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Abstract—Attention mechanism is very important in the
task of medical image classification. In medical image clas-
sification, different types of images may have different lesion
morphology and size, and lesion characteristics are not obvious;
however, the existing attention mechanism has the problem of
insufficient feature diversity and ignoring small lesions, which
seriously affects the classification performance. In order to solve
these problems, Triple Fusion Attention (TFA) was proposed.
Through convolutional fusion, attention fusion and adaptive
fusion, TFA improves the model’s perception ability of subtle
structures and features in medical images, suppresses the noise
in the image, and enhances the representation of key features,
which can effectively solve the problem of insufficient sensitivity
of important features in medical images. Experiments have
shown that TFA enables the model to focus on the lesion area
more accurately, so that multi-scale features can be fused and
classified, which significantly improves the overall performance
and outperforms other attention mechanisms. In addition, TFA
is able to improve training efficiency and ease of deployment
while maintaining good performance, while improving the
accuracy and effectiveness of computer-aided diagnosis.

Index Terms—Medical Image Classification, Attention Mech-
anism, Feature Fusion, Triple Fusion Attention.

I. INTRODUCTION

IGNIFICANT advancements have been made in the dis-

cipline in recent years due to the ongoing development
of deep learning technology and the expansion of computing
capacity for classifying medical images [1]. Convolutional
neural networks (CNN) are one of the most popular model ar-
chitectures, and deep neural networks (DNN) are particularly
good at classifying medical images [2]. CNN can effectively
extract characteristics from medical images and categorize
them using fully linked layers by utilizing multi-layer con-
volution and pooling procedures [3]. When this strategy is
successfully implemented, it offers strong instruments and
assistance for medical research and diagnostics.

The attention mechanism is crucial in deep learning be-
cause it directs convolutional neural networks to extract per-
tinent elements while suppressing uncorrelated ones, grow-
ing in significance as a plug-and-play element of convo-
lutional network models [4]. Currently, the widely utilized
SE (Squeeze-and-Excitation) attention technique [5] mostly
uses global average pooling [6] to compress the channel
characteristics via the fully linked layer. The global average
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pooling process, however, is unable to completely account
for the variations in different positions within the feature
map and loses positional information. In addition to the SE
attention method, the CBAM (Convolutional Block Attention
Module) [7] introduces the maximum pooling operation [8]
to overcome this problem. This improves attention perfor-
mance by synthesizing the maximum feature information.
For small-sized lesions in medical image classification tasks,
the CBAM attention mechanism may perform poorly in
terms of detection and classification because the maximum
pooling operation concentrates more on the global maximum
eigenvalue [9]. Furthermore, CBAM limits attention perfor-
mance by primarily focusing on channel feature adjustment
and failing to completely account for feature changes at
other locations in the image. By incorporating location
information into features and activating them through com-
pletely connected operations, CA (Coordinated Attention)
[10] gets around these restrictions and improves the attention
mechanism’s efficacy by making greater use of location
information. The SK (Selective Kernel) [11] attention mech-
anism processes features of different scales using a dynamic
selection mechanism and parallel branching, enabling the
network to adaptively select receptive fields of different sizes
to model features. This further enhances the SE attention
mechanism’s capacity to model features at different scales.
Convolutional kernels of various sizes are used to extract
features, and the dynamic selection module automatically
chooses the optimum feature combination. By decreasing the
number of channels in the fully linked layer and introducing
spatial attention based on the SE mechanism, the Bottleneck
Attention Module (BAM) [12] addresses the issue of an
excessive number of parameters in the SE attention module.

The attention mechanism in medical image classification
can lessen the influence of redundant information and inter-
fering elements, providing interpretable classification results
[13]. By applying the attention mechanism, the model can
better understand and utilize the image information for
medical image classification [14]. However, existing attention
mechanisms suffer from insufficient feature diversity and
neglect small lesions, which seriously affects classification
performance [15].

