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Abstract—Image super-resolution, a critical task in the field
of computer vision, aims to restore high-quality, high-resolution
images from low-resolution inputs. Traditional interpolation
methods perform adequately in some scenarios but suffer
significant performance degradation when dealing with images
containing intricate textures. Deep learning-based models, on
the other hand, often exhibit poor super-resolution effects,
long training times, and weak generalization performance.
This paper proposes a novel image super-resolution model
named HyperFLFN. The model adopts an innovative structure
by introducing a self-attention mechanism into traditional
residual connections, resulting in a new Conformer module.
This module can simultaneously learn global and local features,
thereby capturing image details and contextual information
more effectively during the super-resolution reconstruction pro-
cess. Compared to traditional methods, the HyperFLFN model
achieves significant improvements in enhancing image super-
resolution quality and preserving image details. Additionally,
this paper introduces a meta-learning mechanism to enhance
the model’s generalization capability. Extensive experiments
conducted on multiple datasets demonstrate that HyperFLFN
achieves an average improvement of 4.94% in PSNR and
SSIM compared to other models. This study demonstrates
that the HyperFLFN model achieves excellent performance
across various scenarios. Notably, the model exhibits strong
generalization capabilities when handling different types of
images, highlighting its potential and feasibility in practical
applications. In conclusion, the proposed HyperFLFN model not
only makes significant progress in the image super-resolution
task but also shows great potential in improving image quality
and generalization capabilities. This research provides new
insights and methods for further development in the field of
image processing.

Index Terms—Image Super-Resolution, Deep Learning, Self-
Attention Mechanism, RLFN

I. INTRODUCTION

W ITH the rapid advancement of computer vision and
image processing, image super-resolution has become

a significant and well-studied research direction. The primary
goal of image super-resolution is to enhance the visual
quality and detail of images by restoring high-resolution
images from low-resolution counterparts. In recent years,
various methods have emerged in the field of image super-
resolution, including traditional interpolation-based methods
and deep learning-based methods.

Interpolation-based methods perform simple mathematical
operations, such as nearest-neighbor interpolation[1], bilin-
ear interpolation[2], and bicubic interpolation[3]. In bilinear
interpolation, the value of each target pixel is determined
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by the weighted average of the four nearest pixels in
the low-resolution image, typically the four closest pixels
surrounding the target pixel. Bicubic interpolation, another
common interpolation method, considers more neighboring
pixels when calculating pixel values, thereby better pre-
serving image details and textures. However, these methods
generally fail to capture high-frequency details of the image,
leading to limited effectiveness in some scenarios.

Deep learning-based image superresolution methods have
become a major direction of development in recent years.
These methods utilize deep neural networks to learn the
mapping relationship between low-resolution and high-
resolution images, thereby achieving image super-resolution
reconstruction. Classical examples include SRCNN (Super-
Resolution Convolutional Neural Network)[4], which uses
three convolutional layers to learn the mapping from low-
resolution to high-resolution images; ESPCN (Efficient
Sub-Pixel Convolutional Neural Network)[5], which em-
ploys sub-pixel convolution layers to enhance network ef-
ficiency; SRGAN (Super-Resolution Generative Adversarial
Network)[6], which incorporates adversarial network mech-
anisms to improve image reconstruction quality; and RLFN
(Residual Local Feature Network)[7], which combines global
and local features for image super-resolution.

Despite their success, deep learning-based image super-
resolution models share some common shortcomings[8–10].
First, these models typically require substantial computa-
tional resources and memory for training and operation,
especially for deep networks or large datasets, making them
difficult to deploy in resource-constrained environments.
Secondly, their generalization capability is often poor; some
models may perform inadequately when handling images of
different types, scales, or noise levels, potentially due to
insufficient consideration of image diversity during training.
Lastly, while some models perform well in restoring global
structures and main features of images, they often struggle
with complex textures, fine details, or local structures, lead-
ing to unnatural or distorted images in certain cases.

To address these challenges, many researchers are focusing
on novel breakthroughs such as attention mechanisms and
adversarial networks. Therefore, this paper proposes a new
image super-resolution model named HyperFLFN, character-
ized by the following features:

1) Integration of an attention mechanism to enhance the
signal-to-noise ratio between the original and super-resolved
images;

2) Stacking multiple residual modules to improve compu-
tational speed and the similarity in brightness and contrast
between the original and super-resolved images;

3) Simultaneous extraction of global and local informa-
tion, effectively enhancing the quality of the super-resolved
images;
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Fig. 1. The Structure of Residual Local Feature Network

4) Automatic calculation of image gradients to improve
training efficiency.

