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Abstract—Photovoltaic (PV) model parameter identification
is a nonlinear, multivariate and strong coupling optimization
problem, which is of crucial importance for PV systems. In
view of the shortcomings of traditional identification methods,
such as low accuracy and slow convergence speed, this paper
proposes an improved butterfly optimization algorithm (BOA)
based on chaotic learning and terminal elimination strategy,
called CTBOA. Firstly, a novel fragrance factor is designed to
enhance the leading role of the optimal butterfly and accelerate
the convergence speed. Secondly, a chaotic learning strategy
is utilized, which adopts an improved chaotic map to guide
the butterflies to learn towards the best individual, thereby
enhancing the convergence accuracy. Finally, the terminal
elimination strategy is used to initialize the positions of the 5
poorest individuals to increase population diversity. In addition,
CTBOA is evaluated with 3 BOA variants and 6 well-known
algorithms with CEC2022 test set. Then CTBOA is applied to
the parameters identification of 4 PV models, and demonstrates
remarkable competitiveness in terms of convergence perfor-
mance and identification accuracy compared with 9 comparison
algorithms. The comprehensive analysis shows that CTBOA is
able to identify the best parameters superior to comparison
methods, proving its capability in numerical optimization and
PV model parameters identification.

Index Terms—Photovoltaic model, parameter identification,
chaotic learning strategy, numerical optimization

I. INTRODUCTION

IN the past few decades, renewable energy has received a
lot of attention as an alternative to fossil energy. PV power

generation takes an essential position in today’s renewable
energy, and its penetration rate in the grid is very high.
The PV cell model is an important part of the PV system.
The study of PV systems requires accurate modeling of PV
cells [1]. Generally, the fundamental models of equivalent
circuits for PV cells are single diode model (SDM), double
diode model (DDM) and triple diode model (TDM), the
SDM is simple and has a fast dynamic response with 5
parameters to be identified [2]. The DDM considers the
compound influence in the neutral areas of the junction and
therefore models the PV cell more accurately with its 7
parameters to be identified [3]. TDM has a complete PV cell
loss characterization with 9 parameters to be identified [4].
The equivalent circuits of the above 3 models are implicitly
nonlinear equations and the unknown parameters are difficult
to identify precisely due to variations in temperature and
irradiation intensity. The parameters of PV model directly
affect the dynamic performance of the system, therefore,
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devising an accurate and reliable parameter identification
method is of great significance.

Different methods have been applied to identify the un-
known parameters of the PV model, like numerical method,
meta-heuristic algorithm, etc. The main disadvantage of
Newton-Raphson and other numerical techniques is that
they require a lot of calculation to converge, but improper
selection of initial values will not get accurate results [5].
The main advantage of meta-heuristic algorithms lies in
the fact it does not require continuity and microscopicity
of the objective function and show effectiveness in solving
engineering problems, like particle swarm optimization al-
gorithm (PSO) [6], improved grey wolf optimizer (I-GWO)
[7], triple shake algorithm (TSA) [8], enhanced sparrow
search algorithm (ESSA) [9], improved whale optimization
algorithm (EIWOA) [10], enhanced particle swarm optimiza-
tion algorithm (SCOPSO) [11], adaptive filtering algorithm
(AFA) [12], differential evolution algorithm with dynamic
control factors [13].

To solve the problem of PV cell parameters identification,
PSO has been proposed in [6], which overcomes the problem
of encountering locally optimal solutions and can efficiently
obtain accurate fitted parameters to complete the simulation
of I-V characteristics. Subudhi et al. [14] introduced a
algorithm to identify the parameters of PV modules using
bacterial foraging optimization algorithm (BFO) for PV mod-
ules under different test conditions, the model parameters
obtained by this method are more accurate as compared
to Newton-Raphson method, PSO and enhanced simulated
annealing (SA), but this method was only applied to identify
the unknown parameters of PV modules with SDM. In [15],
a genetic algorithm (GA) has been utilized for this problem.
In [16], a multiple learning backtracking search algorithm
(BSA) was utilized to recognize the parameters of PV mod-
els, the results of the experiment showed that the proposed
BSA was able to identify the parameters of the SDM and
DDM PV cells, however, computational efficiency may be
reduced when determining the parameters of larger systems.
In [17], an improved differential evolution algorithm (DE)
was used to identify PV parameters and improve convergence
performance by introducing a cross-rate ranking mechanism,
however, using the differential evolution algorithm requires
a longer iterative process to reach the PV model parameters.
For the same problem, Huiling Chen et al. [18] introuduced
a diversity-enhanced Harris hawk optimization (HHO) al-
gorithm, and the experimental results proved the excellent
properties of the proposed method in identifying the key
parameters of the PV model, but the computation time is
long due to the introduction of two operators. In [19], a
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whale optimization algorithm (WOA) was developed for the
calculation of unknown parameters of PV models. A seagull
optimization algorithm (SOA) was suggested in [20] for
the same problem. In [21], Xiaobing Yu et al. proposed an
improved grey wolf optimizer (GWO) to update the positions
of individuals using different search strategies for superior
and inferior populations, the results show that the method
increases the population diversity and solves the parameter
identification problem for 5 PV models.

Although many methods have been developed to solve
this problem, since PV model parameters identification is
a complex problem, a considerable number of methods have
difficulty in obtaining a globally optimal solution. Therefore,
finding a competitive algorithm that can accurately and reli-
ably identify the parameters of different PV models remains
a challenging task.

Butterfly optimization algorithm (BOA) is a new popula-
tion based heuristic proposed by Arora Sankalap et al. [22].
Due to its flexibility and efficiency, BOA and its variants
have been applied to a wide range of real-world optimization
problems such as numerical optimization problems [23],
engineering problems [24].

As a young algorithm, BOA suffers from slow convergence
speed, low convergence accuracy and poor population diver-
sity. Moreover, to the best of my limited knowledge, there
are few literature reports on the use of BOA and its variants
for PV model parameter identification problems. To this end,
this paper proposes a butterfly optimization algorithm based
on the improved fragrance factor, chaotic learning and final
elimination for identifying PV model parameters. Firstly,
the fragrance factor of BOA is improved to enhance the
leading role of the optimal butterfly individual and accelerate
the convergence speed. Secondly, a chaotic learning strategy
(CLS) is proposed, which employs improved chaotic map to
guide the butterflies to learn towards the best individual, to
improve the precision of convergence. Finally, the positions
of the poorest 5 individuals are initially initialized using a
final elimination strategy to increase population diversity.

The main contributions of this paper are as follows.
(1) An improved BOA based on chaotic learning and final

elimination is proposed for identifying PV model parameters.
(2) A novel fragrance factor is designed for BOA to

accelerate the convergence speed.
(3) A chaotic learning strategy is introduced for increasing

the search capability to avoid falling into local optima,
while a final elimination strategy is utilized to enhance the
population diversity.

(4) The performance of the proposed CTBOA is tested
against the comparison algorithms with CEC2022 test set.

(5) CTBOA is applied to four PV parameter identification
problems.

The rest of the paper is organized as follows.
• Section II gives the PV model problem description.
• Section III describes BOA and the proposed CTBOA.
• Section IV provides the performance of CTBOA in

CEC2022 test set.
• Section V identifies the parameters of 4 PV models.
• Section VI discusses the conclusions and future work.

II. PROBLEM DESCRIPTION

Common PV models include SDM, DDM and TDM [13],
the PV module model consists of a number of PV cells
connected in series and/or in parallel, and their equivalent
circuits is shown in Figure 1. Switches S1 and S2 are turned
off, this is SDM. And, S1 and S2 are successively turned on,
DDM and TDM are successively formed. In addition, the root
mean square error (RMSE) is used as objective function.
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S2

Id2
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-
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Fig. 1: PV cell model.

