
Optimal Design of Digital Analysis Filters Based
on PSO-BPNN for Aliasing Errors Cancellation in

HFB DAC
Yan Wang, Shengjian Liu, Xing Yang, Weiyuan Zhang, Jiansheng Yang, and Jiyao Yang

Abstract—To cancel the aliasing errors introduced by the
non-ideal characteristics of analog filters and mixers, this paper
proposes a method that combines particle swarm optimization
(PSO) with back propagation neural networks (BPNN) for
designing digital analysis filters in hybrid filter bank digital-
to-analog converter (HFB DAC). A mathematical model for
the HFB DAC is initially established to derive both its desired
and practical transfer functions, facilitating the calculation of
the estimation error between them. Next, the approximation
error is derived from both the real and imaginary components
of the estimation error. A BPNN method is then proposed to
minimize the approximation error. To reduce the computational
complexity of the traditional BPNN design, we also proposed
a PSO algorithm for optimizing all the sub-filter orders, the
number of the BPNN hidden layer neurons and the iterations
of the BPNN, enabling that the given upper limit errors (upper
limits of distortion and aliasing errors) is met. Finally, these
optimized parameters are applied to the BPNN method, thereby
deriving the optimal coefficients for digital analysis filters.
Additionally, this paper derives the computational complexity of
PSO-BPNN. Several design examples indicate that, comparing
with the other four designs, our proposed PSO-BPNN design not
only achieves better aliasing errors cancellation but also reduces
all the sub-filter orders, the number of the BPNN hidden layer
neurons and the iterations of the BPNN.

Index Terms—HFB DAC, aliasing errors cancellation, digital
analysis filters, PSO-BPNN.

I. INTRODUCTION

AS modern communication systems continue to evolve,
the signal bandwidth required for systems is steadily

increasing [1]. Digital sampling technology is usually used
to generate the wideband signal required by modern commu-
nication systems [2]. The digital-to-analog converter (DAC)
is a key element in digital sampling technology, designed
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to produce wideband signals [3]. However, the wideband
signal’s bandwidth is limited by the DAC’s sampling rate
[4].

The DAC’s sampling rate can be increased through fab-
rication processes [5], [6], [7]. Whereas, it can be known
from Nyquist theorem [8], the bandwidth of the wideband
signal should not exceed half the sampling rate of the DAC.
To avoid the limitations imposed by the Nyquist theorem,
time-interleaved DAC (TI-DAC) [9], [10]has been proposed
to indirectly enhance the sampling rate of the sub-DAC. In
spite of this, the bandwidth of the wideband signal remains
limited by the zero-order hold (ZOH) characteristic of the
sub-DAC, which cannot exceed the sampling rate of the sub-
DAC [11].

To overcome the bandwidth limitations caused by the ZOH
characteristic of the sub-DAC, a hybrid filter bank DAC is
introduced [12], [13], [14]. Fig.1 demonstrates the architec-
ture of an HFB DAC with M sub-DACs. As demonstrate in
Fig.1 and based on the principles of the HFB DAC [15],
[16], [17], the HFB DAC output bandwidth is M times
the sub-DAC output bandwidth. Nonetheless, several system
errors are propose in HFB DAC, such as the aliasing errors
introduced by the non-ideal characteristics of the analog
filters and mixers. These aliasing errors result in distortion
within the wideband signal generated by the HFB DAC [18],
[19].

To cancel the aliasing errors in HFB DAC system, X.
Yang et al. proposed an optimal design of digital analysis
filters based on weighted least squares (WLS) design [20].
Similarly, L. Yin et al. proposed an optimal design of digital
analysis filters based on WLS+Optimization design [21].
The aim is to determine the optimal coefficients for digital
analysis filters by minimizing the estimation error between
the desired and practical transfer functions, thereby achieving
the aliasing errors cancellation.

