
Detection and Classification of Mosquito Larvae 

Based on Deep Learning Approach 
 

Pauzi Ibrahim Nainggolan*, Syahril Efendi, Mohammad Andri Budiman, Maya Silvi Lydia, Romi Fadillah 

Rahmat, Dhani Syahputra Bukit, Umi Salmah, Sri Malem Indirawati and Riza Sulaiman, Member, IAENG 

Abstract— This paper addresses the challenge of suboptimal 

biological control of the Aedes aegypti mosquito, which serves 

as a vector for Dengue, Chikungunya, and Zika viruses. These 

arthropods pose a significant threat to approximately one-third 

of the global population annually, capable of causing severe 

pain, hemorrhagic fever, and brain defects in unborn children 

with a single bite. The research introduces a technologically 

effective solution employing deep neural networks (DNNs) to 

conduct surveys during the immature larval stage. Our 

approach enables automatic identification of the biological 

vector in the larval stage, achieving a higher accuracy of 81.7% 

in region-of-interest segmentation. Moreover, it classifies larvae 

as Aedes positive or negative with an accuracy of 97%, 

significantly reducing response time from days to seconds 

without human intervention. The proposed solution is cost-

effective, minimizing the need for trained entomologists, 

laboratories, and expensive equipment. Utilizing microscope-

based image acquisition hardware, a computer with CPU 

hardware, and a petri dish, sample capture and analysis become 

straightforward. The advantages of this proposal are 

particularly valuable in underdeveloped countries and remote 

regions, where economic constraints may limit access to 

preventive health services and biological vector control. 

Index Term— Aedes Agepty, computer vision, panoptic 

segmentation, deep Learning. 

I. INTRODUCTION 

engue hemorrhagic fever (DHF) is widespread in 

over 100 countries, mainly in tropical areas. The 

initial cases in Indonesia emerged in 1968 in Jakarta 

and Surabaya. In 2015, there were 126,675 cases with 1,229 

deaths reported across 34 provinces [1]. Data from the 

Ministry of Health's P2P Directorate General indicates a 

Dengue Incidence Rate in Indonesia of 51.5 per 100,000 

population in 2019, dropping to 40 in 2020. North Sumatra 

Province recorded 7,584 DHF cases with 37 deaths in 

2019[2][3]. 

Despite efforts like spraying and larvicides, DHF cases 

persist. The primary prevention strategy focuses on 

community empowerment, notably through the Jumantik One 

House One Movement initiative [4]. This program, 

coordinated by the Dengue Hemorrhagic Fever Operational 

Working Group (Pokjanal DBD) and Larvae Monitor 

(Jumantik), aims to enhance the Eradication of 3M Plus 

Mosquito Nests (PSN) within communities [5]. 

The process of determining the Aedes Breeding Index 

(ABJ) through house surveys is time-consuming and relies on 

the accuracy of Jumantik, the larva monitor, to identify 

mosquito types. Integrating technology is crucial to improve 

the efficiency and accuracy of ABJ data, providing real-time 

updates with geographical information for predicting 

potential Dengue Hemorrhagic Fever (DHF) outbreaks. The 

use of advanced technology, particularly artificial 

intelligence, can transform larva monitoring, significantly 

reducing the time needed by Jumantik to determine ABJ. This 

research marks a crucial step in transitioning from manual 

larva monitoring to digitization, addressing information 

constraints in implementing DHF control programs [6]. 

Numerous studies have explored the application of 

Computer Vision in the identification and classification of 

Aedes mosquito larvae [7][8][9][10]. The Histonet research 

by Azman and Sarlan (2020) adopts a deep learning approach, 

leveraging predictions based on object sizes and the total 

number of input images that may be messy or overlapping. 

This research encompasses mosquito larvae data and medical 

datasets, demonstrating advantages over segmentation 

methods. Notably, Histonet research highlights that directly 

learning and predicting object size distributions, without the 

need for explicit pixel-accurate instance segmentation, 

significantly improves performance. This streamlined 

approach results in an 85% reduction in model parameters, 

enabling a more efficient architecture that can be trained with 

a greater number of annotations [11]. However, it is essential 

to note that the Histonet research primarily focuses on 

identifying the number of objects without classifying them. 