A. SDM of PV cell

The equivalent circuit diagram of the SDM consists of a
current source Iph, a diode D1, a parallel resistor Rp and
a series resistor Rs. The output current IL of the SDM is
shown in Eq.(1).

IL = Iph − Id1 − Ip (1)

Where Iph represent the photo-generated current of the
PV cell, Id1 represent the electric current that flows through
D1, Ip represents the current on Rp, and Id1 is calculated
as Eq.(2).

Id1 = Isd1 · [e
q·(VL+Rs·IL)

n1·kB ·TK − 1] (2)

Where Isd1 and n1 are the reverse saturation current
and ideal factor of D1, respectively. q is the electron
charge (1.602176 · 10−19C) , kB is a constant (1.380650 ·
10−23J/K), and TK denotes the temperature of the cell.

In summary, Eq.(1) is expressed as Eq.(3).

IL = Iph − Isd1 · [e
q·(VL+Rs·IL)

n1·kB ·TK − 1]− VL +Rs · IL
Rp

(3)

According to Eq.(3), the SDM has 5 parameters to be
identified, which are Iph, Isd1, Rp, Rs and n1.

B. DDM of PV cell

Compared with SDM, DDM considers the influence of the
combined current loss in the depletion region [25]. The DDM
has an extra diode in parallel wired to the current source than
the SDM, and IL is calculated through Eq.(4).

IL =Iph − Isd1 ·
[
e
(
q·(VL+Rs·IL)

n1·kB ·TK
) − 1

]
− Isd2 ·

[
e

q·(VL+Rs·IL)
n2·kB ·TK − 1

]
− VL +Rs · IL

Rp

(4)

Where Isd1, Isd2, n1 and n2 are the saturation currents and
ideal factors of diodes D1 and D2, respectively. According
to Eq.(4), the PV model built with DDM has 7 parameters
to be identified, which are Iph, Isd1, Isd2, Rp, Rs , n1 and
n2.
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C. TDM of PV cell

TDM can more comprehensively characterize the loss of
PV cells, IL for TDM is given in Eq.(5).

IL =Iph − Isd1 ·
[
e

q·(VL+Rs·IL)
n1·kB ·TK − 1

]
− Isd2 ·

[
e

q·(VL+Rs·IL)
n2·kB ·TK − 1

]
− VL +Rs · IL

Rp

− Isd3 ·
[
e
(
q·(VL+Rs·IL)

n3·kB ·TK
) − 1

] (5)

According to Eq.(5), it can be seen that the PV model by
TDM has 9 parameters to be identified, which are Iph, Isd1,
Isd2, Isd3, Rp, Rs, n1, n2 and n3.

D. PV module model

The equivalent circuit of PV module model is given in
Figure 2. Where Ns and Np stand for the amounts of series
and parallel PV models. IL of the PV module model based
on TDM obtained with Eq.(6).

IL =Np · Iph − VL/Ns +Rs · IL/Np

Rp/Np

−Np · Isd1 ·
[
e

q·(VL/Ns+Rs·IL/Np)

n1·kB ·TK − 1

]
−Np · Isd2 ·

[
e

q·(VL/Ns+Rs·IL/Np)

n2·kB ·TK − 1

]
−Np · Isd3 ·

[
e

q·(VL/Ns+Rs·IL/Np)

n3·kB ·TK − 1

]
(6)

E. Objective function

Parameter identification for PV models usually uses root
mean square error to quantify the variance [16], it is defined
as Eq.(7).

min f(
−→
X ) = RMSE(

−→
X ) =

√√√√ 1

M

M∑
i=1

(IiL,mea − IiL,iden(
−→
X ))2

(7)
Among them, M is the quantity of experimental data.

IL,mea and IL,iden denote the measured and identified cur-
rents, respectively.

−→
X represents the parameter vector to be

identified.

III. THE PROPOSED METHOD

This section gives the fundamentals of BOA. With the
aim of overcoming the disadvantages of BOA, like low con-
vergence accuracy and poor population diversity, a chaotic
learning strategy is introduced, as well as the use of improved
fragrance factor and final elimination strategy.

A. Butterfly optimization algorithm

Butterfly optimization algorithm (BOA) is a new intelli-
gent optimization algorithm. The main idea of BOA comes
from the foraging behavior of butterflies [26]. Butterflies
attract companions by releasing fragrances, and they move
toward areas with higher concentrations of fragrances. Each
individual butterfly has a location that represents a possible
solution. During the initialization phase, butterfly individuals
within the population are randomly distributed according to
Eq.(8).

−→
X i =

−→
LB + r(1, Dim). ∗ (

−−→
UB −

−→
LB) (8)

Among them, [
−→
LB,

−−→
UB] are the lower and upper search

limits of the solution space, respectively. Dim is the problem
dimension, the variable r represents a random number within
the range of [0, 1].

In BOA, the fragrance factor determines the movement
direction of individual butterfly to a large extent. Each
butterfly modifies its position in accordance with the intensity
of its own fragrance and the fragrance present in its vicinity.
Regions with higher fragrance intensity represent potentially
better solution space. Fragrance factor fi is calculated by
Eq.(9).

fi = c · Ia (9)

In which c represents the sensory modality, usually taken
as 0.01. I denotes the stimulus intensity, which is reliant on
the fitness of the optimization objective. a represents a power
exponent, computed by Eq.(10).

a = 0.1 + 0.2(t/T ) (10)

Where t and T represent the current iteration and the max-
imum iterations respectively. In addition, the BOA consists of
two key steps,namely global search and local search. These
two phases are regulated by a switch probability p, which
is assigned a value of 0.8. When r < p, the individual will
execute a global search, as shown in Eq.(11).

−−−−−→
Xt+1

i−BOA =
−→
Xt

i + (r2 ·
−−−→
gbest−

−→
Xt

i ) · fi (11)

Where
−→
Xt

i represents the solution vector of the i − th

butterfly at t− th iteration, and
−−−→
gbest represents the optimal

solution identified among all the solutions at the current
stage.

Conversely, the individual performs a local search, as
shown in Eq.(12).

−−−−−→
Xt+1

i−BOA =
−→
Xt

i + (r2 ·
−→
Xt

j −
−→
Xt

k) · fi (12)

In which,
−→
Xt

j and
−→
Xt

k are randomly chosen from the
solution space as the j − th and k − th butterflies.

B. The proposed CTBOA

1) Improved fragrance factor: The stimulus intensity
within the BOA is determined by the fitness of the opti-
mization objective. Given that the optimal values of different
optimization problems can differ significantly, the fragrance
factor calculated by Eq.(11) is prone to fluctuation, and there
may be a situation where the butterfly fragrance is absent,
leading to the BOA ceasing to update the butterfly position.
Therefore, it is necessary to improve the fragrance factor
of butterflies. Since the normalized data can accelerate the
solution, the improved flavor factor based on this idea is
designed as Eq.(13).

I = 1− Fitness(
−→
Xt

i )− gbestvalue

worstvalue− gbestvalue
(13)

Where gbestvalue and worstvalue are the fitness values
corresponding to the optimal and worst positions of the
population butterfly, respectively. According to Eq.(9) and
Eq.(13), the improved butterfly fragrance factor will not
appear the absence of fragrance, and BOA will update the
butterfly position according to the new fragrance factor.
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Fig. 2: PV module model.

2) Chaotic Learning Strategy: The chaotic learning strat-
egy comprises a chaotic phase and a learning phase, and the
details are as follows.