Machine learning constitutes a central area of research,
primarily aimed at minimizing the error between the desired
and practical values in specific applications [22], [23], [24],
[25], [26]. For instance, X. Ye et al. proposed a method
for analyzing theoretical line losses in distribution networks
using back propagation neural networks (BPNN) [27]. This
method aims with the aim of minimizing the error between
the desired and practical theoretical line loss of the distribu-
tion network. L. Jiang et al. proposed a neural network-based
method to suppress vibrations in flexible joint space robots,
aim of minimizing the error between the desired and practical
trajectories [28]. While these aforementioned papers do not
discuss how to use machine learning methods for the design
of digital analysis filters, they provide valuable references for
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Fig. 1: Architecture of the HFB DAC

research on this topic.
Currently, only a few researchers have investigated the

optimal design of digital analysis filters using machine
learning methods. Among them, C.-C. Tseng et al. proposed
a traditional neural network (TNN) method for the design
of digital analysis filters, minimizing the estimation error
between the desired and practical amplitude responses [29].
Additionally, J. Yang et al. proposed a BPNN method for the
design of digital analysis filters, minimizing the estimation
error between the desired and practical amplitude responses
[30]. None of the extant papers address how to achieve the
aliasing errors cancellation in HFB DAC through the design
of digital analysis filters using machine learning methods.
However, these papers remain important references for this
topic.

This paper seeks to present an optimal design of digital
analysis filters based on PSO-BPNN for aliasing errors
cancellation in HFB DAC. First, we develop a mathematical
model of the HFB DAC to calculate the estimation error
between the desired and practical transfer functions. Then, by
summing the real and imaginary components of estimation
error, we derive the approximation error, BPNN is proposed
to minimize the approximation error. To reduce the compu-
tational complexity of the traditional BPNN design, we also
proposed a PSO algorithm [31] for optimizing all the sub-
filter orders, the number of the BPNN hidden layer neurons
and the iterations of the BPNN, enabling that the given
upper limit errors (upper limits of distortion and aliasing
errors) is met. Finally, the optimized all the sub-filter orders,
the number of the BPNN hidden layer neurons and the
iterations of the BPNN are applied to the BPNN method to
derive the optimal coefficients for the digital analysis filters.
Additionally, this paper derives the computational complexity
of PSO-BPNN.

The key contributions outlined in this paper are as follows:

1) Within the context of HFB DAC applications, we pro-
pose an optimal design of digital analysis filters using
PSO-BPNN to achieve the aliasing errors cancellation.

2) To reduce the computational complexity of the tra-
ditional BPNN design, we also proposed a PSO al-
gorithm for optimizing all the sub-filter orders, the
number of the BPNN hidden layer neurons and the
iterations of the BPNN, enabling that the given upper
limit errors (upper limits of distortion and aliasing

errors) is met.
3) This paper compares and analyzes the effectiveness and

computational complexity of digital analysis filters de-
signed using various methods, including WLS, WLS-
Optimization, TNN, BPNN, and PSO-BPNN.

4) Simulation results indicate that, comparing with the
other four designs, our proposed PSO-BPNN design
not only achieves better aliasing errors cancellation but
also reduces all the sub-filter orders, the number of the
BPNN hidden layer neurons and the iterations of the
BPNN.

The organization of the subsequent sections of this paper is
as follows: Section II outlines the derivation of the estimation
error. Section III proposes the optimal design based on
a BPNN, focusing on minimizing the approximation error
using PSO-BPNN. Section IV derives the computational
complexity of PSO-BPNN. In Section V, three experiments
are conducted, analyzed in depth, and discussed in detail.
Ultimately, conclusions are summarized in Section VI.

II. ESTIMATION ERROR

Fig.1 demonstrates the system block diagram of an M -
channel HFB DAC. The desired transfer function can be
written as [20]

Di(jΩ) =

{
ce−jΩTsd, i = 0
0, i ̸= 0

Ω ∈ (− π

Ts
,
π

Ts
) (1)

where c represents the system delay and d denotes the gain
in the HFB DAC system. Furthermore, as demonstrated in
[20], when the analog filters and mixers in the HFB DAC are
non-ideal, the practical transfer function of the M -channel
HFB DAC can be expressed as:

Ti(jΩ) =
1

2MTs

M−1∑
m=0

Fm(ejΩTs−j 2πi
M )Gm(jΩ)

× [HZOH(jΩ− jΩm)Hlpfm(jΩ− jΩm)

+HZOH(jΩ+ jΩm)Hlpfm(jΩ+ jΩm)]

(2)

where Ωm = ⌈m/2⌉ 2πfs/M and ⌈•⌉ represents the ceiling
function. HZOH(jΩ) represents the sample-and-hold char-
acter of the DAC, while Hlpfm(jΩ) is the anti-imaging
low-pass filter that follows the DAC. T0(jΩ) denotes the
distortion function, representing the magnitude gain and
group delay of the HFB DAC with M sub-DACs. Ti(jΩ), i =
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Fig. 2: BPNN model architecture diagram