To address this limitation, it becomes imperative to 
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incorporate instance segmentation, which allows for the 

identification of the class of each object found. 

The challenge within instance segmentation lies in the need 

to accurately detect and segment each instance of all objects 

present in an image. This process combines aspects of classic 

computer vision tasks, where object detection classifies 

individual objects and locates each using bounding boxes, 

and semantic segmentation categorizes each pixel into a fixed 

set of classes, irrespective of object instances. Many 

implementations employ intricate methods to achieve optimal 

results. However, Kaiming He et al.'s findings suggest that a 

simple, flexible, and fast system can outperform the results 

obtained by previous, more complex instance segmentation 

approaches [12]. 

Panoptic segmentation has recently emerged as a method 

to integrate the tasks of instance segmentation (for individual 

item classes) and semantic segmentation (for item classes in 

general). In implementing this approach, separate networks 

are employed for various semantic segmentation instances, 

avoiding the need for joint computations. In a study 

conducted by Kirillov, Girshick, et al., the aim was to unify 

these tasks at the architectural level by designing a single 

network capable of handling both tasks concurrently. This 

involved enhancing the popular instance segmentation 

method, R-CNN Mask, with semantic segmentation branches, 

utilizing a shared Feature Pyramid Network (FPN) backbone. 

The research extensively examined a version of Mask R-

CNN coupled with a minimally extended FPN, referred to as 

Panoptic FPN, demonstrating its robustness and accuracy as 

a foundational framework for both tasks [13]. 

The modern challenge of dealing with "information 

overload" and "data deluge" is being tackled through 

interdisciplinary research, spanning areas such as 

visualization, statistical data analysis, machine learning, data 

mining, and perceptual and cognitive sciences. The primary 

objective is to extract valuable information and generate 

reliable insights, thereby creating new knowledge from 

previously unexplored data. However, there's skepticism 

about the simplicity and effectiveness of this sub-specialty in 

handling the ever-expanding volumes of data. Keim et al. 

highlighted that approaches solely focused on analytics or 

visuals may not adequately reveal significant information 

from rapidly growing complex datasets and effectively 

communicate it to humans. The necessity for more 

comprehensive methods integrating analytical and visual 

approaches is emphasized to address the challenges posed by 

increasingly massive datasets [14]. 

In the pursuit of generating knowledge and uncovering 

hidden opportunities within vast and intricate datasets, James 

(Jim) Joseph Thomas (26 March 1946 – 6 August 2010) 

played a pivotal role. He not only created and sold but also 

established the field of visual analytics [15][16]. Visual 

analytics is defined as the discipline leverages visualization 

and interaction techniques to seamlessly incorporate human 

expert judgment into the data analysis process[17]. 

Visual perception engages various brain regions, and even 

the most basic perceptual tasks rely on a cascading sequence 

of integrated processes. This sequence begins with the initial 

sensory registration of a stimulus and progresses through 

higher cortical regions, culminating in decision-making and, 

at times, appropriate actions. Additionally, systems related to 

caring, expecting, and rewarding can also come into play. The 

coordination of these interdependent components of the brain, 

along with processing modules, collaborates harmoniously to 

accomplish specific behavioral objectives. 

To accommodate perceptual learning, a successful 

predictive model must integrate several crucial functions. It 

must encode stimuli, ascertain the process of making task-

relevant decisions, and incorporate learning and testing 

paradigms during training. Each of these functions can be 

instantiated in distinct modules. For instance, the 

representation module is responsible for sensory encoding 

and the resultant representation. The decision module dictates 

the decision-making process. The learning module 

establishes the learning rules applied. The overall model may 

also impact top-down attention, feedback, and reward effects. 

Naturally, any behavioral model must account for internal 

noise as well. 

Quantitative models or processes of this kind aim to 

produce precise and testable predictions for observed 

phenomena in a given experiment. Assessing the model's 

predictions against similar outcomes helps determine the 

effectiveness of the proposed representation, decision, and 

learning principles. This three-way interaction involving 

modeling, theory, and experimentation is crucial for 

advancing our understanding of perceptual learning. 

The main goal of this paper is to achieve optimal accuracy. 