(a) Chaotic phase. Chaos is commonly found in nonlinear
systems [27]. It is capable of enhancing the global searching
capacity of the algorithm and improve the solving precision
of the problem. Tent chaotic perturbation creates the chaotic
variable via Tent chaotic mapping. Then it is introduced
into the solution space of the problem to be addressed and
ultimately perturbs the individual in a chaotic manner. The
Tent chaotic mapping is presented in Eq.(14).

zi+1 = (2zi)mod1 + r · 1

NT
(14)

Where, NT is the number of chaotic particles. For the
purpose of extending the Tent mapping, Eq.(14) is improved
and the improved Tent mapping is shown in Eq.(15). The
improved Tent chaotic has a wider mapping range ([-1,1]),
which is beneficial to enhancing the global search capability
of the method.

znewi+1 = sgn(0.5− r) · ((2zi)mod1 + r · 1

NT
) (15)

Where sgn is the sign function that controls the interfer-
ence direction.

(b) Learning phase. In a population,
−−−→
gbest is supposed to

raise the average value of the population to a certain degree
depending on the size of the population, and the formula for
mean position is shown in Eq.(16).

−−→
Xm = (

1

N

N∑
i=1

−−→
Xi,1,

1

N

N∑
i=1

−−→
Xi,2, · · ·

1

N

N∑
i=1

−−−−→
Xi,Dim) (16)

Where, −→xi,j is the j− th dimension of the i− th butterfly.
Define the process of learning the average position towards
the

−−−→
gbest of the population as the learning step, as shown in

Eq.(17).

−−−−−−→
Xlearning = znewi+1 · r(1, Dim). ∗ (

−−−→
gbest−

−−→
Xm) (17)

The chaotic learning strategy is applied to the butterfly
position update with the Eq.(18).

−−−−→
Xt+1

i−CL =
−→
Xt

i +
−−−−−−→
Xlearning (18)

The chaotic learning strategy makes the average value
learn towards the best individual from various directions,
which improves the global and local search ability that helps
the method to enhance the accuracy of problem-solving.

3) Final elimination strategy: The final elimination strat-
egy add the diversity of the population by eliminating unfa-
vorable individuals and randomly initializing the locations of
the 5 poorest individuals in each iteration based on Eq.(19).

−−−−−−−−→
Xs[(N−4):N ] =

−→
LB + r(1, Dim). ∗ (

−−→
UB −

−→
LB) (19)

Where s is the ordinal number obtained by ordering the
fitness from the best to the worst. N is the population size.

C. Framework of CTBOA

The pseudo-code and flowchart can visually demonstrate
the framework of CTBOA, as shown in Algorithm 1 and
Figure 3, separately.
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StartInitialize position X and set parameters

Update a,  I and  fi by Eqs.(10) ,(13) and (9),  respectively

Evaluate the fitnesses of X, update FEs, get gbestvalue and gbest

Check boundaries and evaluate the fitness of Xi-BOA, Update gbestvalue, gbest and FEs

While

Y
End

NY

Output gbest

Check boundaries and evaluate the fitness of Xi-CL, Update gbestvalue, gbest and FEs

Calculate the mean position of the population using Eq. (16)

Move randomly using Eq. (12)Move towards best butterfly using  Eq. (11)

N

Eliminate and initialize using Eq.(19)

Calculate Xlearning using Eq. (17)

Update position using Eq. (18)

Fig. 3: Flowchart of CTBOA.

IV. NUMERICAL OPTIMIZATION RESULTS

A. CEC2022 test functions and parameters setting

In this subsection, the performance of the CTBOA is ver-
ified by CEC2022 benchmark test set. For further validation
of the properties of CTBOA, 9 competitive comparison algo-
rithms are selected, as listed in Table I. The main information
of CEC2022 is shown in Table II. For the impartiality of the
experiment, and the evaluation quantity in 10 dimensions
(D10) is 200,000. Each function runs independently 30 times.
The test platform is Matlab R2021b. The test device is a PC
running Microsoft Windows 11 operating system.

B. Search history analysis of CTBOA

In this part, basic function f2 in CEC2022 is used to
verify the performance of CTBOA. In order to present the
experimental results in a more straightforward manner, the
dimension is set as 2, the population size is set to 4,
and the maximum number of iterations is set to 100. The
experimental results are illustrated in Figures 4 and 5.

From Figures, the proposed CTBOA has a wider traversal
range than BOA on f2, the convergence speed is faster during
the early period, and after multiple searches in the advanced
stage, it almost reaches the optimal value of the function, and
has a satisfactory ability to escape the local optimal. These
improvements result from the proposed chaotic learning
strategy, improved fragrance factor and final elimination
strategy.
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Fig. 4: Search history of original BOA on f2.

Fig. 5: Search history of CTBOA on f2.
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Algorithm 1: The pseudo-code of CTBOA
Input: Initialize Parameters.
Output: Optimal solution

−−−→
gbest.

1 Randomly initialize population using Eq.(8);
2 Evaluate the fitnesses of

−→
X , Update FEs;

3 Get gbestvalue and
−−−→
gbest;

4 T = ⌈maxFEs/N⌉, t = 0;
5 while FEs <= maxFEs && t <= T do
6 t = t+ 1;
7 Calculate the power exponent a by Eq.(10);
8 for i = 1 to N do
9 Calculate I and fi by Eqs.(13) and (9).;

10 if r < p then
11 Move towards best butterfly using Eq.(11);
12 else
13 Move randomly using Eq.(12);
14 end
15 Check boundaries and evaluate

−−−−−→
Xi−BOA;

16 Update
−→
Xi, gbestvalue and

−−−→
gbest, FEs;

17 end
18 for i = 1 to N do
19 Calculate

−−−−−−→
Xlearning by Eq.(17);

20 Update position using Eq.(18);
21 Check boundaries and evaluate

−−−−→
Xi−CL;

22 Update
−→
Xi, gbestvalue and

−−−→
gbest, FEs;

23 end
24 Eliminate and initialize using Eq.(19);
25 end

TABLE I
ALGORITHM AND PARAMETERS SETTING.

Algorithm Ref. Year Parameters setting

BOA [22] 2019 p=0.8, c=0.01
GGWO [28] 2022 A=2*a*rand-a, C=2*rand, σ=0.5
WPBOA [26] 2021 p=0.8, c=0.01, wmax=0.8, wmin=0.2
EWOA [29] 2022 C= 2*rand, b=1
GQPSO [30] 2010 w1=0.5, w2=1.0, c1=1.5, c2=1.5
ESO [27] 2023 r1=rand, r2=0.5, δmax=10, δmin=9
mSCBOA [31] 2022 c=0.01, r2=2*pi*rand, sa=2
MABOA [32] 2021 p=0.8, a=0.1, c0=0.01, N=220, λ=2
HHO [33] 2019 E=2*(1-t/T )
CTBOA Pres. Pres. p=0.8, c=0.01

TABLE II
THE FUNCTIONS INFORMATION OF CEC2022.

Type No. Function fopt

Unimodal f1 Shifted and full Rotated Zakharov 300
Basic f2 Shifted and full Rotated Rosenbrock’s 400

f3 Shifted and full Rotated Expanded Schaffer’s f6 600
f4 Shifted and full Rotated Non-Continuous Rastrigin’s 800
f5 Shifted and full Rotated Lévy 900

Hybrid f6 Hybrid 1 (N=3) 1800
f7 Hybrid Function 2 (N=6) 2000
f8 Hybrid Function 3 (N=5) 2200

Composition f9 Composition 1 (N=5) 2300
f10 Composition (N=4) 2400
f11 Composition (N=5) 2600
f12 Composition (N=6) 2700

* Search range: [-100,100], fopt: The optimal solution.