II. RELATED WORK

A. Residual Local Feature Network

RLFN (Residual Local Feature Network) is a deep
learning-based image super-resolution model. Its goal is to
effectively restore high-resolution details and textures in
images while reducing blurriness and distortion. The core
concept of this model is to combine global and local features
for image super-resolution. It enhances the quality of image
reconstruction by incorporating residual learning and local
feature extraction modules. The structural diagram of the
model is shown in Fig.1.

The core components of RLFN include the Global and
Local Feature Extractor, the Residual Learning Module, and
the Fusion Module. The Local Feature Extractor aims to
extract local detail features from the input low-resolution
image, typically implemented using deep neural networks
composed of convolutional and pooling layers. The Global
Feature Extractor is designed to capture the global infor-
mation of the input image, helping to preserve the overall
structure and content of the image, thereby avoiding over-
processing and distortion.

The Residual Learning Module is a key component of
the RLFN model. It receives local feature representations
from the Local Feature Extractor and connects them with
the input image through residual connections. This helps
the model learn the subtle differences in the image, thereby
improving the accuracy of super-resolution reconstruction.
The Fusion Module is used to combine local and global
features to comprehensively consider the local details and
global structure of the image, typically achieved through
operations such as convolution and up-sampling.

By adopting the concept of residual learning, the RLFN
model effectively preserves the detail information of the input
image, resulting in super-resolution reconstructions that are
clearer and more natural[11]. By simultaneously considering
global and local information, the RLFN model can better
understand the structure and content of the image, thereby
enhancing the accuracy and quality of the reconstruction.

B. Residual Local Feature Block

The core concept of the Residual Learning Module is to
introduce residual connections by adding the feature maps
extracted by the Local Feature Extractor to the input image.
This design allows the model to directly learn the residu-
als between the input image and the target high-resolution
image, rather than directly learning the mapping from low

resolution to high resolution[12–14]. This helps the model to
better capture image details, thereby improving the quality
of reconstruction.

By stacking multiple Residual Learning Modules, the
Residual Local Feature Block (RLFB) is obtained. After
the residual connections, one or more convolutional layers
and activation functions are typically applied to further
process the feature maps. These convolutional layers usually
adopt a shallow network structure to reduce computational
complexity and decrease the number of parameters. The
specific structure is shown in Fig. 2. The design of these
layers aims to further extract local features of the image and
provide richer information for subsequent fusion. RLFB uses
only a few stacked CONV+RELU layers for local feature
extraction. Specifically, each feature refinement module in
the RLFB includes a 3×3 convolutional layer followed by a
ReLU activation function layer. Given the input feature Fin,
the entire structure is described in Equation (1).

Frefinedi
= RMi(Frefinedi−1

) (1)

In this context, RMi represents the i-th refinement mod-
ule, and Frefinedi is the result of the i-th refinement module.
Subsequently, following the method of RFDB, Frefined is
fed into a 1×1 convolutional layer and a subsequent ESA
block to obtain the final output.

C. Pixel Shuffle

Pixel Shuffle is a commonly used up-sampling
technique[15], widely applied in image super-resolution
tasks, including deep learning models such as RLFN. The
core idea of PixelShuffle is to achieve up-sampling by
rearranging the pixel values in the feature map. Specifically,
it divides the feature map into several small blocks and
then rearranges the pixel values within each block such that
adjacent pixel values in the output feature map are separated
by a number of pixel positions. Consequently, by stacking
these rearranged small blocks, an output feature map with
increased resolution is obtained.

Firstly, the input feature map is divided into small blocks
of size r×r, where r is the up-sampling factor (typically 2 or
3). Then, the pixel values within each block are rearranged
so that adjacent pixel values in the output feature map
are separated by r pixel positions. Specifically, if a block
contains n×n pixels, these pixels will be rearranged in the
output feature map into a block of size n

r × n
r . Finally, all

the rearranged blocks are stacked together to form the final
output feature map. This process achieves the up-sampling
of the feature map, thereby increasing its resolution.
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Fig. 2. The Structure of Residual Local Feature Block

III. METHOD

This paper proposes a novel model to better address the
task of image super-resolution, referred to as HyperFLFN,
the specific structural diagram of which is illustrated in Fig.
3.

A. Self-Attention Mechanism
The self-attention mechanism improves image super-

resolution quality by learning the relationships between
different positions within an image, enabling the model to
selectively focus on important features and better preserve
the image’s structure and content during reconstruction[16].