Various factors, such as lighting conditions, shooting distance, 

and scale variations, can influence accuracy values. Thus, the 

paper introduces a deep learning-based detection and 

classification technique using the One-stage Top-Down 

method for Panoptic Segmentation. Adopting the FPSNet 

segmentation architecture with modifications enhances the 

classification accuracy. Data collection involved two 

methods: direct collection and laboratory-based data 

collection. 

II. PROPOSED METHOD 

This research is crucial in establishing a model for the 

classification of mosquito larvae species. The classification 

model is constructed by extracting morphological features 

from the segmentation of each organ in various mosquito 

larvae species. The practical implementation of this model 

serves as a tool to strategically plan, execute, and enhance the 

effectiveness of response actions. It also aids in determining 

the best strategies for mitigating the impact of infectious 

diseases transmitted from animals (zoonotic diseases). The 

development of an adequate algorithm is particularly 

important to accurately identify species, enabling the tracking 

of mosquito breeding patterns in different regions 

[18][19][20]. 

This research uses a comparison of 2 different algorithm 

models to determine Aedes mosquito larvae. Detection of 

larval objects is carried out based on annotated body parts. 

The detection model compared in this research is FPSnet with 

Yolov5. Annotation is carried out as if we understand an 

object by dividing the body parts of mosquito larvae into 3 

parts, where each part is annotated. 

To develop a model capable of recognizing Aedes data, we 

used the other two genus as part of the validation process to 

detect Aedes larvae.  
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The research flow scheme comprises five stages, each with 

specific goals that must be achieved to reach milestones and 

facilitate the continuous progression of the research, as 

illustrated in Figure 1. The stages of the research flow are 

outlined as follows: 

A. Data Acquisition  

The acquisition of mosquito larvae image data was a 

collaborative effort with the Centre for Environmental Health 

Engineering and Disease Control (BTKLPP) Medan. The 

goal was to collect targeted image data, totaling 600 images, 

with a breakdown of 150 images for each species. For each 

species, the images were obtained from 50 larvae, captured in 

three instances. The size of the acquired images is 

standardized at 640x480 pixels. 

B. Data Cleaning & Preprocessing 

The image data cleaning stage involves three processes. 

Initially, the first process fills in missing values in the images 

to match the acquired image size. Subsequently, the second 

process eliminates blurry or out-of-focus image data with 

inconsistent values. The final process focuses on removing 

redundant data and outliers. 

During this preprocessing stage, three datasets are prepared: 

RGB data, binary data, and grayscale data. Binary data is 

derived by transforming the image data from three channels 

into one-channel binary data, accomplished by determining a 

threshold value. Similarly, grayscale datasets undergo 

modification through threshold setting. 

The RGB image dataset undergoes labeling by creating 

segmentation boxes for three organs in the larva: the head, 

siphon, and stomach. The resulting binary dataset is subjected 

to an edge detection process to generate input values for larva 

classification. Grayscale data is utilized for specifying the 

class of mosquito larvae data. 

 

Fig 2. Preprocessing Data 

The second stage of preprocessing applied to the dataset 

involved enhancing the contrast and brightness of the images. 

These enhancements aimed to optimize the image size 

calculation process by obtaining the best values. This image 

improvement process is essential for accurately determining 

starting and ending points. The adjustments included a 20% 

increase in brightness and a 40% increase in contrast, as 

depicted in Figure 2. 

C. Training Model 

The segmentation results from each area are characterized 

through feature extraction to identify the dominant criteria for 

the segmentation of each mosquito larvae species. 

Morphological characteristics, obtained using shape 

descriptors, serve as the features extracted for each species 

and segmentation. The resulting feature map from the shape 

descriptor is utilized as input in developing a classification 

model. 

To enhance the Faster Panoptic Segmentation Network 

(FPSNet), an advanced deep learning model for instance 

segmentation, this study utilizes an improved version. The 

FPSNet integrates a Convolutional Neural Network (CNN) 

backbone for feature extraction and a head net (the network 

after RoI Align) for bounding box classification, regression, 

and mask segmentation. Three CNN backbones, ResNet-50-

FPN, ResNet-101-FPN, and ResNeXt-152-FPN, are selected 

for comparison based on accuracy and time efficiency 

(network-depth-feature). The proposed model architecture is 

depicted in Figure 3 and built based on the work by De Geus 

et al.[18]. ResNet and ResNeXt are state-of-the-art CNN 

models and widely employed backbones in FPSNet, with 

ResNeXt having advantages over ResNet through a repeated 

building block that aggregates a set of transformations with 

the same topology. Generally, a deeper model is anticipated 

to achieve higher accuracy but requires more computational 

time. A Feature Pyramid Network (FPN) is incorporated into 

all backbone models to extract additional feature maps from 

different layers, enhancing instance segmentation[13]. 