C. Comparing CTBOA with 9 well-known algorithms

In this subsection, the proposed algorithm is contrasted
with the methods in Table I, and the results for 10 dimen-
sions is shown in Table II. The comparison is carried out
with respect to mean (Mean), standard deviation (Std) and
minimum (Best), worst (Worst), respectively. From it, the
comprehensive performance of CTBOA is superior to that
of other 9 advanced comparison algorithms. On D10, f2, f6,
f8, f9, f10, and f11 obtain optimal averages, but perform
less well on some of the test functions, such as f5 and f7.

D. Population diversity analysis

From Table II, it is clear that f2 perform excellent.
In order to investigate the causes of CTBOA’s excellent
performance, the diversity is evaluated and the results are
presented in Figure 6. The figure shows that, in the whole
iteration process, despite different dimensions, CTBOA has
better population diversity than BOA, which is favorable for
searching high accuracy solutions.
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Fig. 6: Diversity analysis of BOA and CTBOA for f2 on
D10.

E. Convergence preference

For a more all-round assessment of the proposed algo-
rithm’s performance, in this section, basic function f2 and
hybrid function f6 in CEC2022 test suite are employed to
assess the convergence performance of CTBOA, and the
results is illustrated in Figure 7. It is evident in Figure 7
that on 10 dimensions, CTBOA has satisfactory convergence
speed and accuracy against the 9 compared algorithms.
Collectively, CTBOA has excellent overall performance on
basic function and hybrid function.

F. Non-parametric tests

In this subsection, three non-parametric statistics, Fried-
man [34], Friedman aligned rank [35] and Wilcoxon signed
rank [36] are used to test if there is a significant difference
between CTBOA and comparison methods, and the experi-
mental results are shown in Tables III and IV.

1) Friedman rank and Friedman aligned rank test :
The Friedman rank test is a powerful non-parametric testing
method, and its core is a statistical means based on rank.
This unique method skillfully reduces the potential impact
of data distribution patterns on the results by performing
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TABLE III
EXPERIMENTAL RESULTS OF CTBOA AND CONTRASTING METHODS ON D10.

Fun Index BOA GGWO WPBOA EWOA GQPSO ESO mSCBOA MABOA HHO CTBOA

f1 Mean 7.45381000E+03 3.28232200E+02 2.79386352E+03 3.00000000E+02 1.90918257E+03 3.00591921E+02 4.13606739E+03 8.52390510E+03 3.02280468E+02 3.00324396E+02

Std 3.21778613E+03 8.39527152E+00 9.35886969E+02 2.55740931E-13 2.55697362E+02 6.45211328E-01 2.29571086E+03 4.67455792E+03 1.24146761E+00 1.21138497E-01

Best 1.79583710E+03 3.14185220E+02 1.17564767E+03 3.00000000E+02 1.25040394E+03 3.00000662E+02 8.82214093E+02 1.13414438E+03 3.00418536E+02 3.00109605E+02

Worst 1.53489468E+04 3.40566707E+02 4.48334432E+03 3.00000000E+02 2.29831316E+03 3.02373429E+02 9.73373844E+03 1.96597370E+04 3.06103162E+02 3.00546838E+02

Rank 9 5 7 1 6 3 8 10 4 2

f2 Mean 2.53851321E+03 4.08355346E+02 6.15760550E+02 4.08150025E+02 5.07501615E+02 4.13546365E+02 1.12450750E+03 9.28138258E+02 4.21035581E+02 4.00960893E+02

Std 1.13249933E+03 2.68804163E+00 6.40216540E+01 1.24284849E+00 1.78180528E+01 2.45238480E+01 5.00707114E+02 3.83337241E+02 2.81863146E+01 1.77009748E+00

Best 6.47352254E+02 4.02573147E+02 4.81177090E+02 4.04126327E+02 4.41422718E+02 4.00000542E+02 5.68927927E+02 4.62981599E+02 4.00033770E+02 4.00023128E+02

Worst 4.58097410E+03 4.11856685E+02 7.53200944E+02 4.08916102E+02 5.31521154E+02 4.85968059E+02 2.90255219E+03 1.94359667E+03 4.76780657E+02 4.07277357E+02

Rank 10 3 7 2 6 4 9 8 5 1

f3 Mean 6.58085778E+02 6.04748720E+02 6.34680131E+02 6.02570106E+02 6.29366758E+02 6.03629895E+02 6.48509761E+02 6.41264236E+02 6.33499830E+02 6.14204619E+02

Std 8.37438718E+00 1.18741380E+00 5.17231722E+00 3.88106234E+00 3.15814139E+00 2.61550608E+00 1.12979297E+01 1.06688214E+01 1.48906190E+01 4.95986640E+00

Best 6.35207449E+02 6.03172718E+02 6.21708183E+02 6.00013124E+02 6.20085761E+02 6.00085108E+02 6.29572880E+02 6.21447382E+02 6.03794598E+02 6.05686922E+02

Worst 6.69459776E+02 6.08389455E+02 6.41694319E+02 6.14907101E+02 6.33923490E+02 6.08889274E+02 6.72008703E+02 6.66982043E+02 6.60277739E+02 6.23491770E+02

Rank 10 3 7 1 5 2 9 8 6 4

f4 Mean 8.40865914E+02 8.18934681E+02 8.40584135E+02 8.29894744E+02 8.32570554E+02 8.13669338E+02 8.56111639E+02 8.52815085E+02 8.25278391E+02 8.14787558E+02

Std 1.05651459E+01 3.60816038E+00 4.89816898E+00 1.03159579E+01 2.87574612E+00 5.97424708E+00 1.02322289E+01 1.07999942E+01 7.79762472E+00 3.56155968E+00

Best 8.21819996E+02 8.09408383E+02 8.26330820E+02 8.10944545E+02 8.27463372E+02 8.04974795E+02 8.37363923E+02 8.26490769E+02 8.06060571E+02 8.04343063E+02

Worst 8.65020194E+02 8.24318597E+02 8.47590277E+02 8.47271545E+02 8.37852273E+02 8.26984527E+02 8.72512711E+02 8.67617699E+02 8.43940644E+02 8.21496708E+02

Rank 8 3 7 5 6 1 10 9 4 2

f5 Mean 1.90515184E+03 9.03354795E+02 1.18439177E+03 9.36971555E+02 1.03372030E+03 9.01370316E+02 1.55461499E+03 1.22431295E+03 1.29748912E+03 9.85653733E+02

Std 4.07373197E+02 8.67432888E-01 6.60227400E+01 3.70521655E+01 1.93295495E+01 3.52873684E+00 2.59139151E+02 2.00843063E+02 1.77582170E+02 3.54597848E+01

Best 1.10836307E+03 9.02230381E+02 1.05820171E+03 9.00543852E+02 9.97110929E+02 9.00000256E+02 1.10659045E+03 9.10546636E+02 1.00856006E+03 9.20404817E+02

Worst 2.61348317E+03 9.04959318E+02 1.31837908E+03 1.07179510E+03 1.08671580E+03 9.17333151E+02 2.04100212E+03 1.76727359E+03 1.63271727E+03 1.05046806E+03

Rank 10 2 6 3 5 1 9 7 8 4

f6 Mean 2.70966603E+07 1.23889551E+04 3.67938820E+06 4.62143895E+03 9.97022435E+05 2.92402661E+03 3.28129867E+06 5.15072773E+06 2.61477370E+03 2.04603987E+03