1, 2, ...,M − 1 represents the aliasing functions, which are
shifted, unwanted versions of the digital wideband input that
should ideally be removed. The practical transfer function in
Eq. (2) can be redefined as demonstrated in [20]:

Ti(jΩ) =
M−1∑
m=0

fTmri,m(jΩ)− j
M−1∑
m=0

fTmii,m(jΩ)

= rTi (Ω)f − jiTi (Ω)f

= Re {Ti(jΩ)} − jIm {Ti(jΩ)}

(3)

where Im {•} and Re {•} are the imaginary
and real components of a vector or complex
number, respectively. f = [fT0 , fT1 , .., fTM−1]

T with
fm = [fm (0) , fm (1) , ..., fm (Nm − 1)]. Here, Nm

represents the order of the m-th digital analysis
filter Fm(z). fm(•) represents the coefficient of
Fm(z), which needs to be determined. Further,
ri(Ω) = [rTi,0(Ω), r

T
i,1(Ω), ..., r

T
i,M−1(Ω)]

T and
ii(Ω) = [iTi,0(Ω), i

T
i,1(Ω), ..., i

T
i,M−1(Ω)]

T with

ri,m(Ω)=
1

2MTs
ci(Ω)Gm(jΩ)

×[HZOH(jΩ−jΩm)Hlpfm(jΩ− jΩm)

+HZOH(jΩ+jΩm)Hlpfm(jΩ+ jΩm)]

ii,m(Ω)=
1

2MTs
si(Ω)Gm(jΩ)

×[HZOH(jΩ−jΩm)Hlpfm(jΩ− jΩm)

+HZOH(jΩ+jΩm)Hlpfm(jΩ+ jΩm)]

where

ci(Ω)=[1, cos(ΩTs−
2πi

M
), ..., cos(Nm−1)(ΩTs−

2πi

M
)]T

si(Ω)=[0, sin(ΩTs−
2πi

M
), ..., sin(Nm−1)(ΩTs−

2πi

M
)]T

The estimation error can be calculated using Eq. (1) and
Eq. (2) as follows:

ei(Ω) = Ti(jΩ)−Di(jΩ)

=
(
rTi (Ω)f −Ri(Ω)

)
− j

(
iTi (Ω)f − Ii(Ω)

)
= Re {ei(Ω)} − jIm {ei(Ω)}

(4)

where, Ri (Ω)=Re {Di(jΩ)} , Ii (Ω)=Im {Di(jΩ)}.
To cancel the aliasing errors, it is necessary to ensure that

the estimation error ei(Ω), i = 0, 1, ...,M − 1 approaches
zero.

III. APPROXIMATION ERROR MINIMIZATION BASED ON
PSO-BPNN

A. Optimal design of digital analysis filters based on BPNN

Taking into account the output signal y(t) at K discrete
frequency points within the frequency range (−π/Ts, π/Ts),
Eq. (4) can also be written as:

ei(Ωk)=Ti(jΩk)−Di(jΩk)

=
(
rTi (Ωk)f−Ri(Ωk)

)
−j

(
iTi (Ωk)f−Ii(Ωk)

)
=Re {ei(Ωk)}−jIm {ei(Ωk)}

(5)

Since the BPNN model struggles with complex number,
Eq. (5) can be rewritten as:

Ei(Ωk)=
(
rTi (Ωk)f−Ri(Ωk)

)
+
(
iTi (Ωk)f−Ii(Ωk)

)
=Re{ei(Ωk)}+Im{ei(Ωk)}
=Γi(Ωk)−Ii(Ωk)

(6)

where Ei(Ωk) is approximation error, with

Γi(Ωk)=Re{Ti(jΩk)}+Im{Ti(jΩk)}

Ii(Ωk) = Re{Di(jΩk)}+ Im{Di(jΩk)}

Based on Eq. (6), minimizing Ei(Ωk) is essential to derive
the optimal coefficient vector f . The architecture of the
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BPNN model is demonstrated in Fig. 2. The inputs to the
BPNN model are:

vi (Ωk)=
[
[Gi,0]k, [Gi,1]k,..., [Gi,M−1]k

]T
where

[Gi,m]k =
[
[Gi,m]k,0, [Gi,m]k,1, ..., [Gi,m]k,Nm−1

]T

[Gi,m]k,Nm−1 =
1

2MTs
Gm(jΩk)