1) Annotation 

The image annotation for this study is conducted using a 

graphical image box annotation tool within the Python 

environment. To uphold quality and consistency, the 

annotation process adheres to the following criteria: 

 

 
 

Fig 1. Proposed Method 
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1. Only the parts of the larva inside the image should be 

annotated, excluding any portions outside of the room. 

2. Each annotated object must have an explicit boundary, 

disregarding implicit borders or edges obscured by 

shadows. 

3. Objects should be definitively classified into one 

predefined material category; otherwise, they will be 

disregarded. 

4. In cases of significant overlap where major parts of objects 

are obscured, the annotation will treat them as a single 

object rather than multiple non-overlapping ones. 

Every object, or visible part of an object, meeting the 

specified criteria is annotated using a box to delineate its 

boundary. The annotation outcomes are then stored in a JSON 

file following the Microsoft COCO format [21]. To ensure 

accuracy, each annotated image undergoes cross-validation 

by two of the authors, reaching a consensus.  

Figure 4 illustrates examples of annotated images, where 

each labeled instance is highlighted by a colored mask and a 

bounding box displaying its category name in the top-left 

corner. 

 

Fig 4. Image Annotation 

2) Detection 

The FPSNet architecture necessitates a backbone that can 

generate a singular feature map and execute object detection. 

This object detection network is vital for producing bounding 

boxes utilized in forming attention masks for object instances, 

while the single feature map is crucial for making dense 

panoptic segmentation predictions. 

The output of the ResNet-50-based Feature Pyramid 

Network comprises a set of feature maps from various levels 

of the feature extractor. However, for predicting dense 

panoptic segmentation, a single feature map is required. 

Similar challenges were encountered by the authors in [13] 

when attempting semantic segmentation on a multi-scale 

feature map. To address this, they resolved the issue by 

upsampling and combining the multiple layers of feature 

maps. We adopt the same implementation strategy in our 

approach.  

D. Classification 

The classification process in this research employs two 

classifiers to achieve the highest accuracy. Specifically, 

ResNet and VGG are chosen as the classifiers due to their 

current popularity. ResNet tackles the challenge by 

introducing two types of 'shortcut connections': Identity 

shortcut and Projection shortcut. VGG16 encompasses a total 

of 138 million parameters. It is crucial to highlight that all 

convolutional layers are of size 3x3, and max-pooling layers 

are of size 2x2 with a stride of two.  

E. Metrics 

The classification model is initially tested using test data. 

Subsequently, the classification model undergoes testing with 

the k-fold cross-validation technique. Beforehand, the dataset 

is divided into training data, validation data, and test data, 

with a dataset distribution ratio of 80%, 10% for validation 

data, and 10% for test data. 

In the field of computer vision, several assessment 

indicators or metrics are commonly used to evaluate the 

performance of computer vision systems. Here are some of 

the commonly used evaluation metrics in object detection: 

Precision quantifies the extent of true positive expectations 

out of all positive predictions made by the model. Precision is 

calculated utilizing the taking-after equation 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (1) 

Recall quantifies the extent of true positive forecasts out of 

all real positive instances within the dataset. The recall is 

calculated utilizing the taking-after-the equation. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2) 

Mean Average Precision (mAP): mAP expands the average 

precision (AP) by averaging AP values over numerous protest 

classes or targets. It is commonly utilized in multi-class 

question discovery errands, where it gives a general degree of 

location execution over diverse target categories. 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1    (3) 

Panoptic Quality (PQ), the common evaluation metric 

described in [18], is what we employ. It has two components: 

the Detection Quality (DQ) solely evaluates instance classes, 

while the Segmentation Quality (SQ) evaluates the quality of 

all categories. Equation 5 presents the mathematical 

representations of PQ, SQ, and DQ, where p and g stand for 

predictions and ground truth, and TP, FP, and FN stand for 

true positives, false positives, and false negatives, 

 

 

Fig 3. Proposed Modified FPSNet Architecture to detect larvae image 
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respectively. It is simple to see that DQ may be thought of as 

a type of detection accuracy and that SQ is the common mean 

IoU measure normalized for matching instances. If the pixel 

IoU of the prediction and the ground truth are more than 0.5, 

the matching threshold is set to 0.5, and the prediction is 

regarded as successful. 