Std 4.06182145E+07 7.56230540E+03 3.23930634E+06 2.16872117E+03 6.18906159E+05 1.27058468E+03 1.33796046E+07 1.64930298E+07 8.18334394E+02 9.69438987E+01

Best 7.25924703E+04 2.24806085E+03 5.23834814E+05 1.82994311E+03 7.60371711E+04 1.83044478E+03 2.04411723E+03 4.74104660E+03 1.88063494E+03 1.92155777E+03

Worst 3.63135153E+08 3.38932376E+04 1.51392929E+07 8.10245362E+03 2.55578334E+06 5.92664906E+03 7.28172099E+07 7.15819547E+07 5.57885590E+03 2.36186752E+03

Rank 10 5 8 4 6 3 7 9 2 1

f7 Mean 2.09868616E+03 2.02735854E+03 2.06732667E+03 2.02351035E+03 2.07132608E+03 2.02659536E+03 2.10841535E+03 2.08867137E+03 2.06853774E+03 2.03061856E+03

Std 2.49256000E+01 3.68867567E+00 5.78761105E+00 6.60579638E+00 8.13337681E+00 1.92943084E+01 3.08117846E+01 2.35064669E+01 3.53581562E+01 6.24970463E+00

Best 2.03521484E+03 2.01821942E+03 2.05253075E+03 2.00198992E+03 2.04990636E+03 2.00266198E+03 2.05692131E+03 2.04373172E+03 2.02829746E+03 2.02170300E+03

Worst 2.13916241E+03 2.03285211E+03 2.08149928E+03 2.04128126E+03 2.08487021E+03 2.10412173E+03 2.16178578E+03 2.14648495E+03 2.15025311E+03 2.04046920E+03

Rank 9 3 5 1 7 2 10 8 6 4

f8 Mean 2.84187221E+03 2.21849233E+03 2.23513231E+03 2.22313096E+03 2.23036382E+03 2.21968435E+03 2.24287696E+03 2.26498518E+03 2.22926057E+03 2.21761828E+03

Std 2.48059556E+03 6.51664624E+00 3.30026216E+00 3.00992379E+00 1.77051592E+00 5.20866561E+00 1.91740200E+01 5.24431961E+01 8.46110319E+00 6.99441181E+00

Best 2.22977052E+03 2.20943795E+03 2.22725598E+03 2.21381980E+03 2.22633504E+03 2.20105888E+03 2.21718669E+03 2.22822263E+03 2.21680039E+03 2.20575370E+03

Worst 1.08282255E+04 2.22642918E+03 2.24281684E+03 2.23006743E+03 2.23455709E+03 2.22582305E+03 2.27854686E+03 2.36409683E+03 2.25921918E+03 2.22760759E+03

Rank 10 2 7 4 6 3 8 9 5 1

f9 Mean 2.81214655E+03 2.53022001E+03 2.64007763E+03 2.53276634E+03 2.62666838E+03 2.53908733E+03 2.75410329E+03 2.73028497E+03 2.54418337E+03 2.52297019E+03

Std 8.67186542E+01 2.88177664E-01 2.37694377E+01 7.56848380E+00 1.20142439E+01 3.72776431E+01 4.64332795E+01 4.56275134E+01 4.47697378E+01 3.75657839E+01

Best 2.67339037E+03 2.52977320E+03 2.58137926E+03 2.52928438E+03 2.59678179E+03 2.52928438E+03 2.65737966E+03 2.66808474E+03 2.52930216E+03 2.32407912E+03

Worst 3.06723125E+03 2.53082956E+03 2.67043853E+03 2.54940589E+03 2.65194250E+03 2.67622952E+03 2.84960158E+03 2.84778600E+03 2.67623929E+03 2.53083200E+03

Rank 10 2 7 3 6 4 9 8 5 1

f10 Mean 2.58933720E+03 2.50050897E+03 2.51664339E+03 2.50099431E+03 2.54176598E+03 2.56791303E+03 2.83267476E+03 2.76931330E+03 2.60455283E+03 2.50044949E+03

Std 1.28264256E+02 9.22414770E-02 3.63257901E+00 3.09783352E-01 6.23936042E+01 6.73151481E+01 4.41122794E+02 3.97410653E+02 5.88624523E+01 9.76656547E-02

Best 2.50076344E+03 2.50028941E+03 2.50701568E+03 2.50029556E+03 2.50198553E+03 2.42415900E+03 2.51186572E+03 2.50441690E+03 2.50053110E+03 2.50026116E+03

Worst 3.32928053E+03 2.50075219E+03 2.52289162E+03 2.50156814E+03 2.65075155E+03 2.65317494E+03 4.20090939E+03 4.25606390E+03 2.65709215E+03 2.50061905E+03

Rank 7 2 4 3 5 6 10 9 8 1

f11 Mean 3.23183075E+03 2.65090006E+03 2.92814997E+03 2.72478092E+03 2.80310407E+03 2.75413355E+03 3.44823370E+03 3.39930901E+03 2.76304857E+03 2.60659199E+03

Std 3.20120465E+02 7.07533798E+00 4.84717078E+01 7.03141212E+01 1.67837402E+01 1.41473155E+02 5.19712459E+02 4.62089978E+02 1.44036729E+02 2.76334050E+00

Best 2.86361899E+03 2.62522181E+03 2.83977398E+03 2.60000000E+03 2.75852975E+03 2.60001698E+03 2.88313208E+03 2.81466291E+03 2.60281920E+03 2.60307705E+03

Worst 4.39019107E+03 2.66392918E+03 3.04453744E+03 2.76826638E+03 2.83004917E+03 3.00001984E+03 4.75470414E+03 4.46782559E+03 3.00203574E+03 2.61519691E+03

Rank 8 2 7 3 6 4 10 9 5 1

f12 Mean 2.93415457E+03 2.86220438E+03 2.91154028E+03 2.86538830E+03 2.92037323E+03 2.87135962E+03 2.99821095E+03 2.98265283E+03 2.89647639E+03 2.86336064E+03

Std 5.90861572E+01 1.20041229E+00 1.10097517E+01 2.18513775E+00 5.72574236E+00 1.14629981E+01 1.08607275E+02 7.90062464E+01 5.07673441E+01 1.52368798E+00

Best 2.87462560E+03 2.85987287E+03 2.89397850E+03 2.85966084E+03 2.91161427E+03 2.86405089E+03 2.87486125E+03 2.87478096E+03 2.86544548E+03 2.85958889E+03

Worst 3.05730402E+03 2.86444810E+03 2.93715835E+03 2.87006711E+03 2.93455739E+03 2.90573140E+03 3.27182200E+03 3.28626127E+03 3.11866365E+03 2.86681672E+03

Rank 8 1 6 3 7 4 10 9 5 2

Total rank 109 33 78 33 71 37 109 103 63 24

Final rank 9 2 7 3 6 4 10 8 5 1
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Fig. 7: Convergence curves of CTBOA and the comparison methods on D10.

a sorting operation on the data. It is noteworthy that the
significant advantage of the Friedman rank test lies in that it
is completely independent of the data distribution form. This
characteristic enables it to exhibit outstanding adaptability
and reliability in the face of various complex data types and
distribution situations, providing a more flexible and stable
approach for statistical analysis. The bar chart shown in

Figures 8 and 9 presents the results of the Friedman aligned
rank test and the Friedman rank test of CTBOA and the
comparative algorithms on D10 intuitively and clearly. The
results show that CTBOA ranks the highest among all the
tests and the p-values is much less than 0.05, it shows that
there is a remarkable discrepancy between CTBOA and other
methods.
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2) Wilcoxon signed rank test: Wilcoxon signed rank test
is a paired comparison method, it can be used to determine
which algorithm has better statistical performance when
comparing different benchmark functions. The outcomes of
Wilcoxon signed rank test for the algorithm in Table I
are shown in Table IV. ’R-’ and ’R+’ represent CTBOA
better and worse than the contrasting methods, separately.
’+/=/-’ indicates a win, draw, and loss for CTBOA against
the contrasting algorithm, correspondingly. From the Table
IV, CTBOA holds a prominent edge over the comparison
algorithms in relation to the majority of test functions.