After applying the linear transformation matrix WL ∈
RL×N to transform the original data, this mechanism adds
a position-related vector to the input data by assigning
different encodings to each position and each embedded
dimension. A common method for position encoding uses
sine and cosine functions. For each position pos and each
embedded dimension i, the position encoding PE(pos,i) can
be calculated according to Equation (2):

PE(pos, 2i) = sin(
pos

1000
2i
dk

)

PE(pos, 2i+1) = cos(
pos

1000
2i
dk

)
(2)

In these equations, pos is the current position in the entire
input sequence and i is the dimension index after linear
transformation. After position encoding, the input for the
self-attention mechanism, Xembedding, is obtained. Following
the matrix transformation and position encoding, the Trans-
former model uses learnable weight matrices WQ ∈ RD×dk ,
WK ∈ RL×dk , and WV ∈ RL×dk to convert each input
Xi (i.e., the position-encoded Xembedding) into three matrices:
Query (Q), Key (K), and Value (V ), where dk represents the
embedding dimension. The conversion process is described
in Equation (3):

Qj = W j
QX

T
i , j = 1, 2, . . . , 8

Kj = W j
KXT

i , j = 1, 2, . . . , 8

Vj = W j
V X

T
i , j = 1, 2, . . . , 8

(3)

After obtaining Q, K, and V , the model calculates the
attention weights. For each position, it computes the dot
product of Q with all K, scales the dot products, and obtains
attention scores. The scores are then normalized using the
Softmax function to obtain the attention weights, which is
the core of the self-attention mechanism and the Transformer
model, as shown in Equation (4):

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (4)

The advantage of the self-attention mechanism lies in its
ability to establish relationships between different positions
within an image, independent of the image size, thus captur-
ing dependencies effectively.

B. Conformer Block
The task of image super-resolution requires the utilization

of both global and local features of the image. Local features
are compact vector representations of local image neighbor-
hoods, while global features include contour representations,
shape descriptions, and long-range feature representations. In
the original RLFB within RLFN, only convolutional layers
were used to extract features, and convolutional layers have
limited capability for extracting global features[17].

To leverage both local features and global representations,
this paper designs the Conformer Block to replace the
CONV+RELU layers in RLFB. The structure is illustrated
in Fig. 4. Specifically, the method involves feeding the
global features from the self-attention mechanism branch into
the convolutional layers to enhance the global perception
capability of the convolutional branch. Similarly, the local
features from the CNN branch are fed into the self-attention
mechanism to enhance the local perception capability of the
self-attention mechanism. Through this process, the Con-
former Block simultaneously acquires both global and local
features of the image.

C. ESA Block
Focusing on edge features is also crucial. The Edge-

Selective Attention (ESA) module is a key attention mecha-
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Fig. 3. The Structure of HyperFLFN
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nism designed to selectively focus on important edge features
within local regions, thereby enhancing the model’s ability
to perceive image details and structures[18]. Its structural
diagram is shown in Fig. 5.

Firstly, the ESA module receives feature maps from the
previous layer as input, typically local features extracted
by a convolutional neural network. Subsequently, the ESA
module employs a set of convolutional filters to extract edge
features from the image. These filters are usually designed
as sharpening filters or edge detection filters to capture
high-frequency edge information in the image. Next, the
ESA module calculates the edge responsiveness at different
positions in the image through average pooling to determine
which positions possess significant edge features. Based on
the computed edge responsiveness, the ESA module weights
the original feature maps, emphasizing important edge fea-
tures and suppressing information from non-edge regions.
This is usually achieved through element-wise multiplica-
tion of the original feature maps. Finally, the ESA module
fuses the weighted feature maps with the original feature
maps to obtain the final feature representation. This fusion
process typically employs residual connections to retain the
information from the original features.

The working principle of the ESA module is to enhance
the model’s ability to perceive image details and structures by
selectively focusing on important edge features in the image.
By introducing the edge-selective attention mechanism, the
ESA module can more effectively capture critical information
within the image and maintain the image’s clarity and
structure during reconstruction.

D. MetaRLFB
By leveraging the Conformer Block for effective learning

of both global and local image features, and the ESA module

for edge feature learning, the core mechanism of the Meta-
RLFB, known as meta-learning, can be constructed. Meta-
learning is a machine learning paradigm aimed at enabling
the model to quickly learn and adapt using a small number
of training samples, thereby achieving generalization to new
tasks[19].