𝑃𝑄 =
∑ 𝐼𝑂𝑈(𝑝,𝑔)(𝑝,𝑔)∈𝑇𝑃

|𝑇𝑃|
×

|𝑇𝑃|

|𝑇𝑃|+
1

2
 |𝐹𝑃|+

1

2
 |𝐹𝑁|

   (4) 

III. TEST, RESULT AND DISCUSSION 

A. Image acquisition Datasets 

The first task of this research is to collect the dataset used 

in this research. The total number of larval image data is 1185 

images with a dataset class ratio of 284 Aedes, 166 Anopheles, 

and 735 Culex. With the assistance of entomologists, the 

image data is categorized into three groups: image data of 

Aedes larvae, image data of non-Aedes larvae Anopheles and 

image data of non-Aedes larvae Culex. Figure 5 shows some 

images included in the sample and their categories.  

 

 

Fig 6. Data acquisition 

As previously stated, we collect the larvae from two source: 

dataset from the Centre for Environmental Health 

Engineering and Disease Control and our own data 

acquisition. The image data acquisition was carried out using 

a digital microscope connected to an Android handheld as 

shown in Figure 6. The larvae collection took place at various 

locations in Tebing Tinggi City. The acquired images have 

dimensions of 640x480 pixels, a resolution of 96 dpi, and a 

depth of 24 bits. The image data results are presented in the 

figure 5. After normalization we used 150 image data on each 

genus of mosquito larvae. 

B. Experimental Results 

Our aim is to find the model with the best performance that 

able to categorize the larvae into three categories; Aedes, 

Culex, and Anopheles. The process consists of two part: 

detection and classification. Each part will have its own model 

to be compare.  

1) Training Model 

During the detection process, we used two model: 

YOLOv5 and FPSnet. The result is measured by comparing 

the precision and recall. Based on the results gathered during 

the test, we found out that YOLOv5 performed better than 

FPSnet. There is, however, a performance difference where 

FPSnet gave a better time performance.  

 

Fig 7. P-R curve on the dataset 

 

Fig 5. Dataset of Mosquitos larva 

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 198-206

 
______________________________________________________________________________________ 



But the difference is negligible. The performance of 

precision-recall can be seen in figure 7 and we separate the 

curve for each instance we aimed to detect, yellow for head, 

blue for body, and red for tail. As expected, tail detection 

performed better than head and body due to its unique 

characteristics. 

Figure 8 show the detection and instance segmentation 

results using YOLOv5. As shown in the image, our proposed 

method is able to differentiate the head, body, and tail 

correctly. The intersections between segmented instance 

mostly caused when the shape of the larvae is too complex to 

be segmented by a rectangular region.  

 

2) Tuning the Hyperparameter  

In this experiment, hyperparameter tuning was performed 

by combining various values of the number of epochs (150, 

200, 250) and learning rates (0.01, 0.001). These 

combinations were carefully explored to find the best and 

most optimal model. The results of the hyperparameter tuning 

presents the best-tested combinations along with their 

performance outcomes. After performing hyperparameter 

tuning, including adjusting the number of epochs and learning 

rate, the optimal combination was found to be 200 epochs 

with a learning rate of 0.001. This combination resulted in the 

highest mAP value among the other combinations, which was 

0.893 for all classes. Therefore, the model resulting from this 

training was chosen to be the system model. 

Based on the model training process with 200 epochs and a 

learning rate of 0.001, the evaluation results of the built model 

are presented. The generated graphs provide a visual 

representation of the overall performance of the model. These 

graphs include several important metrics such as box loss, 

class loss, and object loss, as well as performance evaluation 

metrics like precision and recall, as shown in Figure 11. 
 

Overall, the graphs indicate that the model has satisfactory 

performance, with metrics such as box_loss, class_loss, 

object_loss, precision, recall, and mAP showing good results. 