× (cos(Nm − 1)(ΩTs −
2πi

M
)

+ sin(Nm − 1)(ΩTs −
2πi

M
))

×[HZOH(jΩ−jΩm)Hlpfm(jΩ− jΩm)

+HZOH(jΩ+jΩm)Hlpfm(jΩ+ jΩm)]

The input and output for the h-th neuron in the first hidden
layer are as follows:

µNm−1
h =

M−1∑
m=0

[Gi,m]k,Nm−1.w
ik
(Nm−1)h (7)

and
b1h=f(µNm−1

h −λNm−1
h ) (8)

Here, wik
(Nm−1)h denotes the weight linking the input layer

to the h-th neuron in the first hidden layer. λ(Nm−1)
h denotes

the threshold of the first hidden layer, and f(•) denotes the
linear activation function. The input and output of the l-th
neuron in the second hidden layer are as follows:

ζNm−1
l =

H∑
h=1

b1h.w
ik
(Nm−1)l (9)

and
b2l =f(ζNm−1

l −αNm−1
l ) (10)

Here, wik
(Nm−1)l denotes the weight linking the h-th neuron in

the first hidden layer to the l-th neuron in the second hidden
layer. αNm−1

l denotes the threshold of the second hidden
layer. The inputs and outputs of the output layer Γi(Ωk) are
as follows:

θNm−1
k =

L∑
l=1

b2lw
ik
l (11)

and
Γi(Ωk)=f(θNm−1

k −∂Nm−1
k ) (12)

Here, wik
l denotes the weight linking the l-th neuron in the

second hidden layer to the output layer. ∂Nm−1
k denotes the

threshold of the output layer. Thus, the trained BPNN model
predicts the actual output as Γi(Ωk) based on the input data.

Using the approximation error as the performance mea-
sure the practical and desired output Ii(Ωk), which can be
described as:

J=
1

2

K−1∑
k=0

(Ei(Ωk))
2 (13)

Algorithm 1 Pseudo-code of PSO-BPNN

1: Set U, H, L, tmax
PSO , tBP, and Tmax

0 (jΩ), Tmax
1 (jΩ),

Tmax
2 (jΩ),..., Tmax

M−1(jΩ).
2: Initialize each particle randomly.
3: Generate N, H , L, and tBP from U, H, L, tBP.
4: Calculate particle individual fitness values based on the

initial BPNN model.
5: Evaluate each particle to get the global optimal.
6: Update the velocity vu(t) and position xu(t) of the

particle according to Eq. (15) and Eq. (16).
7: Update group global optimal position gBest.
8: Update the individual optimal position of each particle

pBestu.
9: tPSO = tPSO + 1

10: if tPSO < tmax
PSO then

11: Generate N, H , L, and tBP from U, H, L, tBP.
12: else
13: Derive the optimal N, H , L, and tBP.
14: end if
15: Construct the optimized BPNN model using the optimal

N, H , L, and tBP.
16: Train the optimized BPNN model using the optimal N,

H , L, and tBP.
17: tBP = tBP + 1
18: if tBP < tmax

BP then
19: Train the optimized BPNN model using the optimal

N, H , L, and tBP.
20: else
21: Derive the coefficient vector f .
22: end if
23: if Ti(jΩ) < Tmax

i (jΩ) then
24: f is the required coefficient vector.
25: else
26: Set U, H, L, tmax

PSO , tBP, and Tmax
i (jΩ).

27: end if

To minimize the approximation error Ei(Ωk), wik
(Nm−1)h,

wik
(Nm−1)l, w

ik
l , λNm−1

h , αNm−1
l , ∂Nm−1

k should be updated
as 

∆wik
(Nm−1)h + wik

(Nm−1)h → wik
(Nm−1)h

∆wik
(Nm−1)l + wik

(Nm−1)l → wik
(Nm−1)h

∆wik
l + wik

l → wik
l

∆λNm−1
h + λNm−1

h → λNm−1
h

∆αNm−1
l + αNm−1

l → αNm−1
l

∆∂Nm−1
k + ∂Nm−1

k → ∂Nm−1
k

(14)

with
∆wik

l =− η
∂J

∂Ei(Ωk)

∂Ei(Ωk)

∂Γi(Ωk)

∂Γi(Ωk)

∂wik
l

∆wik
(Nm−1)l = −η

∂J

∂b2l

∂b2l
∂wik

(Nm−1)l

∆wik
(Nm−1)h = −η

∂J

∂b1h

∂b1h
∂wik

(Nm−1)h

∆λNm−1
h = −η

∂J

∂Γi (Ωk)

∂Γi (Ωk)

∂λNm−1
h

∆αNm−1
l = −η

∂J

∂Γi (Ωk)

∂Γi (Ωk)

∂αNm−1
l
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Fig. 3: Parameters optimization flowchart by PSO-BPNN.

