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Abstract—Current road damage detection models encounter
substantial challenges in striking an optimal balance between
precision and processing speed. Furthermore, owing to the
extensive number of parameters, these models present sig-
nificant challenges for effective deployment on edge devices
with constrained computational resources. In order to tackle
these challenges, this paper introduces a lightweight road
damage detection model, BSE-YOLO, which is founded on
the optimization of the YOLOv8n architecture. Initially, we
reformulate the feature fusion network by integrating the
concept of BiFPN to minimize both the parameter count and
computational overhead. Subsequently, a novel SC2f module
is introduced and integrated into the feature fusion network,
thereby further minimizing both the parameter count and
computational requirements. Additionally, this study presents
the SEAHead module, which makes use of limited compu-
tational resources to obtain vital information, consequently
improving both the efficiency and precision of detection tasks
while reducing computational costs. The experimental results
indicate that, in comparison to the original model, the BSE-
YOLO algorithm achieves a 40% reduction in parameters, a
decrease of 2.2G in FLOPs, an increase of 3 in FPS, and only
a 0.1% decline in mAP@0.5. This model effectively fulfills the
accuracy and real-time processing demands for road damage
detection tasks on mobile edge devices.

Index Terms—road damage detection, lightweight,
YOLOv8n, edge devices

I. INTRODUCTION

W ITH the ongoing development of Chinese society,
investments in highway construction have been pro-

gressively increasing each year, positioning it as one of
the world’s foremost road networks. As a cornerstone of
sustainable economic development [1], the road network
not only meets daily travel needs but also facilitates the
smooth operation of commerce and industry. However, the
aging infrastructure is gradually showing signs of wear and
tear, leading to various road surface defects. To foster the
stable growth of the national economy, it is imperative to
enhance the maintenance and safeguarding of transportation
infrastructure. Among the various types of road damage,
pavement cracks are particularly common. They not only
severely impact road safety but also diminish driving com-
fort. Therefore, ensuring the maintenance of high-quality
road conditions is a key task in safeguarding road safety. The
detection of road damage is crucial for mitigating pavement
degradation and ensuring traffic safety [2].
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Initially, road damage assessment typically relied on man-
ual methods, where evaluators conducted on-site inspections
to visually identify and record road damage. This approach
required significant expertise and experience from the evalu-
ators, necessitated their physical presence, was cumbersome
and costly, and entailed safety risks [3]. Additionally, since
manual inspections often required road closures for on-site
evaluations, they frequently disrupted traffic flow. Given
these limitations, traditional manual inspection techniques
proved insufficient for large-scale road damage assessments.
With the advancement of technology, semi-automatic de-
tection techniques have progressively replaced traditional
manual approaches, becoming the mainstream method for
road damage assessment. In semi-automatic detection meth-
ods, high-speed vehicles outfitted with specialized equipment
traverse the roads, automatically capturing images of the
roadway. These images are then analyzed by professional
technicians for the identification and recording of various
types of road damage [4]. Although this method reduces traf-
fic disruption, it remains associated with certain drawbacks,
such as cumbersome data processing, limited detection tar-
gets, and high equipment costs.