G. Algorithm complexity analysis

To assess the complexity of the algorithm, in this part, I
calculate the algorithm complexity on D10 for the proposed
CTBOA and the comparison methods, and the corresponding
outcomes are shown in Table V.

Where, the parameters in Table V are explained as follows.
a) Run the test program ’x = 0.55; for i = 1 : 200000;x =
x + x;x = x/2;x = x ∗ x;x = sqrt(x);x = log(x);x =
x/(x + 2); end’ and get the running time T0, T0 of this
experiment platform is 0.003392; b) The computing time of

TABLE IV
THE WILCOXON SIGNED-RANK (AVERAGE) RESULTS OF

CTBOA AND CONTRASTING METHODS.

CTBOA vs. p-Value R+ R− +/=/-

BOA 1.74994167E-06 0.08333333 464.91666667 12/0/0
GGWO 5.65471491E-02 170.00000000 295.00000000 7/2/3
WPBOA 1.73440000E-06 0.00000000 465.00000000 12/0/0
EWOA 1.17102237E-02 188.50000000 276.50000000 7/1/4
GQPSO 2.52861667E-06 1.58333333 463.41666667 12/0/0
ESO 3.61273750E-02 210.08333333 254.91666667 5/3/4
mSCBOA 1.78262500E-06 0.25000000 464.75000000 12/0/0
MABOA 2.06917500E-06 1.00000000 464.00000000 12/0/0
HHO 7.51303148E-03 42.08333333 422.91666667 11/1/0

200000 FEs just for f1 is T1; c) The computing time for the
random solutions with 200000 FEs of the same dimensional
f1 gives T2; d) Perform step c) 5 times and get T̂2=mean(T2);
e) The algorithm complexity is calculated by (T̂2-T1)/T0.

As can be seen from the results in Table V, the algorithm
complexity of CTBOA is 115.243943, which is only slightly
higher than the original BOA, and has satisfactory algorithm
complexity.
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TABLE V
ALGORITHM COMPLEXITY OF CTBOA AND

CONTRASTING ALGORITHMS ON D10.

Algorithm T0 T1 T̂2 (T̂2-T1)/T0

BOA 0.00339170 0.92413660 1.30789602 113.14662853

HHO 0.00339170 0.89186150 1.22589752 98.48631070

MABOA 0.00339170 0.91764350 2.71866486 531.00845004

m SCBOA 0.00339170 0.91221620 1.20306344 85.75264322

WPBOA 0.00339170 1.16332550 1.41652848 74.65370758

GGWO 0.00339170 1.03759620 2.21619894 347.49616417

GQPSO 0.00339170 1.03457850 1.53427294 147.32860807

EWOA 0.00339170 1.04033160 1.73994614 206.27253000

ESO 0.00339170 1.08083430 1.44341154 106.90132972

CTBOA 0.00339170 0.90149650 1.29236938 115.24394257

H. Runtime analysis

The runtime of an algorithm measures whether the algo-
rithm can discover the optimal solution within a rational
time frame. In the process of solving all test functions in
the CEC2022 benchmark test set, the average running time

of the proposed CTBOA and the comparison algorithm is
depicted in Figure 10. As is evident from the figure, the
running time of CTBOA is completely acceptable compared
with other comparison methods.

V. APPLICATION RESULTS OF CTBOA TO PV MODELS

This section utilizes CTBOA to identify the parameters of
the 4 PV models.

A. PV model parameter settings

The parameter information of the 3 experimented PV cell
models (Case1-Case3) and 1 PV module model (Case4) are
presented in this subsection, as presented in Table VI.The
upper and lower bounds of the parameters to be identified in
the four test cases are shown in Table VII.

B. Experimental results and analysis of PV cells

Within this subsection, CTBOA and contrast methods are
utilized to identify the parameters of the 3 PV cells in Table
VI. To conveniently observe the experimental results, a index
of percentage improvement (IF ) has been adopted, it is
computed as per Eq.(20). IF is more than 0 indicating that
CTBOA is better than the corresponding contrast method.
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Fig. 10: Average running time of CTBOA and comparison methods on D10.

TABLE VI
PV MODELS INFORMATION.

Case Type Temperature Irradiance Modelling Ref.

Case1 R.T.C France 57mm 33.00 1000 SDM [37]

Case2 Amorphous Silicon 25.00 1000 DDM [38]

Case3 Flexible Dual Junction 26.85 1000 TDM [39]

Case4 Photowatt PWX500 25.00 1000 TDM [40]

The maximum number of calculations for all experiments
within this subsection, maximum number of calculations
(maxFEs), is set to 100000 and the other parameters remain
the same as those mentioned in Section IV. The parameter
identification outcomes are given in Tables VII, VIII and IX,
including the identification parameters corresponding to the
optimal solution, the minimum RMSE, the running time, and
the IF index.

IF =
minmethod −minCTBOA

minmethod
· 100% (20)

From Table VII, CTBOA is capable of recognizing the 5
parameters of the R.T.C France 57mm PV cell model built
in SDM with the highest accuracy and the shortest running
time. Also, the IF index confirms that CTBOA has the
smallest RMSE value. From Table VIII, the optimal RMSE
value of Amorphous Silicon aSi:H, a PV cell model based on
DDM identified by CTBOA, is 4.481564E-05, which is the
minimum value among all algorithms, and the running time
is slightly higher than the standard BOA, but still within the
acceptable range. From Table IX, the 9 unknown parameters
of the Flexible Dual Junction aSi with TDM identified by
the proposed algorithm have the minimum RMSE, in other
words, the highest parameter identification accuracy, and the
running time is second only to the standard BOA, lower than
other algorithms.

In summary, the proposed CTBOA has satisfactory per-
formance in identifying unknown parameters of PV cells.

C. Experimental results and analysis of PV module model

For this subsection, CTBOA and contrusting methods are
utilized to identify the PV module parameters determined by
the TDM (Case4), and the optimal parameters identification
results, corresponding RMSE values, IF indexes and running
times are shown in Table XI. From this, the proposed
CTBOA is capable of identifying the parameters of the PV
module modeled with TDM with the highest accuracy and
short runtime.

D. Average performance analysis

Within this subsection, the average performance of CT-
BOA is analyzed using the mean (Mean), standard deviation
(Std), optimum (Best),worst (Worst) and average ranking
(Rank) of the 4 PV model parameters identified in 30 runs,
the consequences are presented at Table XII. It is obvious,
CTBOA ranks first in the average RMSE value of the
identification parameters on PV models, and finally ranks
first in all test cases.

E. statistical analysis

Boxchart serve to show how discrete the data is. Figure
11 is the boxchart of the average RMSE obtained by the
algorithms in Table I through 30 tests on 4 PV test cases. The
’+’ represents outliers, the width of the box reflects the extent
of data fluctuation, and the central horizontal line indicates
the median of the data. It is observable from the boxchart
that CTBOA demonstrates remarkable accuracy in most test
cases and exhibits a relatively stable performance.
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TABLE VII
THE INFORMATION AND LIMITS OF PV MODELS.

