types and

spatial data models. Compared with traditional databases,

spatial databases have the following characteristics:

1) Vast Data Volumes: Spatial databases manage

extensive data, encapsulating size, shape, position, and

other details of real-world phenomena in specific data

structures. The immense volume of spatial data requires

specialized management techniques.

2) Complexity and Diversity of Data: Spatial databases

store not only spatial data but also accommodate a

broad range of data types, including text, numerical

values, dates, and symbols. This diversity allows for a

comprehensive description of various scientific

phenomena, enriched with graphical images and spatial

relationship data for a complete representation.

3) Highly accessible. In practical applications, spatial

databases are not only repositories for spatial data but

are also platforms for efficient retrieval and timely

analysis of this stored information, ensuring that users

can quickly access and utilize the data as needed.

B. Grid Index

The grid index [20] is a fundamental index structure

characterized by its relatively simple construction principle.

It divides the spatial range where the target spatial entity set

is located into a series of cells of the same size and divides

the spatial position into grids. Each cell in the grid index

acts as a bucket, keeping track of the number of spatial

entities within that cell. As new entities are processed, they

are added to the corresponding grid cell, reflecting their

current spatial position.

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 207-214

__

Grid indexes encompass vital operations such as creation,

reconstruction, insertion, deletion, and update. During the

initial creation of a grid index, an appropriate grid scale is

determined based on the statistical characteristics of the data.

Each spatial entity is decomposed into its respective grids,

and its record is added to all relevant grids. This process

continues until all entity records are accounted for. The

grids it spans are identified during the insertion of a spatial

entity, and the grid code of the spatial features is calculated.

The entity's data are then recorded in the grid structure index

table. Deleting an entity record involves removing all

corresponding index records associated with that entity.

When updating the index, the process consists of deleting

the existing index record and adding the updated index

record to reflect the changes made.

Grid indexing has a meager operation cost, and the most

essential query is also relatively simple. The process of

using grid index queries can be divided into two steps. First,

all the entity grids covered by the query area and included

are retrieved to achieve rough queries. Then, based on the

rough retrieval result set, records that do not meet the query

requirements are eliminated through precise comparison.

The grid index structure has advantages such as ease of

maintenance and high scalability. However, its performance

is significantly influenced by the grid size. Larger grid

partitions lead to more, on average, falling into each `cell

and a higher percentage of entities being entirely distributed

within a grid. As a result, when performing nearest neighbor

queries, it becomes challenging to preliminarily determine

the search range and locate the query object, leading to

decreased index accuracy. On the other hand, smaller grid

partitions result in greater data storage capacity and

potential redundancy, with a lower average number of

entities falling into each cell. However, this requires

multiple range extensions during queries to determine the

initial search range, which can lead to reduced query

efficiency. In scenarios with uneven spatial data distribution,

such as road network environments, the grid index structure

may struggle to effectively partition an appropriate grid size.

Consequently, it becomes challenging to strike a balance

between accuracy and efficiency.

C. Quadtree Index

Quadtree [21] was proposed by Tayeb in 1998. A

quadtree is a hierarchical structure that recursively divides a

rectangular area. Specifically, it divides a rectangular space

into four equal rectangles as its subspaces. In this recursive

division, four h-1 power rectangular areas (h is the depth of

division) stop until the number of objects in each rectangular

area is less than or equal to the given bucket size. As a result

of this recursive division, the quadtree has a single root node,

and each intermediate node has four child nodes, with each

node corresponding to a rectangle. This hierarchical

structure allows for efficient spatial querying and indexing

of spatial data.

Quadtree finds extensive applications in various fields,

including graphic image processing, 2D fast collision

detection, and handling sparse data. It serves as a

representation tool for spatial objects like point data, curves,

surfaces, and volumes and as a spatial indexing technique.

One of the commonly used methods in spatial indexing

technology, Quadtree is a versatile and flexible data

structure that can handle variables of arbitrary dimensions,

not limited to two-dimensional data.

Quadtree has proven to be a versatile and widely used

spatial indexing technique, particularly suitable for datasets

with non-uniform distributions or varying densities. It

efficiently organizes spatial data, making it easier to perform

operations like range queries and nearest-neighbor searches

while reducing the number of comparisons and improving

overall query performance. However, some problems exist

with using the quadtree structure for indexing. With the

deepening of its hierarchy, the query efficiency will drop

sharply.