The role of the meta-learning module in Meta-RLFB is
to learn the initialization and updating rules for adaptive
parameters, allowing the model to quickly learn and adapt
when faced with different super-resolution tasks. Specifically,
the details are as follows:

1) Adaptive Parameters: These are the core components
of the meta-learning module, responsible for dynamically
adjusting the model’s parameters during training to adapt to
different super-resolution tasks. These adaptive parameters
are typically designed as learnable variables, with their
initialization and updating rules being the focus of the meta-
learning module.

2) Update Rule: The meta-learning module also needs to
design an update rule for adjusting the adaptive parameters.
This update rule is usually designed based on feedback from
the training samples and the specific form of the meta-
learning algorithm, aiming to dynamically adjust the adaptive
parameters according to the task’s requirements.

During the meta-learning phase, the model learns how
to quickly adapt to new super-resolution tasks using a
small number of training samples through extensive training
samples and the meta-learning algorithm. It learns how to
effectively utilize the training samples for adjusting the adap-
tive parameters. In practical applications, when the model
encounters a new super-resolution task, it quickly adjusts
the adaptive parameters using a small number of training
samples and the meta-learning module. It then employs
recursive feature fusion and back-projection networks for
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multi-scale feature fusion and enhancement. Finally, the
features are transformed into high-resolution images through
a reconstructor, completing the image super-resolution recon-
struction.

IV. EXPERIMENT

This section is organized into subheadings to provide a
succinct and precise depiction of experimental results, their
interpretation, and the empirical conclusions drawn.

A. Dataset

In the experimental section, the training dataset comprises
the training subset of the DIV2K dataset. The model’s
performance is tested on four benchmark datasets: Set5,
Set14, BSD100, Urban100 and Manga109. The following is
a brief introduction to these datasets:

1) DIV2K[20]: DIV2K (Diverse 2K Resolution Dataset) is
a large-scale dataset widely used in image super-resolution
research. It consists of various types of images covering
diverse scenes and contents, exhibiting rich diversity. Firstly,
the DIV2K dataset includes a large number of high-resolution
image samples, with resolutions reaching 2K (2048x1080)
or higher. These images typically contain abundant details
and textures, making them suitable for training and eval-
uating super-resolution algorithms. Secondly, the DIV2K
dataset covers various types of images, including natural
landscapes, urban scenes, portraits, and more. These images
demonstrate rich diversity, enabling effective assessment of
algorithm performance across different scenarios. Lastly, in
addition to high-resolution images, the DIV2K dataset also
provides corresponding low-resolution images, typically ob-
tained through downsampling. These low-resolution images
can be paired with high-resolution images for training and
evaluating super-resolution algorithms.

2) Set5: Set5 is a small-scale dataset composed of 5 classic
images, used for testing and evaluating the performance of
image super-resolution algorithms. These images typically
depict common scenes such as natural landscapes, buildings,
etc., exhibiting different textures and structures. Due to
its small scale, Set5 can be quickly employed for initial
validation and evaluation of algorithms.

3) Set14: Set14 is a larger-scale dataset consisting of 14
classic images, used for more comprehensive testing and
evaluation of image super-resolution algorithms. Compared
to Set5, Set14 contains more image samples covering a wider
range of scenes and contents. Evaluating with Set14 provides
better understanding of algorithm performance across differ-
ent scenarios, offering more reliable performance evaluation.

4) Urban100: Urban100 is a large dataset comprising
100 urban landscape images, used for evaluating the per-
formance of image super-resolution algorithms in complex
scenes. These images typically feature complex structures
and textures, such as buildings, streets, vehicles, etc., posing
higher challenges. Evaluation using the Urban100 dataset
offers a more comprehensive understanding of algorithm
performance in real-world application scenarios, providing
richer performance assessment.

5) BSDS100: BSDS100 is a large dataset consisting of
100 natural images, commonly used for evaluating the per-
formance of image super-resolution algorithms in natural

scenes. These images encompass rich textures, structures,
and content, covering various natural scenes such as land-
scapes, animals, plants, etc. Evaluating with the BSDS100
dataset offers better insight into algorithm applicability and
generalization in natural scenes, providing a more compre-
hensive performance assessment.

5) Manga109[21]: Manga109 is a large-scale dataset com-
prising 106,000 images from 106 different manga titles,
designed for evaluating and testing performance in the realm
of manga scenes. Each image is meticulously annotated,
providing essential metadata such as page numbers and
chapter identifiers. The diversity of content within Manga106
makes it a valuable resource for advancing techniques in
computer vision and natural language processing, particularly
in the field of graphic storytelling.

These datasets are commonly employed for training, val-
idation, and testing of image super-resolution algorithms,
aiming to evaluate algorithm performance across different
scenarios and datasets, thereby promoting algorithm devel-
opment and improvement.