∆∂Nm−1
k = −η

∂J

∂Γi (Ωk)

∂Γi (Ωk)

∂∂Nm−1
k

The BPNN iterations are when the maximum number is
fulfilled, thus, the coefficients of the digital analysis filters
are derived.

B. PSO-BPNN

The PSO algorithm is a population-driven optimization
method that leverages swarm intelligence to emulate the
foraging dynamics of bird flocks in search of an optimal
solution. Each particle represents a potential solution and
navigates the search space using both individual and global
best experiences. The PSO algorithm, the velocity and po-
sition of each particle are updated iteratively he following
equations:

vu(t+ 1) =ωvu(t) + c1r1 (pBestu − xu (t))

+ c2r2 (gBest− xu (t))
(15)

xu (t+ 1) = xu (t) + vu (t+ 1) (16)

Here, vu(t) denotes the velocity of particle u at time t,
xu(t) denotes its position, pBestu denotes the individual
best position, and gBest denotes the global best position.
The parameters ω denotes the inertia weight, c1 and c2 are
the learning rate, r1 and r2 are random values in the range [0,
1]. The PSO method progressively moves toward the global
optimum in the search space by applying iterative updates.

Consider the two-dimensional position vector of the par-
ticles as the optimal solution. Set the maximum iterations of
the PSO as tmax

PSO and the number of particles in the swarm
as ϕ. Fig. 3 demonstrates the flowchart of optimizing all
the sub-filter orders, the number of the BPNN first hidden
layer neurons, the number of the BPNN second hidden layer
neurons and the iterations of the BPNN based on the PSO
algorithm.

1) Set the range for all the sub-filter orders U, the
range for the number of the BPNN first hidden layer
neurons H, the range for the number of the BPNN
second hidden layer neurons L, the range for the
iterations of the BPNN tBP, and the iterations of the
PSO algorithm tmax

PSO . The given upper limit errors
Tmax
0 (jΩ), Tmax

1 (jΩ), Tmax
2 (jΩ),..., Tmax

M−1(jΩ) in dB
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are the given upper limits for the maximum absolute
values of the distortion error {T0(jΩ)} and the aliasing
errors {T1(jΩ), T2(jΩ), ..., TM−1(jΩ)}.

2) Randomly initialize each particle.
3) Generating all the sub-filter orders N =

[N0, N1, ..., NM−1], the number of the BPNN
first hidden layer neurons H , the number of the
BPNN second hidden layer neurons L and the
iterations of the BPNN tBP in step 1, respectively.

4) Building the initial BPNN model using these parame-
ters generated from step 3.

5) Update the velocity vu(t) and position xu(t) of the
particle according to Eq. (15) and Eq. (16).

6) Update the group global optimal position gBest.
7) Update the individual optimal position pBestu of each

particle.
8) Increment the iterations of the PSO tPSO, if tPSO <

tmax
PSO , generate N = [N0, N1, ..., NM−1], H , L, and
tBP from U, H, L, tBP, otherwise derive the optimal
parameters N H,L, tBP.

9) Construct and train the optimized BPNN model using
the optimal parameters, increment tBP, if tBP < tmax

BP ,
train the optimized BPNN model using the optimal N,
H , L, and tBP, otherwise derive the coefficient vector
f .

10) If Eq. (17) is satisfied simultaneously, f is the re-
quired optimal coefficient vector, otherwise, set U, H,
L, tmax

PSO , tBP, and Tmax
0 (jΩ), Tmax

1 (jΩ), Tmax
2 (jΩ),...,

Tmax
M−1(jΩ).