III. DLMOI INDEX STRUCTURE

A. Problem Definition

Given a spatial plane 𝑆 , the moving objects set 𝑂 =
{𝑜1, 𝑜2, ⋯ , 𝑜𝑛}.Each of these objects is represented as 𝑜𝑖 =

{𝑜𝑖
𝑖𝑑 , 𝑜𝑖

𝑥 , 𝑜𝑖
𝑦

, 𝑜𝑖
𝑡}, 𝑜𝑖

𝑖𝑑is the unique identifier of 𝑜𝑖 , (𝑜𝑖
𝑥 , 𝑜𝑖

𝑦
) is

its position, 𝑜𝑖
𝑡 is the last update time. Query operations set

𝑄 = {𝑞1, 𝑞2, ⋯ , 𝑞𝑒}.Each query request is expressed as 𝑞𝑗 =

{𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑡𝑞} , (𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥)

defines a rectangular query box, 𝑡𝑞 is the time when the

query started. The purpose of the moving objects database is

to return the moving object located in the query box to the

user when the query 𝑞𝑗 in 𝑄 arrives.

This query method is called a range query, and other types

of queries, such as k-nearest neighbor queries, can be

transformed into a series of range queries. Therefore, this

paper only discusses the support of index structure for this

query type.

B. Index Structure

The main work of the moving objects database is to

update moving objects' locations and return results

according to query requirements. Therefore, the moving

object index structure must efficiently meet two primary

conditions:

1) Find the object through the object identifier 𝑜𝑖
𝑖𝑑.

2) Find and update the moving object according to the

object position (𝑜𝑖
𝑥 , 𝑜𝑖

𝑦
).

The auxiliary index method based on the hash table can

support the condition 1).

Definition 1 (auxiliary index) The auxiliary index uses

the hash table ℋ to index all spatial objects according to the

𝑜𝑖
𝑖𝑑 value. ℋ stores key-value pairs of the form

(𝑜𝑖
𝑖𝑑 , 𝑝_𝑏𝑘𝑡, 𝑖𝑑𝑥), where 𝑝_𝑏𝑘𝑡 is the memory space location

of the bucket , 𝑜𝑖 is located in the hybrid index (see

definition 2), and 𝑖𝑑𝑥 represents its relative location in the

bucket.

Figure 1 shows an example of auxiliary index. According

to the nature of the hash table, the storage location of 𝑜𝑖 in

the memory can be found according to 𝑜𝑖
𝑖𝑑 in constant time

by using the auxiliary index.

Grid-based and tree-based indexes have advantages and

disadvantages in satisfying condition 2).

The grid-based index method can directly calculate the

grid to which 𝑜𝑖 belongs according to (𝑜𝑖
𝑥 , 𝑜𝑖

𝑦
) . However,

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 207-214

__

when the spatial distribution of moving objects is uneven,

the number of moving objects in the grid in the hotspot.

Fig. 1. Example of auxiliary index

area is too large, and updating the object position

information will cause hotspots. The grid is frequently

locked, reducing the parallel performance of the grid in

hotspots.

The tree-based index method reduces object congestion in

hotspot areas. Still, each query for 𝑜𝑖 by (𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) requires

multiple queries from the tree root node to a series of

intermediate nodes to leaf nodes, which reduces query

efficiency. What has a more significant impact on the

overall efficiency is that the tree index needs to constantly

adjust the structure to adapt to the distribution of moving

objects, and the calculation of whether the leaf nodes need

to be adjusted and the adjustment operation itself will

consume a lot of computing resources.

To sum up, this paper proposes a hybrid index method

combining grids and quadtrees, which avoids the

shortcomings of the above two methods.

Definition 2 (hybrid index) The hybrid index 𝒫 divides

the space plane 𝑆 into 𝐺𝑛𝑢𝑚 = 2𝜌 × 2𝜌 grids. Each grid can

be converted between grid nodes and quadtrees according to

conditions.

The goal of hybrid index is to balance the load of each

cell by transforming the grid in the hotspot area into a

quadtree. 𝜌 is the grid partitioning parameter, using the

selection criteria given in [22]:

𝜌 =
1

2
⌈𝑙𝑏𝑁 − 𝑙𝑏𝐶𝐿⌉ (1)

Where 𝑁 represents the total number of moving objects in

the space, 𝐶L represents the capacity of leaf nodes.

During execution, the number of moving objects in and

out of each grid is dynamically judged. The grids that meet

the splitting requirements are converted into quadtrees, and

the quadtrees that meet the merging requirements are

converted back to grids. The leaf nodes are also split and

merged in each quadtree according to the conditions.

Figure 2 shows an example of a hybrid index. The upper

layer in the right half of figure 2 is a plane 𝑆 divided into

 𝐺𝑛𝑢𝑚 = 2𝜌 × 2𝜌 grids, where the black grid represents the

hotspot grid converted into a quadtree. The lower layers

represent the spatial areas corresponding to the quadtree

nodes at all levels, and the black nodes represent further

subdivided areas. The left half of the figure shows one of the

enlarged quadtrees, and the division of the quadtree to its

grid is displayed above it. It can be seen that after

converting to a quadtree, the region has been more finely

divided.