Unlike natural colour images, most medical images are
greyscale images, and the lesion area is usually less con-
trasted with adjacent normal tissue. As shown in Figure 1,
chest X-rays with lung disease are not significantly different
from healthy chest X-rays, and areas with lung disease show
very low contrast to surrounding normal tissue. As a result,
it is difficult to extract features as diverse as those extracted
from natural colour images. Detail in medical images is
also important when critical information in medical images,
such as lesion areas, often occupy far fewer pixels than
normal tissue, and lesion areas differ in detail from normal
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Fig. 1. Chest X-ray image of lung disease

Fig. 2. Picture of DME eye disease

tissues. An image of a DME (diabetic macular oedema)
eye disease is shown in Figure 2. The lesion area is too
small and inconspicuous compared to normal tissue. Because
small lesions are omitted in the high-level feature map, it
is difficult to learn discriminant features from small, non-
obvious lesions.

II. RELATED WORK
A. Spatial attention

Spatial attention [16] is a technique used in the field of
computer vision and deep learning to process image data
by simulating the attention mechanism of the human visual
system. Traditional neural networks usually process images
through fully connected layers, which cannot effectively
utilize the spatial information between pixels in the image.
Therefore, the spatial attention mechanism is introduced to
enable the model to better focus on important regions and
structures in the image, improving its ability to understand
and classify image information. Through spatial attention,
the model can assign different attention weights based on
the importance of various positions in the image, more
effectively capturing and classifying image features, thereby
enhancing the accuracy and efficiency of visual tasks [17].

The significance of spatial attention is to improve the
comprehension and generalization ability of deep learning

models. By fully utilizing the spatial relationships between
pixels in an image, it helps the model better understand the
structure and content of the image, thereby enhancing the
model’s generalization ability across different scenes and
datasets. The expression formula for the spatial attention
mechanism is shown in Equation 1, where X is the input im-
age data, Wpatiq 18 the spatial attention weight, and Fipqtia
is the feature representation obtained after processing by the
spatial attention mechanism. Sigma is an activation function,
usually ReLU or Sigmod.

Fspatial:U(Wspatial'X) (1)

In medical image classification, spatial attention can en-
hance the model’s ability to recognize detailed anatomical
structures, such as distinguishing different parts of the heart
or identifying the direction of blood vessels. Additionally,
spatial attention improves the model’s ability to process
noise, increasing the accuracy and robustness of classifica-
tion. It enhances the model’s detection of edge and contour
information in medical images, helping to more accurately
locate and classify structures and abnormalities, such as
tumors or abnormal tissues. This provides doctors with more
precise diagnostic and treatment options.

At present, spatial attention has made remarkable research
progress in many fields. Various forms of spatial atten-
tion mechanisms have been proposed and applied to image
classification, object detection, semantic segmentation, and
other domains, yielding impressive results. With the ongoing
development of deep learning technology, spatial attention
remains an active research area, and its potential to enhance
model performance and practical applications continues to
be explored. The spatial attention structure is illustrated in
Figure 3.
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Fig. 3. Schematic diagram of spatial attention structure

B. Channel Attention

Channel attention[18] is a key technology in deep learning
that enhances a model’s ability to understand and classify
input data by automatically learning and assigning channel
weights. Traditional neural networks process multi-channel
data relatively simply and fail to fully utilize the information
differences between different channels. With the advance-
ment of deep learning technology, channel attention has
become an important approach to address this issue. Its
aim is to enable the model to automatically focus on the
channel information most useful for a particular task, thereby
improving the model’s representation and adaptability. The
introduction of channel attention significantly enhances the
model’s ability to understand and generalize input data,
improving its robustness and resistance to interference. This
results in better performance in tasks such as image classifi-
cation, object detection, and semantic segmentation[19].
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Fig. 4. Schematic diagram of channel attention structure

The channel attention mechanism can be represented by
the following equation 2, where X; is the i-th channel in
the input feature map, W, is the attention weight of the
i-th channel, C is the number of channels, F_.;gnner 1S
the feature representation obtained after processing by the
channel attention mechanism, and sigma is the activation
function, usually ReLU or Sigmod.

Fchannelzg(z c= ll/c : Wi . X’L) (2)
?