The emergence of machine learning has created new
avenues for the implementation of road damage detection
and pavement crack classification [5]. The swift advance-
ment of deep learning technology has garnered significant
attention across various domains, including object detection.
Deep learning architectures have achieved remarkable speed
and precision in tasks related to object detection, high-
lighting their strong performance and ability to generalize.
By eliminating manual feature extraction and sophisticated
feature segmentation techniques, deep learning diminishes
the likelihood of misclassifying or omitting critical target
features during the pre-sampling phase of feature extraction.
Object detection methodologies leveraging deep learning can
typically be classified into two distinct categories: two-stage
algorithms and one-stage algorithms. Prominent examples
of two-stage algorithms encompass R-CNN [6], Fast R-
CNN [7], Faster R-CNN [8] and SPP-Net [9]. Xu et al.
[10] integrated the training strategies of Faster R-CNN and
Mask R-CNN, achieving remarkable detection performance
with a limited number of crack images and yielding favor-
able detection results. Nevertheless, the method exhibits a
comparatively slow detection speed, and its generalization
capability requires further enhancement. He et al. [11] in-
troduced a method for road damage detection that integrates
Mask R-CNN with transfer learning, demonstrating notable
accuracy in detecting damages. Nevertheless, the constrained
magnitude of damage persists in presenting challenges for a
comprehensive evaluation of the model’s efficacy, while the
detection speed remains insufficient to fulfill real-time de-
tection criteria. Although two-stage algorithms demonstrate
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advantages in detection accuracy, their slower speed renders
them impractical for real-time detection needs. Single-stage
object detection algorithms encompass the You Only Look
Once (YOLO) series [12–17], Single Shot MultiBox Detector
(SSD) [18] and Retinanet [19]. Nonetheless, the limited
degree of damage still poses difficulties for a comprehensive
evaluation of the model’s effectiveness, and the detection
speed is insufficient to meet real-time detection standards.
Consequently, single-stage algorithms have garnered height-
ened interest within the domain of road damage detection.
Lu et al. [20] implemented an optimized SSD network for
crack detection, aiming to enhance detection accuracy while
simultaneously adhering to real-time detection standards.
However, in complex scenarios, multi-scale crack detection
continues to require enhancement. Ma et al. [21] developed
a network that integrates PCGAN and YOLO-MF for crack
detection and tracking, capable of delivering accurate and
real-time performance when deployed on devices. Wang et al.
[22] presented a lightweight crack detection framework that
employs a bidirectional network, effectively establishing an
optimal equilibrium between inference speed and detection
accuracy. While the detection speed has been enhanced,
there is a corresponding decline in accuracy, and the com-
plexity of the network structure renders it unsuitable for
implementation on mobile devices. Guo et al. [23] intro-
duced an enhanced YOLOv5 framework for road damage
detection, employing the lightweight MobileNetV3 as the
backbone network to mitigate model complexity. They also
implemented cooperative attention mechanisms to augment
the network’s capability for precise localization of damaged
targets, thereby enhancing the accuracy of damage detection.
Xia Yu et al. [24] incorporated an attention module into
YOLOv7, adjusting the weights of visual features while min-
imizing the impact of irrelevant features. Tu Chengfeng et
al. [25] integrated the lightweight architectures ShuffleNetv2
and GhostNet within the YOLOv5 framework, thus creating
an efficient object detection system.

YOLOv8, developed by Ultralytics, the company behind
YOLOv5, is an architecture consisting mainly of a backbone
and head, with the neck incorporated into the head. The
architecture of YOLOv8 incorporates the concept of the CSP
module, wherein the C2f module supersedes the original
C3 module to further diminish the model’s complexity. It
retains the Conv and SPPF modules from YOLOv5, but
the size of the first convolution’s kernel has been reduced.
The neck preserves the architecture of the feature pyramid
network (FPN) and the path aggregation network (PANet)
[26, 27]. Compared to YOLOv5, YOLOv8 eliminates the
1x1 downsampling layer. The head employs an anchor-free
design and features a decoupled structure to independently
manage classification and regression tasks. This architecture
enables each branch to concentrate on its specific task,
thereby minimizing the conflict between classification and
regression while enhancing the capability to detect irregular
objects, ultimately improving the model’s overall accuracy.
In classification tasks, the binary cross-entropy (BCE) loss
function is employed, whereas for regression tasks, both the
dual-focal loss (DFL) and complete intersection over union
(CIOU) loss functions are utilized.

This paper extends the significant achievements of the
YOLOv8 object detection algorithm, aiming to further en-

hance its performance. While YOLOv8 demonstrates out-
standing performance in detection accuracy and inference
speed, the subsequent rise in model parameters and the
accompanying computational burden have constrained its
deployment in real-world applications. In response to these
challenges, a lightweight road defect detection model named
BSE-YOLO has been developed, which is founded on
YOLOv8n and seeks to minimize computational complexity
and parameter size while preserving detection accuracy. The
enhancements include:

1. Introducing the BiFPN to improve feature extraction
capabilities while reducing computational and parameter
overhead during feature fusion.

2. The SC2f module is introduced, integrating the StarV2
and C2f modules into a novel feature extraction network
within the bidirectional feature pyramid, aimed at enhancing
detection efficiency while reducing both parameters and
computational requirements.

3. Introducing the SEAHead detection module to further
reduce computational and parameter requirements in the head
section.