Each grid cell 𝑐𝑖 only contains a 𝑝𝑏𝑢𝑐𝑘𝑒𝑡 pointer, which

points to a bucket list ℒ𝑖, which contains a series of buckets

that store a fixed number of all moving objects belonging to

the cell. Each quadtree node 𝜉i is represented as 𝜉i =
{𝑝𝑏𝑢𝑐𝑘𝑒𝑡 , 𝑝𝑐1

, 𝑝𝑐2
, 𝑝𝑐3

, 𝑝𝑐4
} , where 𝑝𝑐1

, 𝑝𝑐2
, 𝑝𝑐3

 and 𝑝𝑐4
 are

respectively pointers to child nodes in the four quadrants

with the current node as the parent node.

Fig. 2. Example of hybrid index

IV. NODE SPLIT AND MERGE MODEL

The split and merge operations for grid and quadtree leaf

nodes are fundamentally identical. Therefore, grid and leaf

nodes will be collectively referred to as nodes in this section.

A. Moving Object Mapping

Traditional splitting and merging algorithms typically

base decisions on the number of moving objects and the

time required for updates, which often involves extensive

computations and precise criteria for splitting and merging.

This approach can be both time-consuming and prone to

inaccurate splits. To address these challenges, this paper

proposes a deep learning model to swiftly and accurately

determine when nodes should be split or merged.

A primary challenge when using deep learning models for

the split and merge task is the variability in the number of

objects per node. Within the same quadtree, some nodes

may contain only a few objects, while others may contain

many, causing substantial fluctuations in the model input

size.

To overcome this issue, this paper presents an innovative

solution: mapping each node into a square image, with the

moving objects within the node represented as points within

this image. The mapping formula for the coordinates of the

moving objects is as follows:

�̅�𝑖
𝑥 =

(𝑜𝑖
𝑥 − 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡)

(𝑛𝑜𝑑𝑒. 𝑟𝑖𝑔𝑡 − 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡)
∗ 𝑙

�̅�𝑖
𝑥 =

(𝑜𝑖
𝑥 − 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡)

(𝑛𝑜𝑑𝑒. 𝑟𝑖𝑔𝑡 − 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡)
∗ 𝑙 (2)

Where �̅�𝑖
𝑥 and �̅�𝑖

𝑦
 is the coordinate of the moving object

𝑖 mapped to the picture. 𝑜𝑖
𝑥 , 𝑜𝑖

𝑦
 is the original coordinate of

the moving object 𝑖. 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡 represents the left boundary

of the node. 𝑛𝑜𝑑𝑒. 𝑟𝑖𝑔𝑡 represents the right boundary of the

node. 𝑛𝑜𝑑𝑒. 𝑓𝑙𝑜𝑜𝑟 represents the lower boundary of the

node. represents the upper boundary of the represents the

edge length of the picture.

B. Model structures

Figure 3 shows the structure of the node split and merge

model, shorted as SMM. The model consists of three parts: a

Convolutional neural network, an attention mechanism, and

a fully connected layer. These three parts will be introduced

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 207-214

__

in detail next.

In a quadtree index, the merging and splitting of nodes is

related to the distribution of the objects they contain. After

mapping the objects contained in the nodes to images, SMM

utilizes a Convolutional Neural Network to extract features

from these images. These features can be considered

representations of the distribution of the objects.

We believe that a node's merging and splitting often do

not depend on itself but are also influenced by the object

distribution of neighbor nodes and the entire grid space.

As illustrated in Figure 3, the node merge and split model

considers not only the target distribution of the current node

but also the target distribution of its three neighbor grids and

the upper grid of that node. Input the current grid image,

three neighbor grid images, and the upper grid image into

five independent convolutional neural networks,

respectively. The convolutional neural network of the

current grid image and the three neighbor grid images share

the same structure but have different parameters. Due to the

higher number of objects in the upper grid, the upper grid

image needs to be set at a larger size, requiring a more

complex convolutional neural network to extract features.

The features extracted from the three neighboring and

upper grid images are then fed into an attention mechanism

layer. This layer automatically learns and assigns varying

weights to the input features, thus allowing the model to

focus on more pertinent or significant information. This

approach helps ascertain each feature's importance in

merging or splitting the current node. We derive the final

relevant node features by assigning weights based on their

significance and summing them accordingly.

Concatenate the node features with the relevant node

features computed using the attention mechanism. Then,

input the concatenated vector into a fully connected layer.

This fully connected layer aims to analyze the features and

determine whether the node should be merged or split. This

transformation turns the node merging or splitting problem

into a classification task with three categories: static, merge,

and split.