In medical image classification, the application of the
channel attention mechanism can help the model better
understand the features of medical images and improve
classification accuracy. By reducing redundant information
and highlighting key features, channel attention can optimize
the performance of models in medical image classification
tasks, thereby assisting doctors in diagnosing diseases more
quickly and accurately.

In current research, the channel attention mechanism has
been widely studied and applied. Various forms of channel
attention modules, such as the Squeeze-and-Excitation (SE)
module and the Channel Attention (CA) module, have been
proposed and applied to tasks such as image classification,
object detection, and semantic segmentation. These modules
have yielded remarkable results and progress. The channel
attention structure diagram is shown in Figure 4.

III. TRIPLE FUSION ATTENTION

To more accurately focus on the lesion area for the fusion
and classification of multi-scale features, this paper proposes
a new attention method called TFA (Triple Fusion Attention).
TFA is designed for diversity and discriminative feature
learning in medical image classification, aiming to solve two
key problems: insufficient feature diversity and the neglect of
small lesions. This method achieves significant performance
improvements without adding additional parameters to the
model.

To efficiently collect multi-scale features in medical pic-
tures, TFA uses numerous convolutional layers with varying
kernel sizes and group counts. This feature extraction method
enables models to comprehend and process both minor
alterations (small lesions) and larger structures (tissue archi-
tecture) in medical pictures. First, the module uses multi-
scale convolutional layers to record visual features, with
changing kernel sizes and group numbers, in order to extract
rich feature information at various scales. Following the cap-
ture of multi-scale data, TFA uses the Convolutional Block
Attention Module (CBAM) to focus on critical image areas

D)~

Channel Attention

and features. The CBAM module is applied independently to
the feature group derived from each convolutional path, find-
ing and emphasizing information-rich channels through the
channel attention mechanism and focusing on critical spatial
locations in the image via the spatial attention mechanism.
This improves feature representation and efficiently combines
multi-scale data.

Furthermore, TFA includes adaptive convolutional layers
that can dynamically alter the weights of the convolutional
kernels based on the content of the feature map. This
enables the model to more easily adapt to medical images
with changing resolutions and content changes, increasing
the model’s robustness and generalization ability while also
improving its performance in processing complex medical
images. Before the output layer, TFA includes a residual
connection. This approach preserves significant information
from the original features while also assisting in the effective
propagation of the gradient during training, hence improving
the model’s training efficiency and performance. Residual
connections facilitate a smooth passage of information by
connecting inputs to outputs, preventing vanishing gradient
difficulties, and allowing for more efficient feature learning.
Figure 5 shows the general structure of TFA.

The input feature map has dimensions (B, C, H, W),
where B is the batch size, C is the number of channels,
and H and W are the height and breadth. TFA uses many
convolutional paths to capture features at varying sizes.
To obtain the feature map Fj, the kernel size k; and the
number of groups ¢; are used for each convolutional path
i, respectively. F; denotes the feature map derived from
the i-th convolution layer. Equation 3 illustrates how feature
extraction is achieved.

F; = Conv(z, ki, g:) 3

The CBAM output is pooled using global average pooling
and normalized with Softmax to achieve a dynamic weighted
fusion of multiscale feature maps (A;). The Softmax function
normalizes the values of each channel into an attention vector
A;, which is then used to weight the feature map F; from
the convolutional path. Each convolutional path’s features
are weighted and summed based on the attention vector A;,
resulting in weighted features that synthesize information
from many convolution paths. Equation 4 shows the formula
for the weighted features.

N
Eueighted = Z == Z<Fz © Az) (4)

i
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Fig. 5. Schematic diagram of TFA structure

The adaptive convolutional layer optimizes the weighted
features by constantly altering the weights of the convolu-
tion kernels to improve the feature extraction process. The
weighted fused feature is transformed into the final output
feature using an adaptive convolutional layer. Equation 5
shows the formula for the output feature.