II. IMPROVED MODEL
In Chapter 2, this paper provides an in-depth explanation

of the proposed enhancements to the model. Section 2.1
describes the overall structure of the BSE-YOLO model,
establishing the basis for the detailed analysis in subsequent
sections. Section 2.2 introduces the BiFPN (Bi-directional
Feature Pyramid Network), which plays a crucial role in
improving lightweight performance by facilitating efficient
feature fusion. Following this, Section 2.3 discusses in detail
the SC2f lightweight module, a novel combination of the
C2f and StarV2 modules. Finally, Section 2.4 explains the
implementation and relevance of the new detection head,
SEAHead, within the improved model. Each section system-
atically elaborates on key components, thereby improving the
clarity and coherence of the proposed model.

A. BSE-YOLO

This section introduces the overall structure of the pro-
posed algorithm built on YOLOv8n, as shown in Fig. 1.
Initially, the BiFPN is introduced to effectively integrate
features from various levels, thereby enhancing feature rep-
resentation and utilization efficiency [28]. The BiFPN facili-
tates dual fusion in both top-down and bottom-up directions,
thereby enriching the feature set. This bi-directional feature
fusion strategy improves the model’s recognition accuracy
while simultaneously reducing the parameter size. Next, the
SC2f lightweight module is incorporated into the BiFPN
to strengthen feature representation, reduce computational
complexity, and decrease parameter count, thereby increasing
detection speed. Ultimately, the SEAHead detection module
is utilized to reduce both the computational load and param-
eter size of the head while maintaining detection efficiency.

B. BiFPN

YOLOv8 employs a feature pyramid architecture to extract
multi-scale features, constructing a Feature Pyramid Network
(FPN) that utilizes feature maps at various scales to facilitate
the detection of objects with differing sizes. Specifically,
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Fig. 1: Network architecture of the BSE-YOLO

YOLOv8 incorporates the bottom-up PANet architecture as
its neck network and integrates it with a top-down FPN
to enable the prediction layer to access both high-level
semantic information and low-level spatial details. However,
in the context of road damage detection, road cracks are
typically characterized by their elongated and discontinuous
nature, with the damaged areas often being small and ex-
hibiting a slender shape. Thus, the network requires strong
feature extraction capabilities to efficiently manage these
feature complexities. BiFPN, a neural network architecture
designed for object detection, enhances feature extraction
and is therefore more suitable for road damage detection
tasks. To achieve improved feature fusion, the BSE-YOLO
algorithm introduces BiFPN and incorporates modifications
to the BiFPN connection structure, optimizing the selection
of connection pathways, as shown in Fig. 2.

BiFPN is a type of FPN architecture developed to opti-
mize feature fusion in object detection architectures. Fig. 2
illustrates the network architecture of BiFPN. It utilizes two
primary pathways to combine features across different scales:
the top-down path transmits high-resolution feature maps
from the top of the pyramid downward to enrich contex-
tual information for lower-resolution features. The bottom-
up pathway consolidates information from low-resolution
feature maps and propagates it upward to refine the details
in high-resolution features, thereby further enhancing the
efficacy of object detection. BiFPN addresses the limitations
of traditional FPN by introducing information exchange paths
both top-down and bottom-up, enabling more efficient feature
aggregation and contextual information flow. Through adap-
tive feature fusion and selection, BiFPN effectively mitigates

p4

p3

p5

p2

Fig. 2: BiFPN network architecture

issues such as information bottlenecks and feature distortion
inherent in feature pyramid networks.

The fundamental concept underlying the BiFPN architec-
ture lies in its innovative approach to integrating bidirectional
information flow with rapid normalization fusion. In the
process of merging low-level and high-level features, BiFPN
employs learnable weights to assess the significance of vari-
ous input features, rather than merely executing a summation
or concatenation. This methodology effectively leverages the
integration of bidirectional cross-scale connections alongside
fast normalization fusion within BiFPN. Subsequently, we
illustrate the fusion process of two features at level 4 in the
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BiFPN framework, as depicted in Fig. 2:
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Where Pmid
4 denotes the intermediate feature at the 4th

level of the top-down pathway, and P out
4 signifies the output

feature at the 4th level of the bottom-up pathway. wi denotes
a learnable weight. ϵ = 0.0001 serves as a small constant to
mitigate numerical instability. The Resize operation com-
monly encompasses upsampling or downsampling to facil-
itate resolution alignment, whereas Conv typically denotes
convolutional operations employed for feature extraction.