The node split and merge model uses cross-entropy as the

loss function to train the model. The calculation formula is

as follows:

𝐿(𝑝, 𝑞) = − ∑ 𝑝𝑖 𝑙𝑜𝑔(𝑞𝑖) (3)

𝑀

𝑖=1

where M is the number of nodes, 𝑝𝑖 is the real probability

distribution of nodes split and merging, and 𝑞𝑖 is the

probability of node split and merge predicted by the model.

V. DATA STRUCTURES AND ALGORITHMS

A. Data structures

The grid index in the hybrid index is implemented using a

two-dimensional array:
𝑎𝑟𝑟𝑎𝑦 < 𝑎𝑟𝑟𝑎𝑦 < 𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝑁𝑜𝑑𝑒 >, 𝑤𝑖𝑑𝑡ℎ >, ℎ𝑒𝑖𝑔ℎ𝑡 > (4)

Where 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 represent the number of grid

columns and rows respectively. The Node class is the parent

class of Cell and QuadTree. The cell class represents a grid

that contains only one 𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝐵𝑢𝑐𝑘𝑒𝑡 > type

pointer. The QuadTree class represents a quadtree:
𝑆𝑡𝑟𝑢𝑐𝑡 𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒{
/∗ 𝐵𝑢𝑐𝑘𝑒𝑡 𝑐ℎ𝑎𝑖𝑛 ℎ𝑒𝑎𝑑𝑒𝑟 𝑛𝑜𝑑𝑒 ∗/
𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝐵𝑢𝑐𝑘𝑒𝑡 > 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡;
/∗ 𝐶ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒 ∗/
𝑎𝑟𝑟𝑎𝑦 < 𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒 > ,4 > 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛;
/∗ 𝑃𝑎𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 ∗/
𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒 ∗ 𝑝𝑎𝑟𝑒𝑛𝑡;
/∗ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 ∗/
𝑖𝑛𝑡 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑓𝑙𝑜𝑜𝑟, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔;
 } (5)

The objects in Cell or QuadTree are stored in a bucket

linked list structure. Buckets are used to store moving

objects on leaf nodes, with a fixed size. The number of

buckets under each leaf node is determined by the number

of moving objects. If the bucket is full when inserting an

object, create a new bucket. If the bucket becomes empty

when deleting an object, delete the bucket. The bucket

structure is as follows:

𝑆𝑡𝑟𝑢𝑐𝑡 𝐵𝑢𝑐𝑘𝑒𝑡{
/∗ 𝐴𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 ∗/
𝑆𝑖𝑡𝑒[𝑚𝑎𝑥_𝑠𝑖𝑧𝑒] 𝑠𝑖𝑡𝑒𝑠;
/∗ 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑐𝑘𝑒𝑡 ∗/
𝑖𝑛𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
/∗ 𝑁𝑒𝑥𝑡 𝑏𝑢𝑐𝑘𝑒𝑡 ∗/
𝑢𝑛𝑖𝑞𝑢𝑒_𝑝𝑡𝑟 < 𝐵𝑢𝑐𝑘𝑒𝑡 > 𝑏𝑢𝑐𝑘𝑒𝑡;
} (6)

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 207-214

__

Where, the Site class stores moving objects data,

including 𝑖𝑑 , 𝑥 , 𝑦 , and update time 𝑡𝑢 . It can be inferred

from the content contained in the Site class that the data of

one of its objects needs to occupy at least 128 bits (4 int

values on a 32-bit machine) of memory space. If no

protection measures are taken, access conflicts may occur

between different threads when reading and writing the Site

class in parallel. The traditional method to avoid access

conflicts is to lock the Site object when reading or writing it.

Since the Site class is the most frequently used class in the

DLMOI index, to avoid the impact of locking on

performance, the four data in the Site class were merged into

one_ m128i type object, using the Intel MMX instruction set

_ mm_ Load_ Si128 and_ mm_ Set_ Epi32 operation reads

and writes the content, and uses_ mm_ Extract_ Epi32

extracts the corresponding data. This way, DLMOI indexes

can correctly read and write Site data in parallel without

locking.

B. Algorithms

With the continuous updating of objects, the structure of

Quadtree also changes. The insertion algorithm of objects

inserts them into appropriate nodes based on coordinates.

The deletion algorithm finds the bucket based on the object

ID and deletes it. The splitting and merging of cells is the

key operation of balancing the Quadtree, only the cells that

meet the conditions of splitting and merging can be splited

and merged.