Output = AdaptiveConv(Fweighted) (5)

In TFA, 1 x 1 convolution is frequently used to modify
the number of channels or dimensions of the feature map to
suit the model structure or the needs of a specific task. This
module adjusts the shape of the input feature x to match the
shape of the output feature created by the weighted feature.
The residuals from the 1 x 1 convolution change the size
and number of channels of the input features. After 1 x 1
convolution, the residuals and weighted features are added
element by element to get the final output. This residual
connection aids in the maintenance and propagation of key
information in the input features, as well as the effective
promotion of gradient propagation, which is beneficial to
the model’s optimization and convergence during training.
Equations 6 and 7 represent this process.

Residual = Convl x 1(x) (6)

Output = Output + Residual @)

TFA is important in medical image classification since
it uses multipath convolution and the CBAM technique to
capture pictures’ minutiae as well as broad trends. This
strategy improves the model’s capacity to find lesion sites,
increasing classification accuracy and reliability. This is
critical for jobs that demand attention to both subtle changes
in small lesions and overall structure. The addition of CBAM
enables the module to focus on critical image regions and
features while applying channel and spatial attention to
multi-scale features simultaneously. This capacity aids in
gathering lesion information at diverse scales, increasing the
model’s ability to recognise various lesion forms and sizes
and, eventually, improving the model’s accuracy in medical
image classification.

Medical images frequently have varying resolutions and
content fluctuations, and TFA’s adaptive convolution tech-
nology enables it to adapt to these changes, improving
the model’s stability and generalisation ability. The residual
connection allows the gradient to be backpropagated di-
rectly through the path across layers, alleviating the gradient
vanishing problem. It also effectively combines the original
key features and the enhanced features, allowing the deeper
network to learn features more efficiently and optimising
the model’s training effect and performance. TFA operates
well in diverse types and qualities of medical images, adapts
to medical images under different imaging equipment and
situations, and considerably improves its application value
and dependability in clinical practice.

IV. EXPERIMENTAL RESULTS
A. Experimental datasets

The Kvasir v1, Kvasir v2, HAM10000 and Brain Tumor
MRI datasets were used in this experiment. The Kvasir
datasets are primarily utilized for digestive tract image anal-
ysis and are divided into two versions, vl and v2, each
containing 8 categories. Both the vl and v2 datasets were
randomly split into training and validation sets with a ratio
of 8:2. The Kvasir vl dataset, developed by researchers at
University Hospitals in Norway, includes more than 4,000
gastroscopic images taken in clinical settings. These images
cover a variety of pathological conditions, lesion types,
and lesion severity. The Kvasir v2 dataset, created by the
University of Bergen in collaboration with major Norwegian
hospitals, is an upgraded version designed specifically for
image classification tasks related to digestive tract diseases. It
contains approximately 8,000 high-definition gastrointestinal
endoscopic images, derived from procedures such as gas-
troscopy and colonoscopy, and annotated and classified by
professional doctors. To promote research in medical image
analysis and computer-aided diagnosis, the Kvasir datasets,
vl and v2, are employed to automatically identify and locate
digestive tract lesions, thereby enhancing the early detection
and diagnosis of diseases.

The HAM10000 ("Human Against Machine with 10000
training images”) dataset was created in collaboration with
dermatologists and computer scientists at the University of
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Graz in Austria. It contains 10,015 high-quality dermoscopic
images of skin lesions collected from diverse populations,
each marked by a professional dermatologist. The dataset
covers 7 common skin lesion types: actinic keratoses and
intraepithelial carcinoma (AKIEC), melanoma (MEL), be-
nign keratosis (BKL), basal cell carcinoma (BCC), dermatofi-
broma (DF), vascular lesions (VASC), and melanocytic nevi
(NV). The dataset is randomly divided into a training set
and a validation set at a ratio of 8:2. Accurate classification
of skin lesions is crucial for the early detection of serious
diseases such as skin cancer. By providing public datasets
like HAM10000, research into the automatic detection and
diagnosis of skin lesions is promoted, facilitating the auto-
matic identification and localization of skin cancer lesions.
The Brain Tumor MRI dataset was jointly created by
multiple medical research institutions and data challenges,
and it includes multimodal MRI images from different pa-
tients, totaling 7023 high-quality brain tumor images. Each
image is annotated with tumor regions by a professional
radiologist. The dataset was randomly divided into training
and validation sets in an 8:2 ratio, covering various types of
brain tumors, including gliomas (both low-grade and high-
grade), meningiomas, neuroglial tumors, and other types
(such as metastatic tumors). The precise classification of
brain tumors is of great significance for the early detection
and diagnosis of serious diseases such as brain tumors. By
making this dataset public, we aim to advance research on the
automatic detection and diagnosis of brain tumors, thereby
promoting progress in the field of medical image analysis.