C. SC2f module

The C2f module serves as a crucial element within the
YOLOv8 neural network architecture, specifically engineered
for feature extraction and information fusion. The design
of the C2f module is inspired by the strengths of ResNet
and DenseNet, augmenting the network’s expressive power
and performance through improved feature fusion and infor-
mation flow. Through the integration of multiple convolu-
tion operations and feature fusion, the C2f module extracts
multi-scale, multi-level features, thereby enriching feature
representation. By leveraging feature fusion and residual
connections, the C2f module enhances information flow,
ensuring smoother communication between layers and aiding
in the maintenance of gradient flow while mitigating gradient
vanishing. Nevertheless, in the context of road damage detec-
tion, the intricate nature of road backgrounds across various
regions presents significant challenges. Cracks often display
elongated and discontinuous features, while damages tend

to be slender and small; additionally, varying weather con-
ditions, such as overcast skies and intense sunlight, further
complicate crack detection. These factors present challenges
for the effective deployment of the model on edge devices.

In order to facilitate lightweight road damage detection,
the BSE-YOLO model integrates the SC2f module. This
module utilizes the StarV2 component, which, optimized
from the original Star module [29], substitutes fully con-
nected layers with 2D convolutions and employs the SiLU
activation function in place of the GELU activation function,
as illustrated in Fig. 3 (b). The SC2f module replaces the
original Bottleneck in C2f with the StarV2 component. The
central design concept of the StarV2 component is derived
from the Star module in StarNet, as depicted in Fig. 3 (a).

The SC2f module efficiently diminishes both the com-
putational burden and the parameter count while preserv-
ing the model’s capacity for expression.StarNet is a neu-
ral network model that maps inputs to high-dimensional
nonlinear feature spaces using element-wise multiplication
(called star-shaped operation) to promote efficient and com-
pact network structures. The Star module constitutes the
core component of the StarNet architecture. Element-wise
multiplication integrates features from different subspaces
through element-by-element multiplication, serving as an
implicit high-dimensional space mapping operation. This
operation is termed the “star operation” because the symbol
for element-wise multiplication resembles a star. Traditional
deep learning methods increase network depth to map input
features from low to high dimensions, which significantly
raises model complexity and computational load. Unlike
traditional neural networks that expand network width (chan-
nels), the star operation functions similarly to a kernel
function by performing pairwise feature multiplication across
different channels, particularly resembling polynomial ker-
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nels. When implemented in neural networks and arranged in
multiple layers, each layer facilitates an exponential increase
in implicit dimensional complexity. Even with only a few
layers of star-shaped operations, it can attain nearly infinite
dimensions within a compact feature space. The distinctive
advantage of star-shaped operations resides in their capacity
to execute computations within a compact feature space
while leveraging implicit high-dimensional representations.
By utilizing the star operation, StarNet can surpass sev-
eral meticulously designed efficient models, including Mo-
bileNetv3 [30], EdgeViT [31], and FasterNet [32].

In the context of a neural network’s single layer, the
asterisk operation is commonly represented as (WT

1 X + B1)
∗ (WT

2 X + B2), indicating the element-wise multiplication
of two features obtained from linear transformations. The
weight matrix and bias may also be combined into a unified
entity, identified as W = [W,B]T , and likewise referred to
as X = [X, 1]T , thus enabling the creation of the asterisk
operation (WT

1 X) ∗ (WT
2 X). To simplify our analysis, we

consider a scenario with a single-output channel transforma-
tion and a single-element input.Specifically, let w1, w2, x ∈
R(d+1)×1 be defined, with d denoting the quantity of input
channels. This formula can be expanded to support multiple
output channels W1,W2 ∈ R(d+1)×(d′+1), while utilizing X
∈R(d+1)×n to process various feature elements. Typically,
the STAR operation can be expressed as follows:

wT
1 x ∗ wT

2 x =

(
d+1∑
i=1

wi
1x

i

)
∗

d+1∑
j=1

wj
2x

j


=

d+1∑
i=1

d+1∑
j=1

wi
1w

j
2x

ixj

(2)

This operation facilitates the fusion of features through
element-wise multiplication, effectively capturing interac-
tions between different feature elements and enabling the
network to map inputs to high-dimensional, nonlinear feature
spaces efficiently.

D. SEAHead module
In the YOLOv8 model, the detection layer plays a piv-

otal role, as it directly influences the model’s capacity to
accurately identify and localize various objects within an
image. Specifically, this layer produces predicted bounding
boxes along with their associated class probabilities. This
process involves complex calculations, including extracting
information from feature maps and converting it into the final
output format.