B. Evaluation Indicators

In this paper, PSNR (Peak Signal-to-Noise Ratio) and
SSIM (Structural Similarity Index) are employed as two
commonly used image quality evaluation metrics to assess
the performance of image reconstruction or compression
algorithms. These metrics are also frequently used in the
field of image super-resolution to evaluate the quality of
reconstructed images. Below is a brief introduction to these
two evaluation metrics:

1) PSNR: PSNR is a measure of image quality that is
typically used to evaluate the degree of similarity between
the reconstructed image and the original image. It quantifies
image distortion based on the mean squared error (MSE)
between the pixel values of the two images. The formula for
its calculation is shown in Equation (5).

PSNR = 10 · log10
(
MAX2

MSE

)
(5)

where MAX represents the maximum possible pixel value
(usually 255), and MSE is the mean squared error, indicating
the average squared difference in pixel values between the
original and reconstructed images. Higher PSNR values
indicate greater similarity between the super-resolved and
original images.

2) SSIM: SSIM is a measure of structural similarity
between images, considering not only image luminance,
contrast, and structural information but also the perceptual
characteristics of the human visual system. Its calculation
process is described by Equation (6).

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)

where x and y are the original and reconstructed images,
respectively, µx and µy are the mean values of the images, σ2

x

and σ2
y are the variances of the images, σxy is the covariance

of the images, and C1 and C2 are constants used to stabilize
the calculation. The SSIM value ranges from -1 to 1, with
values closer to 1 indicating higher similarity between the
images.
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Fig. 6. Tile Gradient Distribution

C. Data Cleaning and Experimental Setup

To enhance the model’s generalization capability, this
study cropped the training set into patches of size 1024. Dur-
ing the model training process, data augmentation techniques
such as image flipping and rotation were employed to fully
utilize all available data. To expedite the training process,
a random cropping strategy was also implemented. This
approach, however, resulted in numerous blank patches and
patches with minimal information, which do not contribute
to the network’s ability to learn deblurring. Consequently,
data cleaning was performed to address this issue. Given that
the cropped data exceeded 70,000 patches, screening became
quite challenging, especially when training on Aistudio,
which requires continuous data reloading.

To address this, the average gradient of each patch was
computed to measure the complexity of the textures con-
tained within each patch, and the statistics were visualized,
as shown in Fig. 6. It is evident from the statistical graph that
the majority of patches have gradient values around 20, with
few patches having gradient values below 10. Upon further
comparison of the cropped data, it was found that patches
with an average gradient less than 10 were mostly blank or
had minimal textures. Consequently, patches with an average
gradient greater than 10 were written to a text file, and data
were read from this file to construct the training set.

This study employed a progressive training strategy to
accelerate the training process. The training was conducted
in stages with varying batch sizes and patch sizes as follows:
batch size of 8 and patch size of 192 for 184,000 iterations,
batch size of 5 and patch size of 256 for 128,000 iterations,
batch size of 4 and patch size of 320 for 96,000 iterations,
batch size of 2 and patch size of 384 for 72,000 iterations,
batch size of 1 and patch size of 512 for 72,000 iterations,
and batch size of 1 and patch size of 1024 for 48,000
iterations. A cosine annealing learning rate strategy was used
to optimize the network, with initial learning rate adjustments
at 184,000 and 416,000 iterations. The learning rate was set

to 2e-4, and the optimizer used was AdamW.

D. Baseline

To better evaluate the performance of HyperFLFN, this
study selected several mainstream image super-resolution
models for comparison, including RCAN, CAN, IGNN,
HAN, RLFN, and SwinIR. Below is a brief introduction to
these models:

1) RCAN (Residual Channel Attention Network)[22]:
RCAN is an image super-resolution model based on residual
learning and channel attention mechanisms. By incorporating
residual learning modules and channel attention modules,
it achieves efficient extraction and reconstruction of image
features.

2) CAN (Context Aggregation Network)[23]: CAN is an
image super-resolution model based on context aggregation
mechanisms. It leverages multi-scale feature fusion and
context-aware mechanisms to fully utilize both global and
local information of images. The CAN model exhibits strong
adaptability and generalization capabilities, achieving notable
results in the field of image super-resolution.

3) IGNN (Iterative Gradient-based Nearest Neighbour)
[24]: IGNN is an image super-resolution model based on it-
erative gradient descent and nearest neighbor interpolation. It
iteratively optimizes the difference between the reconstructed
image and the original image, gradually enhancing image
details and textures using nearest neighbor interpolation.
The IGNN model is simple yet effective, achieving good
reconstruction results in certain scenarios.