B. Experimental test of the fusion of Confnikster and Tefa

Five types of attention modules, namely channel at-
tention (abbreviation ConvNeXT + CA), spatial atten-
tion(abbreviation ConvNeXT+SA), spatial channel com-
bined attention(abbreviation Convnext+SA+CA and Con-
vNeXT +SA+CA), CBAM  attention(abbreviation Con-
vNeXT+CBAM) and TFA(abbreviation ConvNeXT+TFA),
were integrated into the Conxnext model for comparative
experiments. The output of these modules is used as the input
to the final inspection head. The test results of Conxnext and
the five attention mechanism models on the Kvasir dataset
are shown in Table 1, and the results show that the addition
of TFA significantly improves the Topl accuracy by 3.81%.

TABLE 1
COMPARISON OF EXPERIMENTAL RESULTS OF CONVNEXT COMBINED
WITH ATTENTION MODEL.

Settings Top-1(%) || Top-5(%)
ConvNeXT 84.83 100
ConvNeXT + CA 86.88 100
ConvNeXT + SA 85.34 100
ConvNeXT + CA + SA 86.12 100
ConvNeXT + SA + CA 85.76 100
ConvNeXT + CBAM 86.25 100
ConvNeXT + TFA 89.03 100

From the experimental results, it can be observed that the
classification accuracy of ConvNext with different attention
modules is 86.88%, 85.34%, 86.12%, 85.76%, 86.25%,
and 89.03%, respectively. These results show that Con-
vNext+TFA has the highest Top-1 accuracy, indicating that

TFA performs best among these types of attention and
achieves a higher accuracy rate when applied to medical
image classification tasks.

C. Comparative Tests

To confirm and further strengthen the evidence of the
proposed optimization scheme’s effectiveness, rigorous tests
were carefully performed using four datasets and three mod-
els within the context of this study.

1) Comparative experiments with Confnicst: ConvNeXT
is a new convolutional neural network architecture proposed
by Stanford University and the Google Al research team
in 2022. It uses a block-like design similar to the Vision
Transformer but replaces the Self-Attention mechanism with
a more efficient standard convolutional layer. This innovative
network structure not only maintains strong model perfor-
mance but also greatly reduces complexity and computational
overhead. Since medical images usually contain rich detailed
information, the hierarchical downsampling mechanism of
ConvNeXT can effectively capture multi-scale features, re-
sulting in a significant improvement in classification accu-
racy.

The results of training and validation using the Kvasir v1
dataset are shown in Table 2. The batch size is set to 8, the
number of epochs is set to 100, the learning rate is set to
Se-4, and the weight decay (regularization) factor is set to
Se-2. After the experiments, the model achieved an accuracy
of 84.83%, indicating its ability to correctly identify and
classify gastrointestinal abnormalities.

TABLE II
EXPERIMENTAL RESULTS OF CONVNEXT IN THE KVASIR V1 DATASET.
Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)

ConvNeXT 10.98 9.40 84.83 100
ConvNeXT + SE 11.14 9.40 85.63 100
ConvNeXT + EMA 11.18 10.64 86.13 100
ConvNeXT + CBAM 11.14 9.41 86.25 100
ConvNeXT + GAM 13.44 12.28 85.50 100
ConvNeXT + TRI 16.02 13.72 86.63 100
ConvNeXT + PSA 12.42 11.11 87.88 100
ConvNeXT + TFA 13.61 12.72 89.03 100

The results of training and validation using the Kvasir
v2 dataset are shown in Table 3. The parameters used by
the model are the same as those set when training and
validation were performed using the Kvasir v1 dataset. After
experiments, the accuracy of the model is 81.93%.