In road damage detection tasks, particularly with the
RDD2022 dataset, data is collected from various countries
using different devices and under diverse conditions, leading
to substantial variations in image quality. Some images may
be of low resolution or blurry, while others may depict deteri-
orated road conditions, which directly impact the algorithm’s
recognition and classification capabilities. Additionally, some
images exhibit interference from elements such as sand or
snow on the road, along with challenging weather conditions
like overcast skies or intense sunlight, which can further
constrain the model’s detection performance.

In order to tackle these challenges, the BSE-YOLO model
incorporates the SEAHead attention detection head, which

integrates attention mechanisms across spatial positions and
output channels. By employing attention mechanisms, the
model integrates information from the input data more effec-
tively, enabling a better understanding of contextual elements
within the images. This allows the model to emphasize areas
of road damage while de-emphasizing background regions.
This method proves to be especially effective in addressing
the intricate shapes and contexts of objects within road
damage images. The SEAHead enhances the stability of road
damage detection and assists the network in rapidly focusing
on target areas, thereby avoiding redundant calculations in
non-relevant regions. The configuration of this module is
illustrated in Fig. 4 (a).
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SiLU,BN

conv conv

Conv2d Conv2d

SEA SEA

Bbox 
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Cls 

Loss

(b) SEA(a) SEAHead

Fig. 4: The structural of SEAHead and SEA

The SEA module, inspired by the SEAM design concept
[33], substitutes the original multi-head attention mechanism
with 2D convolution, depthwise separable convolution, and
point convolution. It also employs the SiLU activation func-
tion, as illustrated in Fig. 4 (b). In 2D convolution, each
kernel processes information across all input channels si-
multaneously, capturing complex inter-channel relationships
and dependencies more effectively. This unified approach
prevents potential spatial information loss that may arise
when convolution operations are decomposed into multiple
steps. Capturing inter-channel interactions in a single opera-
tion enhances the network’s feature extraction capabilities.
This method is more straightforward and eliminates the
need for additional steps to combine results from different
convolutions, thereby simplifying the computational process.
The SiLU activation function is preferred over GELU due to
its simplicity, superior performance, broad applicability, and
robustness. These attributes render SiLU particularly suitable
for road damage detection tasks.

In conclusion, the SEA attention mechanism significantly
enhances feature representation and localization accuracy,
effectively minimizing redundant computations while aug-
menting the model’s generalization capability and detection
performance for small targets. The SEAHead detection head
effectively reduces the computational and parameter load,
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facilitating the lightweight implementation of road damage
detection.

III. EXPERIMENTS AND ANALYSIS

A. Introduction to Database

To assess the efficacy of the proposed BSE-YOLO model,
an experimental validation was performed utilizing the
RDD2022 road damage dataset. The RDD2022 dataset was
developed specifically for the Challenge on Road Defect
Detection (CRDDC2022) and is carefully crafted to enhance
deep learning approaches aimed at detecting road defects.
This dataset comprises 47,420 annotated road images, en-
compassing more than 55,000 instances of road damage from
six countries: Japan, India, the Czech Republic, Norway, the
United States, and China. The dataset includes nine cate-
gories of road damage: D00 (longitudinal cracks), D01 (con-
struction joint part), D10 (transverse cracks), D11 (construc-
tion joint part), D20 (alligator cracks), D40 (potholes), D43
(crosswalk blur), D44 (white line blur), and D50 (manholes).
For this study, images from Japan, India, the Czech Republic,
and Norway were selected. The dataset is partitioned into a
training set and a validation set in an 8:2 ratio, consisting
of 16,832 images designated for training and 4,208 images
allocated for validation.The selected images cover diverse
road damage scenarios, offering a comprehensive test bed
for assessing the performance of the improved YOLOv8n
algorithm.

B. Experimental Environment and Parameter Configuration

The experimental framework was developed on Ubuntu
18.04 in conjunction with the PyTorch deep learning library,
employing YOLOv8n as the core model. A comprehensive
configuration of this experimental environment is detailed in
Table 1.

TABLE I: Setup and training environment

Environmental Parameter Value

Operation platform Ubuntu18.04

Deep learning framework Pytorch

programming language Python3.8

GPU RTX 3090

CPU Intel(R) Xeon(R) Platinum 8255C

RAM 32GB

The same hyperparameters were consistently applied
across all training experiments. Table II presents the specific
hyperparameters employed in the training process.