T0 (jΩ) < Tmax
0 (jΩ)

T1 (jΩ) < Tmax
1 (jΩ)

T2 (jΩ) < Tmax
2 (jΩ)

...
TM−1 (jΩ) < Tmax

M−1 (jΩ)

(17)

The effective number of bits (ENOB) is employed to
assess the effectiveness of each sub-DAC in the HFB DAC,
and the desired ENOB is computed using the following
equation:

SNR = (6.02ENOBbit + 1.76)dB (18)

IV. DERIVATION OF COMPUTATIONAL COMPLEXITY

This section derives the PSO-BPNN computational com-
plexity. In Part C of Section III, we use PSO to optimize all
the sub-filter orders, the number of the BPNN first hidden
layer neurons, the number of the BPNN second hidden layer
neurons, as well as the iterations of the BPNN, and then ap-
ply the optimized parameters to the BPNN model. Thus, the
computational complexity of the BPNN model is calculated
as follows: During forward propagation, data moves from the
input layer to the output layer, undergoing a series of linear
transformations and linear activation functions. The steps are
as follows:

1) Each input neuron is multiplied by its correspond-
ing weight to feed into the first hidden layer, doing

(K
M−1∑
m=0

Nm)2MH multiplications with a computa-

tional complexity of O((K
M−1∑
m=0

Nm)2MH).
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Fig. 4: Loss curves for PSO-BPNN.

2) The computational complexity of the activation func-
tion of all neurons in the first hidden layer is O(H).

3) Each neuron in the first hidden layer is multiplied
by its corresponding weight and passed as input to
the second hidden layer, doing M2KL multiplications
with a computational complexity of O(M2KL).

4) The computational complexity of the activation func-
tion for all neurons in the second hidden layer is O(L).

5) Each neuron in the second hidden layer is multiplied
by its corresponding weight connected to the input of
the output layer, doing LMK multiplications with a
computational complexity of O(LMK).

6) The computational complexity of the activation func-
tion for the output layer is O(MK).

Thus, the overall computational complexity of the forward
propagation is:

O((K
M−1∑
m=0

Nm)2MH+MKL(1+M)+H+L+MK) (19)

During back propagation, the algorithm computes the gra-
dient of the loss function concerning the network parameters,
allowing it to update the weights and thresholds. The steps
are as follows:

1) The weight update the output layer and the second
hidden layer, doing 3MKL multiplications with a
computational complexity of O(3MKL).

2) The threshold update of the neurons in the output layer,
doing 2MKL multiplications with a computational
complexity of O(2MKL).

3) The weight update the second hidden layer and the
first hidden layer, doing 2MKHL multiplication with
a computational complexity of O(2MKHL).

4) The threshold update of the neurons in the second
hidden layer, doing 2MKHL multiplications with a
computational complexity of O(2MKHL).

5) The weight update the first hidden layer and the

input layer, doing 2
M−1∑
m=0

NmKH multiplication with

a computational complexity of O(2
M−1∑
m=0

NmKH).

6) The threshold update of the neurons in the first hid-

den layer, doing 2
M−1∑
m=0

NmKH multiplications with a
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Fig. 5: The frequency response results from five different optimal designs. (a) Distortion function T0(jΩ) response; (b)
Aliasing function Ti(jΩ) response.

computational complexity of O(2
M−1∑
m=0

NmKH).

Thus, the overall computational complexity of back prop-
agation is:

O(MK(5L+4HL)+4K
M−1∑
m=0

NmH) (20)

In summary, the total computational complexity of PSO-
BPNN is:

O((
tmax

BP∑
p=1

Ndp(K
M−1∑
m=0

Nm)

2

MH +MKL(1 +M) +H

+L+MK +MK(5L+ 4HL) + 4K
M−1∑
m=0

NmH)

(21)

where tmax
BP represents the iterations of the BPNN, respec-

tively. M,K,H and L are the number of channels, the
number of discrete frequency points, the number of the
BPNN first hidden layer neurons, the number of the BPNN
second hidden layer neurons, respectively.

V. TEST VALIDATION AND ANALYSIS

Several HFB DAC design examples are employed to
validate the effectiveness of our proposed an optimal design
of digital analysis filters based on PSO-BPNN. The system
gain is set to c = 1, with a delay parameter of d = 30.
Additionally, the number of discrete frequency points for
the digital analysis filters is set to K = 100. The relevant
parameters of PSO-BPNN are set as follows: tmax

PSO = 30,
ϕ = 30. Further, U=[1,59], H=[1,63], L=[1,31], tBP=[1,99].
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TABLE I: SUMMARY OF FIVE DIFFERENT OPTIMAL DESIGN PARAMETERS COMPARISON