TABLE III
EXPERIMENTAL RESULTS OF CONVNEXT IN THE KVASIR V2 DATASET.

Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)

ConvNeXT 10.98 9.40 81.93 99.69
ConvNeXT + SE 11.14 9.40 82.49 100
ConvNeXT + EMA 11.18 10.64 89.81 100
ConvNeXT + CBAM 11.14 9.41 83.93 100
ConvNeXT + GAM 13.44 12.28 88.69 100
ConvNeXT + TRI 16.02 13.72 82.24 99.69
ConvNeXT + PSA 12.42 11.11 90.75 100
ConvNeXT + TFA 13.61 12.72 91.25 100
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The outcomes of training and validation using HAM 10000
datasets are displayed in Table 4. Following trials, the
model’s accuracy was 81.68%, meaning it could accurately
detect and categorize atypical skin lesions.

TABLE IV
EXPERIMENTAL RESULTS OF CONVNEXT IN THE HAM 10000 DATASET.

Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)

ConvNeXT 10.98 9.40 81.68 99.62
ConvNeXT + SE 11.14 9.40 81.89 99.50
ConvNeXT + EMA 11.18 10.64 81.80 99.56
ConvNeXT + CBAM 11.14 9.41 81.93 99.69
ConvNeXT + GAM 13.44 12.28 82.58 99.81
ConvNeXT + TRI 16.02 13.72 82.24 99.69
ConvNeXT + PSA 12.42 11.11 82.46 99.79
ConvNeXT + TFA 13.61 12.72 84.88 100

The results of training and validating using the Brain
Tumor MRI dataset are shown in Table 5.The parameters
used in the model are consistent with those set during
training and validation using the Kvasirvl dataset.After the
experiment, the model achieved an accuracy rate of 98.29%,
indicating that it can correctly identify and classify brain
tumor lesions.

TABLE V
EXPERIMENTAL RESULTS OF CONVNEXT IN THE BRAIN TUMOR MRI
DATASET.
Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
ConvNeXT 10.98 9.40 98.29 100
ConvNeXT + SE 11.14 9.40 98.58 100
ConvNeXT + EMA 11.18 10.64 99 100
ConvNeXT + CBAM 11.14 9.41 98.43 100
ConvNeXT + GAM 13.44 12.28 98.86 100
ConvNeXT + TRI 16.02 13.72 99 100
ConvNeXT + PSA 12.42 11.11 99.29 100
ConvNeXT + TFA 13.61 12.72 99.37 100

Through the experimental results of these four datasets, it
was found that TFA achieves the best performance in medical
image classification tasks within the ConvNeXt model. In the
Kvasir v1 dataset, TFA’s Top-1 accuracy is 4.2% higher than
the original model, in the Kvasir v2 dataset, TFA’s Top-1
accuracy is 9.82% higher than the original model, in the
HAMI10000 dataset, TFA’s Top-1 accuracy is 5.59% higher
than the original model, and in the Brain Tumor MRI dataset,
TFA’s Top-1 accuracy is 1.08% higher than the original
model. This shows that TFA is more effective than other
attention mechanisms in the application of medical image
classification tasks, performing the best.

2) Comparative experiment with Mobilenetv3: Mo-
bileNetV3 is a lightweight convolutional neural network
model designed for efficient image recognition and classifi-
cation tasks on computationally resource-constrained mobile
devices. MobileNetV3 features a network design based on
the inverted residual structure and incorporates an efficient
convolutional block with an h-swish activation function,
significantly reducing computational complexity. Addition-
ally, the model includes a mechanism to adaptively adjust
the depth and width of the network, allowing the network
structure to be dynamically tailored to different tasks and

hardware conditions. MobileNetV3 also utilizes neural ar-
chitecture search technology to automatically optimize the
network design, further enhancing model performance.

MobileNetV3 offers two variants: MobileNetV3-Large for
more powerful devices and MobileNetV3-Small for resource-
constrained devices. After the final convolutional layer, the
model employs global average pooling to convert the feature
map into a vector representation and uses the Softmax
function for classification prediction.