However, Both the training loss represented in blue line and 

validation loss represented in orange line decrease and 

TABLE I  

THE COMPARISON OF SEGMENTATION METHODS OF MOSQUITO LARVA (%) 

 

Algorithm Species P R mAP PQ 

YOLOv5 Aedes 90.4 84.5 94.2 74.5 

YOLOv5 Culex 89.2 87.7 92.4 78.3 

YOLOv5 Anopheles 93.2 86.8 93.9 81.7 

FPSnet Aedes 54.8 64.2 86.5 62.5 

FPSnet Culex 78.1 78.3 83.4 61.1 

FPSnet Anopheles 54.8 63.0 70.8 74.3 

 

 

Fig 8. Detection Result (a) Mosquitos Larvae Aedes, (b) Mosquitos Larvae Anopheles, and (c) Mosquitos Larvae Culex   
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eventually stabilize at a certain point, indicating an optimal fit 

as shown in Figure 9.  

Although the model shows satisfactory performance 

overall, these results indicate differences in the model's ability 

to identify and classify specific larval genera. The Aedes 

genus has the lowest mAP value among the classes, 

suggesting that the model might have difficulty recognizing 

this particular genus. 
 

3) Testing Process 

The next step of the experiment is to testing the model by 

classify the testing data based on its genus categorize. As 

previously, we argue that by classifying based on the body 

part of the larvae can increase the performance of 

classification. For this evaluation, we use Accuracy and F1-

Score to assess the performance capabilities of the developed 

model.  

Before proceeding to the classification, we first segmented 

the images to find the body instances of the larvae and extract 

the feature of each segmented parts. Using these features, we 

trained the models by using the labelled data. To measure the 

performance of the classification, we collect the result and 

calculate the true positive, true negatives, false positives and 

false negatives. Table II shows the performance of Yolov5 in 

classifying each part type of mosquito larva. Overall, the 

 

Fig 9. Model Performance Graphs 

 

 

TABLE II  

TRAINING EPOCH 200, LEARNING RATE 0.001 

 

epoch 
train/ 

box_loss 

train/ 

cls_loss 

train/ 

obj_loss 
Precision Recall mAP 0.5 

mAP 

0.5:0.95 
val/ 

box_loss 
val/ 

cls_loss 

val/ 

obj_loss 

1/200 0.067228 0.025172 0.073781 0.20973 0.21167 0.13159 0.06302 0.032925 0.011846 0.062667 
2/200 0.046169 0.017165 0.059651 0.51979 0.3185 0.34591 0.18307 0.028987 0.010210 0.043331 
3/200 0.045867 0.015277 0.042308 0.59374 0.50846 0.53533 0.26605 0.03158 0.010269 0.026807 
4/200 0.043401 0.014721 0.02857 0.74629 0.58132 0.73147 0.40442 0.029883 0.01003 0.015957 
5/200 0.041019 0.014443 0.020506 0.71416 0.70297 0.80619 0.48806 0.024487 0.010222 0.012190 

... … … … … … … … … … … 
196/200 0.016749 0.008222 0.00096 0.94118 0.95503 0.97129 0.71198 0.016322 0.008085 0.001052 
197/200 0.016445 0.008142 0.001043 0.94257 0.95659 0.96767 0.70832 0.016331 0.008087 0.001053 
198/200 0.01665 0.008168 0.001128 0.94393 0.95787 0.97033 0.71089 0.01633 0.008088 0.001054 
199/200 0.016322 0.008148 0.00103 0.94641 0.96045 0.96611 0.70666 0.016332 0.008091 0.001056 
200/200 0.016301 0.008097 0.001037 0.94407 0.95796 0.97197 0.71268 0.01633 0.008092 0.001055 
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model performance with YOLOv5 shows good performance 

results for each genus of mosquito larvae. Model performance 

tends to be optimal when the model recognizes objects from 

the characteristics of each part of the flick object.  