Method Maximum Maximum Computational Sub-filter Digital analysis
H L Iterationsdistortion error aliasing error complexity O(•) orders (N) filters length

WLS+Optimization [21] 0.0322dB −60.16dB 2.30× 109 [60, 60, 60, 60] 240 - - -
WLS [20] 0.0396dB −63.12dB 2.30× 107 [60, 60, 60, 60] 240 - - -
TNN [29] 0.0904dB −26.60dB 5.82× 108 [60, 60, 60, 60] 240 - - -

BPNN [30] 0.0290dB −87.94dB 1.25× 1013 [60, 60, 60, 60] 240 64 32 100
PSO-BPNN 0.0118dB −92.91dB 9.60× 1011 [18,25,13,9] 65 41 14 31

TABLE II: SUMMARY OF FIVE DIFFERENT OPTIMAL DESIGN MSE COMPARISON

Method MSE0 MSE1 MSE2 MSE3

WLS+Optimization [21] 2.90× 10−4 4.93× 10−6 4.79× 10−7 2.26× 10−6

WLS [20] 1.45× 10−5 1.29× 10−6 4.40× 10−6 4.50× 10−6

TNN [29] 9.25× 10−5 3.02× 10−4 1.27× 10−6 4.82× 10−5

BPNN [30] 3.00× 10−6 3.78× 10−9 6.86× 10−9 6.17× 10−7

PSO-BPNN 5.08× 10−7 5.36× 10−10 6.52× 10−11 1.08× 10−10

TABLE III: COMPARING WITH THE SUB-FILTER ORDERS OF M-CHANNELS FOR FIVE DIFFERENT OPTIMAL
DESIGNSf

Method M=2 M=4 M=6 M=8

WLS+Optimization [21] [60, 60] [60, 60, 60, 60] [60, 60, 60, 60, 60, 60] [60, 60, 60, 60, 60, 60, 60, 60]
WLS [20] [60, 60] [60, 60, 60, 60] [60, 60, 60, 60, 60, 60] [60, 60, 60, 60, 60, 60, 60, 60]
TNN [29] [60, 60] [60, 60, 60, 60] [60, 60, 60, 60, 60, 60] [60, 60, 60, 60, 60, 60, 60, 60]

BPNN [30] [60, 60] [60, 60, 60, 60] [60, 60, 60, 60, 60, 60] [60, 60, 60, 60, 60, 60, 60, 60]
PSO-BPNN [24, 19] [18, 25, 13, 9] [16, 19, 14, 17, 20, 21] [17, 24, 29, 19, 15, 18, 31, 23]

We opted to utilize second-order Butterworth filters as the
analog LPFs and BPFs.

A. Effectiveness analysis

To validate the effectiveness of our proposed PSO-BPNN,
the sampling rate fs and the number of sub-channels M are
set to fs = 1/Ts and M = 4, respectively. ENOBbit is
set to 14 so that the desired SNR of our HFB DAC design
examples is 14 × 6.02 +1.76= 86.04dB. Further, the order
of each digital analysis filter designed by the design using
traditional BPNN is set to 60, i.e., N = 60.

According to the simulation results in [30], the given
upper limit errors as Tmax

0 (jΩ)=0.0290dB, Tmax
1 (jΩ)=-

87.94dB, Tmax
2 (jΩ)=-89.44dB, Tmax

3 (jΩ)=-88.29dB. respec-
tively. Fig.4 demonstrates the root-mean-square error
(RMSE) loss curve of PSO-BPNN, demonstrating clear con-
vergence.

Fig. 5 and Table I propose the frequency responses of the
five different optimal designs in this HFB DAC example.
As demonstrated in Table I, the maximum distortion error
in the proposed PSO-BPNN optimal design is approximately
0.0118 dB, outperforming the other four optimal designs. As
demonstrated in Fig. 5(b) and Table I, the aliasing errors of
our proposed PSO-BPNN design is -92.91 dB, respectively.
In contrast, the maximum aliasing errors of the optimal
designs based on WLS [20], WLS + Optimization [21], TNN
[29], and BPNN [30] designs are -63.12 dB, -60.16 dB, -
26.60 dB, and -87.94 dB, respectively.