In this experiment, MobileNetV3 is trained and validated
using the same parameter settings as the Convnext model.The
experiments were conducted on the MobileNetV3-Large
model and tested on the Kvasir v1, Kvasir v2, HAM10000,
and Brain Tumor MRI datasets, with the results shown in
Tables 6, 7, 8, and 9, respectively.

TABLE VI
EXPERIMENTAL RESULTS OF MOBILENETV 3 IN THE KVASIR V1
DATASET.
Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
MobileNetV3 4.21 1.21 84.27 100
MobileNetV3 + EMA 3.17 2.84 89.13 100
MobileNetV3 + CBAM 3.08 1.21 88.25 100
MobileNetV3 + GAM 7.80 3.68 86.50 100
MobileNetV3 + TRI 2.70 1.22 89.88 100
MobileNetV3 + PSA 2.70 1.20 86.88 100
MobileNetV3 + TFA 2.70 1.20 90.25 100
TABLE VII
EXPERIMENTAL RESULTS OF MOBILENETV 3 IN THE KVASIR V2
DATASET.
Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
MobileNetV3 4.21 1.21 87.63 100
MobileNetV3 + EMA 3.17 2.84 91.19 100
MobileNetV3 + CBAM 3.08 1.21 90.75 100
MobileNetV3 + GAM 7.80 3.68 91.25 100
MobileNetV3 + TRI 2.70 1.22 92.69 100
MobileNetV3 + PSA 2.70 1.20 90.56 100
MobileNetV3 + TFA 2.70 1.20 93.13 100
TABLE VIII
EXPERIMENTAL RESULTS OF MOBILENETV3 IN HAM 10000 DATASETS.
Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
MobileNetV3 4.21 1.21 80.49 99.62
MobileNetV3 + EMA 3.17 2.84 81.99 99.56
MobileNetV3 + CBAM 3.08 1.21 81.11 99.25
MobileNetV3 + GAM 7.80 3.68 83.36 99.62
MobileNetV3 + TRI 2.70 1.22 84.55 99.62
MobileNetV3 + PSA 2.70 1.20 80.55 99.12
MobileNetV3 + TFA 2.70 1.20 85.55 99.91

Through the experimental results of these four datasets, it
was found that the baseline accuracies of the MobileNetV3
model on the Kvasir v1, Kvasir v2, HAM10000, and Brain
Tumor MRI datasets were 84.27%, 87.63%, 80.49%, and
98.58%, respectively. This indicates that the MobileNetV3
model can be applied to medical image classification tasks.
After experimental comparisons, it was found that the highest
Top-1 accuracy with TFA added on the Kvasir vl dataset
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TABLE IX
EXPERIMENTAL RESULTS OF MOBILENETV 3 IN BRAIN TUMOR MRI
DATASETS.
Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
MobileNetV3 4.21 1.21 98.58 100
MobileNetV3 + EMA 3.17 2.84 99.22 100
MobileNetV3 + CBAM 3.08 1.21 98,79 100
MobileNetV3 + GAM 7.80 3.68 98.86 100
MobileNetV3 + TRI 2.70 1.22 99.07 100
MobileNetV3 + PSA 2.70 1.20 98.72 100
MobileNetV3 + TFA 2.70 1.20 99.39 100

was 90.25%, which is 5.98% higher than the baseline model
accuracy. On the Kvasir v2 dataset, the Top-1 accuracy with
TFA added was 93.13%, which is 5.5% higher than the
baseline model accuracy. On the HAM10000 dataset, the
Top-1 accuracy with TFA added was 85.55%, exceeding the
baseline model accuracy by 5.06%. On the Brain Tumor
MRI dataset, the Top-1 accuracy with TFA added was
99.85%, exceeding the baseline model accuracy by 1.27%.
The accuracy with TFA added on the Kvasir v1, Kvasir
v2, HAM10000, and Brain Tumor MRI datasets was the
highest.It indicates that the TFA classification model has the
best medical image classification capability.