Case Material Dimension Iph (A) Isd1 (A) Isd2 (A) Isd3 (A) Rs (Ω) Rp (Ω) n1 n1 n1

Case1 Silicon 5 [0,1] [1e-12,1e-6] / / [0.001,0.5] [0.001,100] [1,2] / /
Case2 Amorphous Silicon 7 [0,1] [1e-12,1e-6] [1e-12,1e-6] / [0.001,0.5] [0.001,100] [1,5] [1,5] /
Case3 Amorphous Silicon 9 [0,1] [1e-15,1e-6] [1e-15,1e-6] [1e-15,1e-6] [0.001,0.5] [0.001,100] [1,2] [1,2] [1,2]
Case4 Polycrystalline 9 [0,3.5] [1e-12,5e-5] [1e-12,5e-5] [1e-12,5e-5] [0.001,0.5] [0.001,1000] [1,2] [1,2] [1,2]

TABLE VIII
RESULTS OF PARAMETER IDENTIFICATION OF CTBOA AND COMPARISON METHODS FOR CASE1.

Method Iph (A) Isd1 (A) Rs (Ω) Rp (Ω) n1 RMSE IF (%) Time (s)

BOA 0.76222533 5.04953506E-07 0.03567444 68.21693417 1.52708912 2.51209681E-03 6.07490311E-01 2.72936130

GGWO 0.76067424 3.54008365E-07 0.03608943 59.83301632 1.49036350 1.02254763E-03 3.57198892E-02 4.30606570

WPBOA 0.76268538 9.43619873E-07 0.02830388 46.02972964 1.60022257 7.46748448E-03 8.67957899E-01 3.32919870

EWOA 0.76072997 3.32476626E-07 0.03630350 55.59820737 1.48405412 9.91111232E-04 5.13453347E-03 4.65686450

GQPSO 0.77390438 3.77238175E-07 0.03585747 20.56862571 1.49922633 8.91047885E-03 8.89341263E-01 5.03563260

ESO 0.76005452 9.99885109E-07 0.03113397 89.89996458 1.60484162 2.60717506E-03 6.21804322E-01 3.16263220

mSCBOA 0.78098269 7.85332054E-07 0.03410737 39.32611331 1.57070234 1.80152175E-02 9.45267253E-01 3.31036220

MABOA 0.77768499 4.86895057E-07 0.03849074 53.67321001 1.52330459 1.46420931E-02 9.32658375E-01 7.67321250

HHO 0.76167978 5.44760047E-07 0.03373696 52.13084769 1.53605123 1.69488206E-03 4.18235426E-01 3.88796190

CTBOA 0.76074566 3.33891498E-07 0.03624417 54.89722022 1.48451911 9.86022338E-04 0 2.54412220

TABLE IX
RESULTS OF PARAMETER IDENTIFICATION OF CTBOA AND COMPARISON METHODS FOR CASE2.

Method Iph (A) Isd1 (A) Isd2 (A) Rs (Ω) Rp (Ω) n1 n2 RMSE IF (%) Time (s)

BOA 0.01128024 2.55277893E-07 2.61741377E-07 0.27629536 571.45039349 3.22063018 3.26568830 6.77319056E-05 3.38337810E-01 2.37196030

GGWO 0.01135354 4.10998439E-07 3.87099951E-07 0.27378390 515.87726140 3.20585939 4.10616503 4.64562897E-05 3.53159657E-02 4.68668090

WPBOA 0.01145473 9.95691097E-07 2.07696731E-07 0.09305533 427.78206045 4.77681263 3.00449092 7.97073524E-05 4.37747716E-01 3.48311010

EWOA 0.01135615 1.00000000E-06 2.96920032E-08 0.50000000 524.98335609 3.69789773 2.70346956 4.49003358E-05 1.88628605E-03 4.47135580

GQPSO 0.01141012 3.50496844E-07 2.92714146E-07 0.20480178 419.24935945 3.18782850 3.74889388 1.17684471E-04 6.19188152E-01 3.69727650

ESO 0.01134233 5.49446685E-08 1.00000000E-06 0.20307256 531.95728960 2.85368818 3.69450427 4.51832168E-05 8.13523012E-03 3.58244990

mSCBOA 0.01126181 7.42047547E-07 7.42047547E-07 0.37076739 742.04754673 3.62108008 3.62108008 1.03918893E-04 5.68744051E-01 4.09462650

MABOA 0.01167576 4.50835181E-07 5.85178647E-07 0.27193681 400.02347324 3.44657126 4.22149177 8.66303422E-04 9.48267963E-01 7.70649750

HHO 0.01133591 2.80242408E-07 1.84551498E-07 0.46246683 511.71656231 3.08780026 3.73116616 5.80984226E-05 2.28625512E-01 3.77745900

CTBOA 0.01135510 1.04758715E-08 1.00000000E-06 0.50000000 527.02846195 2.53979120 3.62991062 4.48156409E-05 0 3.76499100

TABLE X
RESULTS OF PARAMETER IDENTIFICATION OF CTBOA AND COMPARISON METHODS FOR CASE3.

Method Iph (A) Isd1 (A) Isd2 (A) Isd3 (A) Rs (Ω) Rp (Ω) n1 n2 n3 RMSE IF (%) Time (s)

BOA 0.36298922 1.00000000E-15 1.00000000E-15 1.00000000E-15 0.02462644 64.94758749 1.48353350 1.49663708 1.50676359 1.98154423E+02 9.99922267E-01 2.37761660

GGWO 0.31938489 2.27819021E-14 6.74627016E-15 4.09824046E-15 0.42577491 14.71709070 1.99979848 1.99999998 1.99999991 1.54163179E-02 8.49009969E-04 4.23999240

WPBOA 0.21719273 1.00000000E-15 1.00000000E-15 1.00000000E-15 0.50000000 100.00000000 1.86351459 1.86351459 1.86351459 3.49867403E-02 5.59740943E-01 3.27955620

EWOA 0.32114700 1.00000000E-15 1.00000000E-15 1.00000000E-15 0.43874425 13.90599627 1.84979128 1.84979037 1.84978966 1.62321450E-02 5.10663061E-02 3.40365590

GQPSO 0.17461085 1.00000000E-15 1.00000000E-15 1.00000000E-15 0.05814366 59.28619631 1.80229632 1.95964592 2.00000000 4.85983435E-02 6.83050323E-01 3.94746620

ESO 0.31973805 2.67072457E-14 5.73931239E-15 1.03136191E-15 0.42276335 14.55389240 2.00000000 2.00000000 2.00000000 1.54032293E-02 1.65552525E-14 3.74726920

mSCBOA 0.51746707 7.39856563E-15 7.39856563E-15 7.39856563E-15 0.25562361 4.01888196 2.00000000 2.00000000 2.00000000 5.08006552E-02 6.96790735E-01 3.32514810

MABOA 0.25417640 1.10305259E-15 1.10305259E-15 1.10305259E-15 0.14716962 7.17849467 2.00000000 2.00000000 2.00000000 7.24153783E-02 7.87293394E-01 7.55774580

HHO 0.28818285 1.12043971E-15 1.12043971E-15 1.12047058E-15 0.46938956 26.77458280 1.85146794 1.85123709 1.85143844 1.82476898E-02 1.55880580E-01 3.28662260
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TABLE XI
RESULTS OF PARAMETER IDENTIFICATION OF CTBOA AND COMPARISON METHODS FOR CASE4.