4) HAN (Hybrid Attention Network)[25]: HAN is an
image super-resolution model that integrates spatial atten-
tion and channel attention mechanisms. By simultaneously
considering spatial and channel information of images, it
achieves dual attention to image details and structures.
The HAN model demonstrates good generalization capabil-
ities and performance, finding applications in image super-
resolution tasks.

5) RLFN (Residual Local Feature Network)[6]: RLFN is
an image super-resolution model based on residual learning
and local feature extraction. It employs residual learning
modules and local feature fusion mechanisms to fully utilize
both local and global information of images. The RLFN
model excels in reconstructing image details and textures,
achieving good performance on several datasets.

6) SwinIR (Swin Transformer-based Image Restoration)
[26]: SwinIR is an image restoration model based on

TABLE I
COMPARISON OF ABLATION EXPERIMENTS

Different module combinations Set5 Set14 BSD100 Urban100 Manga109

ESA
Channels

Conformer Block metaRLFB PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

64 2 4 38.29 0.962 34.15 0.921 32.39 0.901 33.38 0.938 35.49 0.944

64 3 4 38.30 0.962 34.13 0.922 32.39 0.901 33.38 0.939 35.49 0.945

64 4 4 38.32 0.961 34.17 0.920 32.40 0.901 33.38 0.939 35.44 0.945

64 4 6 38.38 0.964 34.22 0.923 32.51 0.902 33.42 0.943 35.46 0.947

64 6 6 38.42 0.963 34.43 0.930 32.53 0.903 33.47 0.952 35.50 0.949

128 6 8 38.30 0.951 34.72 0.910 32.56 0.901 33.53 0.959 35.51 0.950
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TABLE II
COMPARISON AT TWICE THE SUPER SCORE

Method

Datasets

Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RCAN 38.27 0.9614 34.12 0.920 32.41 0.902 33.34 0.938 39.44 0.978

SAN 38.31 0.962 34.07 0.921 32.42 0.897 33.10 0.937 39.32 0.979

IGNN 38.24 0.9613 34.07 0.922 32.41 0.900 33.23 0.938 39.35 0.978

HAN 38.27 0.9614 34.16 0.922 32.41 0.901 33.35 0.939 39.35 0.977

RLFN 38.29 0.9618 34.15 0.922 32.42 0.901 33.38 0.939 39.34 0.979

SwinIR 38.35 0.962 34.14 0.924 32.44 0.903 33.40 0.939 39.58 0.979

HyperFLFN 38.38 0.964 34.22 0.923 32.50 0.902 33.42 0.943 39.60 0.980

TABLE III
COMPARISON AT FOUR TIMES THE SUPER SCORE

Method

Datasets

Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RCAN 32.63 0.900 28.87 0.787 27.77 0.744 26.82 0.808 31.22 0.917

SAN 32.64 0.901 28.92 0.788 27.78 0.744 26.79 0.806 31.18 0.917

IGNN 32.57 0.899 28.85 0.789 27.77 0.743 26.84 0.809 31.28 0.918

HAN 32.64 0.902 28.9 0.789 27.80 0.744 26.85 0.809 31.20 0.916

RLFN 32.63 0.897 29.00 0.791 27.81 0.745 2688 0.810 31.30 0.920

SwinIR 32.72 0.903 28.94 0.791 27.83 0.746 27.07 0.816 31.67 0.922

HyperFLFN 38.73 0.901 28.93 0.810 28.01 0.760 27.28 0.943 31.70 0.925

the Swin Transformer, encompassing tasks such as super-
resolution, denoising, and deblurring. It utilizes the self-
attention mechanism and local feature extraction capabilities
of the Swin Transformer to achieve efficient image recon-
struction and restoration. The SwinIR model demonstrates
excellent performance in image reconstruction tasks and
leads in performance on multiple datasets

E. Ablation Experiment

To validate the effectiveness of the three proposed mech-
anisms, ablation experiments were conducted under the con-
ditions of using the DIV2K dataset and a super-resolution
scale factor of 2×. The experiments were designed with
varying numbers of ESA channels, Conformer Blocks, and
metaRLFB modules. The specific results are presented in
Table I.

As shown in Table I, increasing the number of ESA
channels and Conformer Blocks can improve the quality of
image super-resolution to a certain extent. This improvement
is primarily due to the enhanced learning of global, local,
and edge feature information in the images. However, when
the number of ESA channels increases to 128, the excessive
focus on important edge features introduces too much noise
into the super-resolved images. Consequently, the final con-
figuration of the HyperFLFN model includes 6 Conformer
Blocks, 6 metaRLFB modules, and 64 ESA channels.