1) Spatial Object Insertion Algorithm

The algorithm for inserting object 𝑜𝑖 into a leaf node is

shown in Algorithm 1:

TABLE Ⅰ

ADD TO LEAF ALGORITHM

Algorithm 1. (𝒂𝒅𝒅_𝒕𝒐_𝒍𝒆𝒂𝒇) Insert object 𝑜𝑖 into leaf node

Input: moving object 𝑜𝑖 = {𝑜𝑖
𝑖𝑑 , 𝑜𝑖

𝑥, 𝑜𝑖
𝑦

, 𝑜𝑖
𝑡}

Output: No output. Leaf nodes are updated after the operation completes

1. 𝑐𝑢𝑟_𝑙𝑒𝑎𝑓 = 𝑔𝑒𝑡_𝑙𝑒𝑎𝑓(𝑜𝑖
𝑥, 𝑜𝑖

𝑦
)

/* Find the inserted leaf node by position (𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) */

2. 𝑖𝑓(𝑖𝑠_𝑓𝑢𝑙𝑙(𝑐𝑢𝑟_𝑙𝑒𝑎𝑓. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡))

3. 𝑛_𝑏𝑢𝑐𝑘𝑒𝑡 = 𝑛𝑒𝑤 𝐵𝑢𝑐𝑘𝑒𝑡();

4. 𝑖𝑛𝑠𝑒𝑟𝑡_𝑏𝑢𝑐𝑘𝑒𝑡(𝑛_𝑏𝑢𝑐𝑘𝑒𝑡);

5. 𝑖𝑛𝑠𝑒𝑟𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑜𝑖)

/* Insert the object 𝑜𝑖 into the current node's bucket */

During the process of object movement, as the position

changes, the object will continuously move between various

nodes. The main purpose of Algorithm 1 is to insert an

object into a leaf node. The idea is to find the leaf node that

the object should be inserted into based on its position

(𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) , and judge the bucket state of the node. If the

bucket is not full, insert object 𝑜𝑖 directly into the bucket. If

the bucket is full, create a new bucket n_bucket and insert

the newly created bucket into the bucket list of the current

node. Then insert the object 𝑜𝑖into the bucket, and add 1 to

the number of objects stored in the bucket.

2) Space Object Deletion Algorithm

The algorithm for deleting object 𝑜𝑖 from a leaf node is

shown in Algorithm 2:

TABLE Ⅱ
REMOVE FROM LEAF ALGORITHM

Algorithm 2. (𝒓𝒆𝒎𝒐𝒗𝒆_𝒇𝒓𝒐𝒎_𝒍𝒆𝒂𝒇) Remove object 𝑜𝑖 from leaf node

Input: moving object 𝑜𝑖 = {𝑜𝑖
𝑖𝑑 , 𝑜𝑖

𝑥, 𝑜𝑖
𝑦

, 𝑜𝑖
𝑡}

Output: No output. Leaf nodes are updated after the operation completes

1. 𝑏𝑢𝑐𝑘𝑒𝑡 = 𝑔𝑒𝑡_𝑏𝑢𝑐𝑘𝑒𝑡(𝑜𝑖
𝑖𝑑)

2. 𝑑𝑒𝑙𝑒𝑡𝑒_𝑓𝑟𝑜𝑚_𝑏𝑢𝑐𝑘𝑒𝑡(𝑜𝑖)

3. 𝑖𝑓(𝑖𝑠_𝑒𝑚𝑝𝑡𝑦(𝑏𝑢𝑐𝑘𝑒𝑡))

4. 𝑑𝑒𝑙𝑒𝑡𝑒_𝑏𝑢𝑐𝑘𝑒𝑡(𝑏𝑢𝑐𝑘𝑒𝑡);

 /* Delete empty buckets */

When moving object positions are updated, objects that

no longer belong to the scope of the current leaf node need

to be inserted into their new owning leaf nodes and deleted

from the current node.

As shown in Algorithm 2, the bucket where the object is

located is found according to the unique object identifier 𝑜𝑖
𝑖𝑑,

the object is deleted from the bucket, and the number of

objects stored in the bucket is reduced by 1. After object 𝑜𝑖

is deleted, if the bucket where object 𝑜𝑖 used to be is empty,

the bucket will also be deleted.

3) Cell Split Algorithm

The algorithm of Cell Split Algorithm is shown in

Algorithm 3.
TABLE Ⅲ

SPLIT ALGORITHM

Algorithm 3. (𝒔𝒑𝒍𝒊𝒕) split the cell

Input: quadtree leaf node 𝑠_𝑛𝑜𝑑𝑒 = {𝑝_𝑏𝑢𝑐𝑘𝑒𝑡, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛,

𝑝𝑎𝑟𝑒𝑛𝑡, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑓𝑙𝑜𝑜𝑟, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔}

Output: No output. Quadtree structure is updated after the operation

completes

1. 𝑥_𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡)/2;

2. 𝑦_𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑓𝑙𝑜𝑜𝑟 + 𝑐𝑒𝑖𝑙𝑖𝑛𝑔)/2;

3. 𝑠_𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[0] =

𝑛𝑒𝑤 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒 (𝑥_𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑔ℎ𝑡, 𝑦_𝑚𝑖𝑑𝑑𝑙𝑒, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔);