 
TABLE III  

TEST DATA CLASSIFICATION RESULTS 

 

Class Presicion Recall Accuracy F-1 Score 

Head Aedes 0.824 0.933 0.970 0.875 

Trunk Aedes 0.824 0.933 0.970 0.875 
Tail Aedes 0.824 0.933 0.970 0.875 

Head Anopheles 1.000 0.933 0.993 0.966 

Trunk Anopheles 1.000 0.933 0.993 0.966 

Tail Anopheles 1.000 0.933 0.993 0.966 
Head Culex 0.929 0.867 0.978 0.897 

Trunk Culex 0.929 0.867 0.978 0.897 

Tail Culex 0.929 0.867 0.978 0.897 

 

C. Discussion 

Our detection comparison shows that YOLOv5 gives a 

better detection and segmentation result. FPSnet gives a better 

speed in a limited hardware capability but the difference is 

negligible. Based on our observation, the overall result of the 

segmentation process able to give an acceptable result to be 

used in the classification process.  

The proposed argument of this research is the classification 

process should be better given the segmented input from 

previous process. The discrepancies in results among the three 

species are notably distinct, particularly between Aedes, 

Culex, and Anopheles. Based on our analysis, the 

morphological differences between Aedes and Culex are very 

subtle. Meanwhile, Anopheles exhibits a significant 

difference in the tail.  

The evaluation of classification results is not significantly 

different from segmentation results. Morphological features 

serve as the primary distinguishing characteristics between 

species. The comparison in classification results reveals that 

the accuracy of Anopheles is the highest among the other 

species. A comparison of algorithms reveals distinct trends: 

YOLOv5 detection outperforms the FPSnet algorithm 

significantly.  

This research on object detection using a larval body part 

segmentation approach resulted in an accuracy of 97%. For 

Aedes, 99.3% for Anopheles and 97.8% for Culex. The model 

built using the YOLOv5 algorithm achieved a precision of 

94.4% and a recall of 95.7%, with a resulting mAP 0.5 value 

of 0.971. The improved detection accuracy is apparent in the 

Aedes and Culex classes. According to the test results, the 

proposed algorithm excels in identifying each part of the 

larva's body. The highest detection is observed in the Tail 

section due to its distinct features compared to the Head and 

Body. Challenges arise in Panoptic Quality, where the tails of 

culex and Aedes exhibit similar features, resulting in the best 

PQ outcomes in the Anopheles class.      

IV. CONCLUSIONS & FUTURE WORKS 

This paper addresses the challenge of non-optimal 

biological control of the Aedes aegypti mosquito, a vector 

responsible for spreading Dengue, Chikungunya, and Zika 

viruses. These arthropods pose a threat to a significant portion 

of the global population annually, with a single mosquito bite 

capable of causing severe pain, hemorrhagic fever, and even 

brain defects in unborn children. 

During the immature larval stage, Aedes aegypti and Aedes 

albopictus are easily manageable, vulnerable, and non-

infectious. However, there is only a narrow window of time 

differentiating the innocuous larval stage from the 

reproductive and hazardous adult stage. Hence, a swift and 

precise survey and disposal of the immature larval stage 

become imperative. 

This paper introduces a technological solution utilizing 

deep neural networks (DNNs) for an efficient immature larval 

stage survey. The proposed method automatically identifies 

the biological vector in the larval stage, achieving a 97.1% 

mAP 0.5 in region detection and a 97% accuracy in larva 

classification as Aedes positive or Aedes negative. This 

results in a significant reduction in response time from days 

to few seconds without human intervention. Moreover, the 

proposed solution proves cost-effective by minimizing the 

need for trained entomologists, laboratories, and expensive 

equipment.  

The hardware requirements for implementation include a 

microscope-based image acquisition setup, a computer with 

CPU hardware, and a petri dish, making it feasible for 

deployment in underdeveloped countries and remote regions 

where economic constraints limit access to preventive health 

services and biological vector control. 

Future work aims to enhance the research contribution 

further. The proposed method could be extended to video 

technology for Aedes aegypti larva identification and 

compared with other segmentation methods for larvae body 

parts. Additionally, there is room for optimizing 

hyperparameters and training techniques for the deep learning 

model, exploring different model architectures and backbones. 

Lastly, the developed dataset could be enriched in terms of 

material classification, quantity, variety, and available 

annotations. 

The research in the paper still segregates the tasks of 

detection and classification, both of which naturally require 

substantial resources. However, this paper does not 

incorporate measurements for time consumption and 

computational capabilities. It is hoped that future research 

will be able to contribute by quantifying time consumption 

and assessing computational capabilities effectively.  
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