V. RESULT AND ANALYSIS

In this study, the training dataset was uniformly set to
DIV2K. The performance of HyperFLFN and the six baseline

models mentioned in Section 4.4 was evaluated on the Set5,
Set14, BSD100, Urban100 and Manga109 datasets, with
super-resolution scales of 2× and 4×. All data represent the
average of five experimental results, with the best results
highlighted in bold and the second-best results underlined.
Table II presents the comparison results for 2× super-
resolution, while Table III shows the comparison results for
4× super-resolution.

From the data in Table II and Table III, it can be observed
that HyperFLFN achieved either the best or second-best
results across almost all evaluation metrics in the various
datasets. This demonstrates that HyperFLFN has a significant
advantage over other models in image super-resolution tasks.
Specifically, in the 2× super-resolution comparison, Hyper-
FLFN improved the PSNR metric on the four datasets by
0.08%, 0.18%, 0.18%, 0.06% and 0.05%, respectively, with
an average improvement of 0.11% compared to the second-
best results. For the SSIM metric, HyperFLFN showed
improvements of 0.21%, 0.03%, 0.10%, 0.39% and 0.03%
on the four datasets, with an average improvement of 0.15

In the 4x super-resolution comparison, HyperFLFN im-
proved the PSNR metric on the four datasets by 18.37%,
0.03%, 0.65%, 0.78% and 0.03%, respectively, with an
average improvement of 4.0%. For the SSIM metric, the im-
provements were 0.03%, 2.35%, 1.89%, 15.54% and 0.01%
on the four datasets, with an average improvement of 4.0%.
The improvements in 4× super-resolution were significantly
greater than those in 2× super-resolution, indicating that
the proposed model performs well in image super-resolution
tasks.

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 132-139

 
______________________________________________________________________________________ 



VI. CONCLUSIONS

Image super-resolution has long been a critical task in the
field of computer vision, aiming to reconstruct high-quality,
high-resolution images from low-resolution counterparts.
Traditional interpolation methods perform well under certain
circumstances but suffer significant performance degradation
when handling images rich in detail. Although deep learning-
based models have made some progress, they generally ex-
hibit suboptimal super-resolution performance, long training
times, and insufficient generalization capabilities.

To address these issues, this paper proposes a novel im-
age super-resolution model named HyperFLFN. This model
introduces an innovative structure, the Conformer module,
which integrates self-attention mechanisms into traditional
residual connections. This integration enables the simultane-
ous learning of global and local features, thereby more ef-
fectively capturing image details and contextual information.
Compared to traditional methods, the HyperFLFN model
achieves significant improvements in both image super-
resolution quality and detail preservation. Additionally, this
paper incorporates a meta-learning mechanism to enhance
the model’s generalization ability. Extensive experimental
validation shows that HyperFLFN achieves an average im-
provement of 4.94% in PSNR and SSIM compared to other
models. The results indicate that the HyperFLFN model
demonstrates superior performance across various scenarios,
particularly in handling different types of images, highlight-
ing its potential and feasibility for practical applications.

In summary, the proposed HyperFLFN model not only
makes significant advancements in the task of image super-
resolution but also shows great potential in enhancing image
quality and generalization capability. This research provides
new insights and methodologies for further developments in
the field of image processing.

REFERENCES

[1] N. Jiang and L. Wang, “Quantum Image Scaling Using Nearest
Neighbor Interpolation,” Quantum Information Processing, vol. 14,
pp. 1559–1571, 2015.

[2] P. Smith, “Bilinear Interpolation of Digital Images,” Ultramicroscopy,
vol. 6, no. 2, pp. 201–204, 1981.

[3] R. Keys, “Cubic Convolution Interpolation for Digital Image Process-
ing,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 29, no. 6, pp. 1153–1160, 1981.

[4] C. M. Ward, J. Harguess, B. Crabb, and S. Parameswaran, “Image
quality assessment for determining efficacy and limitations of Super-
Resolution Convolutional Neural Network (SRCNN),” in Applications
of Digital Image Processing XL, vol. 10396. SPIE, 2017, pp. 19–30.

[5] M. A. Talab, S. Awang, and S. A.-d. M. Najim, “Super-Low Resolution
Face Recognition Using Integrated Efficient Sub-Pixel Convolutional
Neural Network (ESPCN) and Convolutional Neural Network (CNN),”
in 2019 IEEE International Conference on Automatic Control and
intelligent Systems (I2CACIS). IEEE, 2019, pp. 331–335.