/* Initialize 𝑠_𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 [1 - 3] in a similar way*/

4. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ(𝑐ℎ𝑖𝑙𝑑 𝑖𝑛 𝑠_𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)

5. 𝑐ℎ𝑖𝑙𝑑. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑠_𝑛𝑜𝑑𝑒;

6. 𝑠_𝑛𝑜𝑑𝑒. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡. 𝑜𝑖 → 𝑐ℎ𝑖𝑙𝑑. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡;

7. 𝑖𝑓(𝑠_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡 𝑖𝑛 𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

8. 𝑑𝑒𝑙𝑒𝑡𝑒_𝑓𝑟𝑜𝑚_𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑠_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡);

9. 𝐼𝑛𝑠𝑒𝑟𝑡_𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑠_𝑛𝑜𝑑𝑒);

According to the split and merge algorithm introduced in

Section 3, when leaf nodes are considered to be split, the

quadtree index structure should divide leaf nodes 𝑠_𝑛𝑜𝑑𝑒

into four sub grids.

The split of sub grids is based on the principle of evenly

dividing top, bottom, left, and right, where 𝑥_𝑚𝑖𝑑𝑑𝑙𝑒 =
(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡)/2 , 𝑦_𝑚𝑖𝑑𝑑𝑙𝑒 = (𝑓𝑙𝑜𝑜𝑟 + 𝑐𝑒𝑖𝑙𝑖𝑛𝑔)/2 , as

shown in lines 1-2. After the split is completed, the parent

nodes of all children are set as the current leaf node, and all

objects in the split node 𝑠_𝑛𝑜𝑑𝑒 are moved to the

corresponding child's bucket. If the parent of the split node

belongs to the 𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list before the node is not

split, split it from the 𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list and then add

the current node to the 𝑠𝑝𝑙𝑖𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list.

4) Cell Merge Algorithm

According to the split and merge algorithm introduced in

Section 3, when leaf nodes are considered to be merged, the

quadtree index structure merges four grids into one. It

should be noted that since the merge operation involves

other nodes, it will only merge when more than half of the

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 207-214

__

surrounding four nodes are judged to be merged.

The algorithm of Cell Merge Algorithm is shown in

Algorithm 4:
TABLE Ⅳ

MERGE ALGORITHM

Algorithm 4. (𝒎𝒆𝒓𝒈𝒆) merge the cell

Input: quadtree leaf node 𝑚_𝑛𝑜𝑑𝑒 = {𝑝_𝑏𝑢𝑐𝑘𝑒𝑡, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛,

𝑝𝑎𝑟𝑒𝑛𝑡, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑓𝑙𝑜𝑜𝑟, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔}

Output: No output. Quadtree structure is updated after the operation

completes

1. 𝑖𝑓(𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚_𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑖𝑠_𝑙𝑒𝑎𝑓())

/* Find the inserted leaf node by position (𝑜𝑖
𝑥, 𝑜𝑖

𝑦
) */

2. 𝑚_𝑛𝑜𝑑𝑒. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝑐ℎ𝑖𝑙𝑑. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡;

3. 𝑑𝑒𝑙𝑒𝑡𝑒_𝑛𝑢𝑙𝑙_𝑏𝑢𝑐𝑘𝑒𝑡(𝑚_𝑛𝑜𝑑𝑒. 𝑝_𝑏𝑢𝑐𝑘𝑒𝑡);

4. 𝑖𝑓(𝑚_𝑛𝑜𝑑𝑒 𝑖𝑛 𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

5. 𝑑𝑒𝑙𝑒𝑡𝑒_𝑓𝑟𝑜𝑚_𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑚_𝑛𝑜𝑑𝑒);

6. 𝑖𝑓(𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑐ℎ𝑖𝑙𝑑 𝑖𝑠_𝑙𝑒𝑎𝑓())

7. 𝑖𝑛𝑠𝑒𝑟𝑡_𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑚_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡);

As shown in Algorithm 4, when a node meets the merge

condition, all the buckets of its children are linked and

assigned to the bucket of the current node. Adjust the bucket

chain of the current node and delete empty buckets. If the

current node belongs to a 𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list, then

delete the current node 𝑚_𝑛𝑜𝑑𝑒 from 𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

list. After merging, if the parent node of the current node

belongs to the merge_ Candidates list, then the current

node's parent node 𝑚_𝑛𝑜𝑑𝑒. 𝑝𝑎𝑟𝑒𝑛𝑡 joining

𝑚𝑒𝑟𝑔𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 list.

VI. EXPERIMENT AND RESULT

This section compares the DLMOI index structure with

the state-of-the-art M-Grid [17] and index structure and our

previously proposed GAPI [19] index structure.