3) Regent’s comparative experiments: RegNet (Regular-
ized Network) is a series of convolutional neural network
(CNN) models used for image classification tasks.The model
structure of RegNet is a stacked architecture based on
bottleneck blocks and depthwise separable convolutions. By
controlling the number and width of the basic blocks, the
model’s complexity can be adjusted. This structure main-
tains efficiency while providing good image classification
performance.In RegNet, the activation function is usually
ReLU (Rectified Linear Unit) as the default choice.The
ReLU function maintains linear growth in the positive range
and outputs zero for negative values.This function is simple,
computationally efficient, and performs well in practice.The
parameters used in this model are consistent with those set
during the training and validation of the Convnext model.The
experimental results of RegNet on the Kvasir v1, Kvasir v2,
HAM10000, and Brain Tumor MRI datasets are shown in
Tables 10, 11, 12, and 13.

TABLE X
RESULTS OF REGNET EXPERIMENTS IN THE KVASIR V1 DATASET.

Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
RegNet 4.78 2.14 83.88 100
RegNet + EMA 5.11 3.17 88.50 100
RegNet + CBAM 5.05 2.16 84.50 100
RegNet + GAM 4.78 2.14 84.62 100
RegNet + TRI 4.78 2.17 87.25 100
RegNet + PSA 478 2.14 84.25 100
RegNet + TFA 4.78 2.14 88.75 100

Through experiments, the baseline accuracy of the model
is 83.88%, 88.38%, 77.99%, and 98.64%, respectively, in-
dicating that it can correctly classify lesions in medical
images and can be easily used in low-resource environments.
Experiments on the Kvasir v1, Kvasir v2, HAM10000, and
Brain Tumor MRI datasets show that the accuracy with

TABLE XI
EXPERIMENTAL RESULTS OF REGNET IN THE KVASIR V2 DATASET.

Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
RegNet 4.78 2.14 88.38 100
RegNet + EMA 5.11 3.17 90.75 100
RegNet + CBAM 5.05 2.16 90.25 100
RegNet + GAM 4.78 2.14 88.94 100
RegNet + TRI 4.78 2.17 90.13 100
RegNet + PSA 4.78 2.14 88.88 100
RegNet + TFA 4.78 2.14 91.81 100

TABLE XII

RESULTS OF REGNET EXPERIMENTS IN HAM 10000 DATASETS.

Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
RegNet 4.78 2.14 77.99 99.12
RegNet + EMA 5.11 3.17 83.68 99.62
RegNet + CBAM 5.05 2.16 83.61 99.81
RegNet + GAM 4.78 2.14 78.92 99.50
RegNet + TRI 4.78 2.17 84.68 99.87
RegNet + PSA 4.78 2.14 78.49 99.25
RegNet + TFA 4.78 2.14 85.57 99.72
TABLE XIII
RESULTS OF REGNET EXPERIMENTS IN BRAIN TUMOR MRI DATASETS.
Settings Param.(M) || FLOPs(M) || Top-1(%) || Top-5(%)
RegNet 4.78 2.14 98.64 100
RegNet + EMA 5.11 3.17 99.29 100
RegNet + CBAM 5.05 2.16 98.86 100
RegNet + GAM 4.78 2.14 98.79 100
RegNet + TRI 4.78 2.17 99.22 100
RegNet + PSA 4.78 2.14 98.86 100
RegNet + TFA 4.78 2.14 99.41 100

TFA added reaches the highest, achieving 88.75%, 91.81%,
85.57%, and 99.41%, respectively.The comparison reveals
that TFA still performs excellently across different network
models.

V. CONCLUSION

The fundamental concept of this research is to extract fea-
tures at various levels using convolutional layers of multiple
scales, then adaptively weight these features using the CBAM
mechanism, fuse the weighted features into an adaptive con-
volutional layer, and add residual connections to improve the
model’s learning capacity. The experimental findings show
that by successfully combining features from various levels,
TFA greatly increases the classification accuracy of medical
images. TFA solves the problems of inadequate feature
diversity and the failure of current attention methods to detect
minor lesions, achieving the greatest accuracy across several
datasets. This enhancement makes it easier for the model
to concentrate on key elements, improves performance and
generalization, and opens the door to investigating the TFA
module’s potential applications in other fields.
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