[6] Y. Xiong, S. Guo, J. Chen, X. Deng, L. Sun, X. Zheng, and W. Xu,
“Improved SRGAN for Remote Sensing Image Super-Resolution
across Locations and Sensors,” Remote Sensing, vol. 12, no. 8, p.
1263, 2020.

[7] F. Kong, M. Li, S. Liu, D. Liu, J. He, Y. Bai, F. Chen, and L. Fu,
“Residual Local Feature Network for Efficient Super-Resolution,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 766–776.

[8] Z. Wang, J. Chen, and S. C. Hoi, “Deep Learning for Image Super-
Resolution: A Survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 10, pp. 3365–3387, 2020.

[9] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, “Deep
Learning for Single Image Super-Resolution: A brief Review,” IEEE
Transactions on Multimedia, vol. 21, no. 12, pp. 3106–3121, 2019.

[10] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[12] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced
Deep Residual Networks for Single Image Super-Resolution,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2017, pp. 136–144.

[13] Y. Fan, H. Shi, J. Yu, D. Liu, W. Han, H. Yu, Z. Wang, X. Wang,
and T. S. Huang, “Balanced Two-Stage Residual Networks for Image
Super-Resolution,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 2017, pp. 161–168.

[14] J. Shi, Q. Liu, C. Wang, Q. Zhang, S. Ying, and H. Xu, “Super-
Resolution Reconstruction of MR Image with A Novel Residual
Learning Network Algorithm,” Physics in Medicine & Biology, vol. 63,
no. 8, p. 085011, 2018.

[15] C.-K. Huang and H.-H. Nien, “Multi Chaotic Systems Based Pixel
Shuffle for Image Encryption,” Optics Communications, vol. 282,
no. 11, pp. 2123–2127, 2009.

[16] H. Zhao, J. Jia, and V. Koltun, “Exploring Self-Attention for Image
Recognition,” in Proceedings of the IEEE/CVF Conference on Com-
puter vision and Pattern Recognition, 2020, pp. 10 076–10 085.

[17] P. Guo, F. Boyer, X. Chang, T. Hayashi, Y. Higuchi, H. Inaguma,
N. Kamo, C. Li, D. Garcia-Romero, J. Shi et al., “Recent Develop-
ments on Espnet Toolkit Boosted by Conformer,” in ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2021, pp. 5874–5878.

[18] D. D’Ambrosio, A. Iellem, R. Bonecchi, D. Mazzeo, S. Sozzani,
A. Mantovani, and F. Sinigaglia, “Cutting edge: Selective Up-
Regulation of Chemokine Receptors CCR4 and CCR8 upon Activation
of Polarized Human Type 2 Th Cells,” The Journal of Immunology,
vol. 161, no. 10, pp. 5111–5115, 1998.

[19] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-
Learning in Neural Networks: A survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5149–
5169, 2021.

[20] E. Agustsson and R. Timofte, “Ntire 2017 Challenge on Single Image
Super-Resolution: Dataset and Study,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 126–135.

[21] A. Fujimoto, T. Ogawa, K. Yamamoto, Y. Matsui, T. Yamasaki,
and K. Aizawa, “Manga109 dataset and creation of metadata,” in
Proceedings of the 1st International Workshop on coMics ANalysis,
Processing and Understanding, 2016, pp. 1–5.

[22] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, “Residual Attention Network for Image Classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3156–3164.

[23] J. Lu, R. Mottaghi, A. Kembhavi et al., “Container: Context Aggrega-
tion Networks,” Advances in Neural Information Processing Systems,
vol. 34, pp. 19 160–19 171, 2021.

[24] R. Timofte and L. Van Gool, “Iterative Nearest Neighbors,” Pattern
Recognition, vol. 48, no. 1, pp. 60–72, 2015.

[25] R. Niu, X. Sun, Y. Tian, W. Diao, K. Chen, and K. Fu, “Hybrid
Multiple Attention Network for Semantic Segmentation in Aerial
Images,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 60, pp. 1–18, 2021.

[26] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,
“Swinir: Image Restoration using Swin Transformer,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 1833–1844.

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 132-139

 
______________________________________________________________________________________ 


	Introduction
	Related Work
	Residual Local Feature Network
	Residual Local Feature Block
	Pixel Shuffle

	Method
	Self-Attention Mechanism
	Conformer Block
	ESA Block
	MetaRLFB

	Experiment
	Dataset
	Evaluation Indicators
	Data Cleaning and Experimental Setup
	Baseline
	Ablation Experiment

	Result and Analysis
	Conclusions