Method Iph (A) Isd1 (A) Isd2 (A) Isd3 (A) Rs (Ω) Rp (Ω) n1 n2 n3 RMSE IF (%) Time (s)

BOA 2.23708590 5.60532154E-11 2.24565227E-10 1.00000000E-12 0.00694344 583.47512485 1.38784481 1.00000000 1.00000000 8.27449556E-01 9.83878817E-01 3.55739150

GGWO 3.20202408 1.70760001E-06 2.26208329E-06 4.17790350E-06 0.00309924 6.00769790 1.81436272 1.99357088 1.77641161 1.37681828E-02 3.11382224E-02 4.55318670

WPBOA 3.42916258 1.00000000E-12 2.88023975E-05 1.00000000E-12 0.00100000 1000.00000000 1.34510402 2.00000000 2.00000000 2.23320843E-01 9.40267707E-01 3.21789080

EWOA 3.21375794 3.78969483E-06 1.00000000E-12 1.00000000E-12 0.00394158 4.51104274 1.71800911 1.00000000 1.00000000 1.38488023E-02 3.67783598E-02 3.65322920

GQPSO 3.20473262 1.00000000E-12 1.00000000E-12 1.99376017E-10 0.01145236 2.14316227 1.00000000 1.00000000 1.00000000 6.89186963E-02 8.06446338E-01 3.67524750

ESO 3.20808606 5.75938237E-06 2.28228103E-06 1.00000000E-12 0.00298509 5.42829556 1.78276168 2.00000000 2.00000000 1.33430020E-02 2.65006210E-04 3.20870900

mSCBOA 3.15743273 2.41417680E-06 7.83790310E-07 9.52118655E-08 0.00829117 190.46295393 1.69824931 1.69824931 1.69824931 7.59706592E-02 8.24412922E-01 3.63372740

MABOA 3.50000000 4.70674072E-06 1.85328638E-06 2.81771935E-05 0.01094833 3.80363719 2.00000000 2.00000000 2.00000000 5.28194741E-01 9.74745174E-01 8.10735560

HHO 3.18369295 1.00195457E-12 1.00184386E-12 2.58824677E-05 0.00102578 19.20216801 1.90190459 1.99438894 1.99441764 1.74642468E-02 2.36184291E-01 3.41241020

CTBOA 3.20982132 1.42017955E-11 2.01307501E-06 5.10180342E-06 0.00316619 5.15449210 1.50733131 1.99947162 1.76518093 1.33394661E-02 0 3.35744390

TABLE XII
PERFORMANCE (AVERAGE) FOR PARAMETER IDENTIFICATION OF CTBOA AND COMPARISON METHODS ON 4 PV

MODELS.

Case Index BOA GGWO WPBOA EWOA GQPSO ESO mSCBOA MABOA HHO CTBOA

Case1 Mean 5.65048038E-02 1.81252543E-03 2.20188355E-02 1.12242396E-02 4.29637797E-02 3.56916665E-03 8.36704506E-02 9.27560943E-02 5.47467096E-03 1.09930417E-02

Std 5.59204292E-02 3.74846828E-04 7.55897568E-03 1.59053934E-02 1.68561155E-02 8.35863242E-04 8.44713808E-02 7.00015014E-02 5.18785404E-03 1.60440083E-02

Best 2.51209681E-03 1.02254763E-03 7.46748448E-03 9.86137904E-04 8.91047885E-03 2.50260029E-03 1.80152175E-02 1.46420931E-02 1.69488206E-03 9.88207738E-04

Worst 2.52928515E-01 2.40084191E-03 3.38498309E-02 3.71424719E-02 8.03843273E-02 5.81997726E-03 2.90419551E-01 2.48564320E-01 2.35999099E-02 3.71424719E-02

Rank 5 3 7 2 8 6 10 9 4 1

Case2 Mean 1.92344464E-03 4.92547671E-05 1.96638280E-04 6.69646140E-05 2.22825020E-04 8.55096893E-05 8.34961409E-04 2.36361899E-03 3.53863189E-04 4.98324649E-05

Std 2.17872957E-03 1.67600982E-06 7.97267685E-05 9.45454515E-05 5.39908454E-05 7.50733499E-05 1.41758459E-03 1.68393339E-03 2.78287427E-04 1.60755930E-05

Best 6.77319056E-05 4.64562897E-05 7.97073524E-05 4.48426596E-05 1.17684471E-04 4.48524021E-05 1.03918893E-04 8.66303422E-04 5.80984226E-05 4.48156409E-05

Worst 7.40516740E-03 5.41328311E-05 4.01492920E-04 5.63465667E-04 3.31497718E-04 4.34646212E-04 7.67570251E-03 8.67196649E-03 8.82294314E-04 1.33435761E-04

Rank 6 4 7 2 9 3 8 10 5 1

Case3 Mean 5.69393258E+06 1.60484426E-02 4.65010019E+01 4.64113687E-02 2.05748590E+06 1.84224593E-02 5.78068712E+00 9.30258526E+05 2.53803382E-02 1.93675271E-02

Std 3.78995542E+06 2.17758701E-03 2.53911443E+02 5.24390225E-02 7.37442477E+06 3.58042103E-03 6.33933735E+00 8.64577958E+05 6.03220269E-03 3.69783152E-03

Best 1.98154423E+02 1.54163179E-02 3.49867403E-02 1.54032293E-02 4.85983435E-02 1.54032498E-02 5.08006552E-02 7.24153783E-02 1.82476898E-02 1.54032293E-02

Worst 1.22473853E+07 2.46390303E-02 1.39087357E+03 1.48929810E-01 3.74813921E+07 2.95267179E-02 1.75011745E+01 2.80946826E+06 4.26725341E-02 3.17425063E-02

Rank 10 3 6 4 7 2 8 9 5 1

Case4 Mean 2.39543000E+00 1.91563614E-02 5.77534659E-01 1.72361293E-02 3.84990144E-01 1.85029417E-02 2.03351445E+00 6.37815697E+00 2.91131688E-02 1.70203922E-02

Std 4.52478425E-01 1.83603874E-03 2.64057440E-01 2.25351959E-03 2.91322346E-01 4.91562203E-03 9.61903947E-01 9.10457270E+00 1.09404677E-02 3.01617857E-03

Best 8.27449556E-01 1.37681828E-02 2.23320843E-01 1.55648603E-02 6.89186963E-02 1.33311247E-02 7.59706592E-02 5.28194741E-01 1.74642468E-02 1.33394661E-02

Worst 2.69585119E+00 2.19754695E-02 1.03185117E+00 2.15449450E-02 7.32225506E-01 3.92746495E-02 2.90252416E+00 4.61405099E+01 5.27337839E-02 2.29330673E-02

Rank 10 3 8 4 6 2 7 9 5 1

Total rank 31 13 28 12 30 13 33 37 19 4

Final rank 9 4 6 2 7 3 8 10 5 1

VI. CONCLUSION

To identify the parameters of PV cell and module models,
a butterfly optimization algorithm with improved fragrance
factor, chaotic learning strategy and final elimination strategy
is proposed in this paper. Firstly, a novel fragrance factor
is used to increase the speed of convergence. Secondly, a
chaotic learning strategy is utilized to improve the conver-
gence accuracy of the problem. Finally a final elimination
strategy is used to improve the diversity of the population.

Statistical results from CEC2022 benchmark test set vali-
date the superiority of CTBOA over 9 comparison methods.

Then, CTBOA is applied to identify the parameters of 3 PV
cells and 1 module model, the results show that the proposed
method has satisfactory parameter identification accuracy and
runtime. However, CTBOA in this paper is only used to solve
single-objective optimization problems, and its optimization
ability for multi-objective problems is unknown. As future
work, I will consider further optimizing the algorithm and
applying it to multi-objective optimization problems.
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Fig. 11: Boxcharts of 4 PV models cases.
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