A. Datasets

The experimental simulation environment is Win10

system. The experimental code is implemented by C++ and

python. The spatial object data is generated by MOTO

(http://moto.sourceforge.net), an open-source moving object

generation tool based on the Brinkhoff [22] algorithm. The

experimental parameters are shown in Table Ⅴ.
TABLE Ⅴ

EXPERIMENT PARAMETERS

parameter Experimental value Defaults

Total area/km2 200 000×200 000 —

Query area/km2 0.25, 1, 4, 16, 32 4

number of CPU threads 20 20

update/query ratio 250, 500, 1 000, 2 000 1

number of spatial objects/106 4 000, 8 000, 16 000 10

update interval/s 10, 20, 40, 80, 160 10

B. Experimental Analysis

Figure 4 illustrates the experimental results concerning

the impact of the update/query ratio on throughput. As this

ratio increases, all three indexing structures—DLMOI,

GAPI, and M-Grid—demonstrate a rising trend in

throughput. In most scenarios, the throughput of DLMOI

and GAPI exceeds that of M-Grid. However, when the

update/query ratio is low, the throughput for DLMOI and

GAPI falls below that of M-Grid. This suggests that DLMOI

and GAPI are primarily optimized for update operations.

 In scenarios where query operations significantly exceed

update operations, DLMOI and GAPI show lower

throughput than M-Grid. This is attributed to the Quadtree

index employed by DLMOI and GAPI, which requires

traversing from the root node to the leaf nodes, thus

increasing query time. Additionally, DLMOI consistently

outperforms GAPI in throughput across all update/query

ratios.

Fig. 4. Effect of throughput on update/query ratio

Figure 5 presents the experimental results on the impact

of query area on throughput. As shown, DLMOI

consistently outperforms both M-Grid and GAPI across all

scenarios. As the query area expands, there is a noticeable

decline in overall throughput. This trend can be attributed to

the growing computational demands of larger query areas,

which increasingly affect the system’s transaction

processing efficiency.

Fig. 5. Effect of throughput on size of queried area

Fig. 6. Effect of throughput on the interval between updating

Figure 6 displays the experimental results on the impact

of update interval on throughput. As the update interval

increases, objects are more likely to move out of their

current nodes, resulting in a significant drop in throughput

for M-Grid. In contrast, DLMOI and GAPI maintain stable

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 207-214

__

throughput levels due to their composite indexing strategies

that integrate grid- and Quadtree-based structures. These

systems also sustain high throughput during node splits and

merges, highlighting the effectiveness of the deep learning-

based split and merge model. Additionally, Figure 6 shows

that DLMOI consistently outperforms both M-Grid and

GAPI across all scenarios.

Figure 7 presents the experimental results on how the

number of moving objects affects throughput. Throughput

gradually declines across all three indexing methods as the

number of moving objects increases. Despite this trend,

DLMOI maintains superior throughput compared to GAPI

and M-Grid, underscoring the effectiveness of its deep

learning-based models for splitting and merging, which

efficiently manage larger volumes of moving objects.

Fig. 7. Effect of throughput on the number of moving objects

VII. CONCLUSION

Building on the grid index, this paper introduces a hybrid

indexing method incorporating quadtree technology,

effectively mitigating the shortcomings associated with both

tree-based and grid-based indexing systems. The paper

introduces a deep learning-based split and merge model to

overcome the time-intensive challenges associated with

quadtree index splitting and merging. Experimental results

show that this novel approach achieves higher throughput

and reduced response times, outperforming traditional

indexing methods.

REFERENCES

[1] Huang Y K. Indexing and querying moving objects with uncertain
speed and direction in spatiotemporal databases[J]. Journal of
Geographical Systems, 2014, 16(2): 139-160.

[2] Nguyen T, He Zhen, Zhang Rui, et al. Boosting moving object
indexing through velocity partitioning[J]. Proceedings of the VLDB
Endowment, 2012, 5(9): 860-871.

[3] Song M B, Park K J, Ryu J H, et al. Modeling and tracking complexly
moving objects in location-based services[J]. J. Inf. Sci. Eng., 2004,
20(3): 517-534

[4] Wang X, Xu J, Wang Y. NLMO: towards a natural language tool for
querying moving objects[C].2020 21st IEEE International Conference
on Mobile Data Management (MDM). IEEE, 2020: 228-229.

[5] Deng Z, Wang L, Han W, et al. G-ML-Octree: An update-efficient
index structure for simulating 3D moving objects across GPUs[J].
IEEE Transactions on Parallel and Distributed Systems, 2017, 29(5):
1075-1088.

[6] Leal E, Gruenwald L, Zhang J. Handling uncertainty in trajectories of
moving objects in unconstrained outdoor spaces[C]. 2016 IEEE
International Conference on Big Data (Big Data). IEEE, 2016: 492-
501.