It can also be seen from Table I that the total number
of digital analysis filters length, the number of the BPNN
first hidden layer neurons, the number of the BPNN second
hidden layer neurons and the iterations of the BPNN required

for our proposed PSO-BPNN design, comparing with the
traditional BPNN design, are 65, 41, 14, and 31. Thus,
comparing with the traditional BPNN design, our proposed
PSO-BPNN reduces the total number of digital analysis
filters length, the number of the BPNN first hidden layer
neurons, the number of the BPNN second hidden layer
neurons and the iterations of the BPNN by about 72.92%,
35.94%, 56.25% and 69%, respectively. Following optimiz-
ing all the sub-filters using the PSO, all the sub-filter orders
were optimized to N=[N0, N1, N2, N3]=[18, 25, 13, 9].

In summary, comparing with the traditional BPNN design
[30], our proposed PSO-BPNN not only achieves better
aliasing errors cancellation but also reduces the computa-
tional complexity. Comparing with the WLS [20], WLS +
Optimization [21], and TNN [29] designs, our proposed
PSO-BPNN achieves better aliasing errors cancellation, at
the cost of increased computational complexity.

B. Mean squared error analysis

The effectiveness analysis in this paper could also be an
MSE analysis. The MSE equation is as follows:

MSEi =
1

K

K−1∑
k=0

(Γi(Ωk)− Ii(Ωk))
2
, i = 0, 1, 2, 3 (22)

Here, MSE0 is the MSE of the distortion function and
MSE1,MSE2,MSE3 denotes the MSE of the aliasing
function.

As can be seen from Table II, the MSE0,MSE1,MSE2

and MSE3 of PSO-BPNN are 5.08 × 10−7, 5.36 × 10−10,
6.52×10−11 and 1.08×10−10, respectively. Compared with
the MSE of the WLS [20], WLS+Optimisation [21], TNN
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Fig. 6: Computational complexity comparative analysis of
different optimal designs with different number of sub-
channels when N = 60.

[29], and BPNN [30] based designs, the optimal design MSE
based on PSO-BPNN proposed in this paper is significantly
lower.

C. Computational complexity analysis

Fig. 6 demonstrates a comparison of computational com-
plexity among the optimal design digital analysis filters based
on WLS [20], WLS+Optimization [21], TNN [29], BPNN
[30] designs, and we proposed PSO-BPNN in this paper.
Table III compares the sub-filter orders of the M-channels
for five different optimal designs. Among them, the optimal
design proposed in this paper has the order N = [24 19], N
= [18 25 13 9], N = [16 19 14 17 20 21], and N = [17 24 29
19 15 18 31 23] for the number of channels M=2, 4, 6, and
8, while the other four optimal designs have the order N =
[60 60], N = [60 60 60 60], N = [60 60 60 60 60 60], and
N = [60 60 60 60 60 60 60 60] for the number of channels
M=2, 4, 6, and 8, respectively. Fig. 6 demonstrates that as
the number of channels (M ) increases, the computational
complexity of the five optimal designs also increases. The
computational complexity of these five optimal designs, as
demonstrated in Fig. 6, is ranked from highest to lowest as
follows:

[30] > PSO-BPNN > [21] > [29] > [20]

VI. CONCLUSION

This paper proposes an optimal design of digital analysis
filters based on PSO-BPNN for the aliasing errors cancel-
lation in HFB DAC. The HFB DAC is initially modeled
mathematically to calculate the estimation error between the
desired and practical transfer functions. The real and imag-
inary components of the estimation error are then summed
to derive the approximation error, BPNN is introduced to
minimize the approximation error. To reduce the computa-
tional complexity of the traditional BPNN design, we also

introduced a PSO algorithm for optimizing all the sub-
filter orders, the number of the BPNN hidden layer neurons
and the iterations of the BPNN, enabling that the given
upper limit errors (upper limits of distortion and aliasing
errors) is met. Finally, the optimized parameters are applied
to the BPNN model to derive the optimal coefficients for
the digital analysis filters. Additionally, this paper derives
the computational complexity of PSO-BPNN. We validated
the effectiveness of our PSO-BPNN optimal design through
several design examples. Simulation results indicate that,
comparing with the traditional BPNN design, our proposed
PSO-BPNN design not only achieves better aliasing errors
cancellation but also reduces all the sub-filter orders, the
number of the BPNN hidden layer neurons and the iterations
of the BPNN. Comparing with WLS, WLS+Optimization
and TNN designs, our proposed PSO-BPNN achieves better
aliasing errors cancellation, at the cost of increased compu-
tational complexity.
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