[7] Guttman A. R-trees: a dynamic index structure for spatial
searching[M]. ACM, 1984.

[8] Sellis T, Roussopoulos N, Faloutsos C. The R+-tree: A dynamic index
for multi-dimensional objects[J]. 1987.

[9] Beckmann N, Kriegel H P, Schneider R, et al. The R*-tree: an
efficient and robust access method for points and rectangles[M].
ACM,

[10] Pfoser D, Jensen C S, Theodoridis Y. Novel Approaches: to the
Indexing of Moving Object Trajectories[C]. VLDB’00, Cairo, Egypt,
2000.

[11] Y. Tao, D. Papadias. MV3R-Tree: A Spatio-Temporal Access
Method for Predictive Queries[C]. Pro. of theIntl. Conf. On Very
Large Data Bases, VLDB, Sept. 2001: 431-440

[12] Y. Tao, D. Papsdias, J. Sun. The TPR-Tree: An Optimized Spatio-
Temporal Access Method for PredictiveQueries[C]. Proc. of the Intl.
Conf. On Very Large Data Bases (VLDB) Sept, 2003.

[13] Saltenis S, Jensen C S. Indexing of Moving Objects for Location-
Based Services[C]. ICDE’02, SanJose, USA, 2002.

[14] Y. Tao, D. Papsdias, J. Sun. The TPR-Tree: An Optimized Spatio-
Temporal Access Method for Predictive Queries[C]. Proceedings of
the 29th International Conference on Very Large Data Bases. Berlin,
Germany: VLDB Endowment, 2003(29) : 790-801.

[15] Chen S, Ooi B C, Tan K L, et al. ST2B-tree: a self-tunable spatio-
temporal B+-tree index for moving objects[C]. Proceedings of the
2008 ACM SIGMOD international conference on Management of
data. 2008: 29-42

[16] Šidlauskas D, Šaltenis S, Jensen C S. Parallel main-memory indexing
for moving-object query and update workloads[C]. Proceedings of the
2012 ACM SIGMOD international conference on management of
data. 2012: 37-48.

[17] Kumar S, Madria S, Linderman M. M-Grid: a distributed framework
for multidimensional indexing and querying of location based data[J].
Distributed and Parallel Databases, 2017, 35: 55-81.

[18] Xu X, Xiong L, Sunderam V. D-grid: an in-memory dual space grid
index for moving object databases[C]. 2016 17th IEEE international
conference on mobile data management (MDM). IEEE, 2016, 1: 252-
261.

[19] Chen K, Li C, Lu G, et al. An adaptive parallel method for indexing
transportation moving objects[J]. Complexity, 2021, 2021: 1-11.

[20] Yu X, Pu K Q, Koudas N. Monitoring k-Nearest Neighbor Queries
over Moving Objects[C]. 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE Computer Society, 2013:631-642.

[21] Guttman A. R-trees: a dynamic index structure for spatial
searching[M]. ACM, 1984.

[22] Chen Su, Ooi B C, Tan K L, et al. ST2B-tree: a self-tunable spatio-
temporal B+- tree index for moving objects[C [C]. Proceedings of the
2008 ACM SIGMOD International Confer-ence on Management of
Data, Vancouver, Canada, Jun 10-12, 2008. New York: ACM, 2008:
29-42.

[23] Sarma A D, Gollapudi S, Najork M, et al. A sketch- based distance
oracle for Web- scale graphs[C]. Proceedings of the3rd International
Conference on Web Search and Web Data Mining, New York, Feb 4-
6, 2010. New York: ACM, 2010:401-410

Xiaofeng Liu was born in Qianxian, Xianyang, China in 1983. He received

the B.S. degree in Electronic Information Engineering from Northeastern
University, Shenyang, China, in 2006, and the M.S. degree in Computer

Technology from Northeastern University, Shenyang, China, in 2020.

Since 2013, he has been working as an experimenter at the State Key
Experimental Center of Computer Science. His research interests include

high performance computing, training for computer competitions, and deep

learning. He also serves as the coach of the school's programming
competition team and owns a number of software copyrights.

Ji Li is currently pursuing Ph.D. degree at Northeastern University in
Shenyang, China. He obtained B.S. degree in Information and Computing

Science from Shenyang University of Technology in 2018 and a M.S.

degree in Computer Software and Theory from Northeast University in
Shenyang, China in 2021. His research direction is index and graph

research.

Chuanwen Li received the Ph.D. degrees in computer software and theory

from Northeastern University, China, in 2011, respectively. He is a

professor with Northeastern University. He has also been a Visiting
Researcher with Uppsala University and Aalborg University. His current

research interests include data management and big data. He is a member
of CCF.

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 207-214

__