C. Evaluation Index

To evaluate the effectiveness of the proposed enhance-
ments in improving the performance of the YOLOv8n
algorithm, specific evaluation metrics were utilized. The
evaluation metrics encompass accuracy, recall, mean average
precision (mAP), parameter count, floating-point operations
per second (FLOPs), and frames per second (FPS). Accuracy

TABLE II: Hyperparametric configuration

Hyperparameters Value

Learning Rate 0.01

Image Size 640 × 640

Momentum 0.937

Batch Size 64

Epoch 200

Weight Decay 0.0005

serves as a crucial metric for assessing a model’s effective-
ness in predicting positive classes. It quantifies the ratio of
true positive samples to the total number of positive predic-
tions generated by the model. The calculation of accuracy is
expressed in Equation (3).

Precision Score =
TP

(FP + TP )
(3)

Where TP signifies the number of true positives, referring
to instances that the model has accurately identified as
targets. FP represents false positives, which are individuals
erroneously classified as targets by the model due to either
background classes or misclassified negative predictions.
Additionally, recall rate is a vital metric closely linked with
both TP and FP; it quantifies the model’s effectiveness in
identifying all relevant instances, as demonstrated in Equa-
tion (4).

Recall =
TP

TP + FN
(4)

Where FN denotes the count of false negatives, referring
to instances that the model failed to identify. The mean
Average Precision (mAP) serves as a metric for average
precision and is commonly employed to assess the detection
performance of the model across various categories. It is
a comprehensive metric for performance evaluation. The
formula for calculating mAP is shown below:

mAP =
1

n

n∑
k=1

APk (5)

Where APi denotes the average precision for a specific
category, while n represents the total number of categories.
FLOPs are utilized to assess the computational complexity of
the model. The relationship between the number of param-
eters and FLOPs is positively correlated, indicating that an
increase in parameter count necessitates greater computing
resources. FPS (frames per second) serves as a metric for
evaluating the real-time performance of object detection
algorithms. Specifically, FPS indicates the number of images
that can be processed and detected by the model each second.

D. Experimental Results

In order to visually assess the performance enhancement
of the BSE-YOLO model, we conduct an analysis of its
accuracy and recall rates through the P-R curve. Precision
is represented on the x-axis, while recall is positioned on
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Fig. 5: Compare the P-R curves of YOLOv8n and BSE-YOLO on the RDD2022 dataset

TABLE III: Ablation experiment

YOLOv8n BiFPN SC2f SEAHead P(%) R(%) mAP@0.5(%) Params FLOPs(G) FPS

√ 60.7 50.5 55.5 3,007403 8.1 126

√ √ 58.3 53.5 55 1,993079 7.1 128

√ √ 56.5 53.3 55.6 2,704657 7.2 127

√ √ 54.6 54.8 55.7 2,819243 7 127

√ √ √ 60.2 51.4 55.7 1,963799 7 130

√ √ √ √ 59 52.1 55.4 1,775639 5.9 129

the y-axis, thereby providing a clear depiction of changes
in model performance and its capacity to detect positive
instances. Furthermore, the area under the P-R curve serves
as a significant metric for evaluating the model’s effective-
ness, with a larger area signifying superior performance.
Fig. 5 illustrates the P-R curves derived from experiments
performed on the RDD2022 dataset. Fig. 5 (a) presents the P-
R curve of the original YOLOv8n algorithm, whereas Fig. 5
(b) demonstrates the P-R curve of the BSE-YOLO algorithm.
The blue curve illustrates the average precision across all
categories at a threshold of mAP@0.5. Other colored curves
indicate the mAP@0.5 for individual classes. In Fig. 5 (a),
the blue curve presents an mAP@0.5 of 55.5%, whereas in
Fig. 5 (b), the mAP@0.5 is 55.4%. Despite a minor reduction
of 0.1% in mAP@0.5, the parameter count was reduced by
40%, and FLOPs decreased by 2.2 GFLOPs. This illustrates
the efficiency of the lightweight design implemented in the
proposed BSE-YOLO algorithm.

E. Ablation Study

The BSE-YOLO algorithm introduces three key opti-
mization measures to enhance the YOLOv8n algorithm. To
demonstrate the effectiveness of each optimization measure
on the original algorithm, the following ablation experiments
were conducted:

1.Incorporating the BiFPN feature fusion network into the
foundational algorithm.

2.Replacing all C2f modules in the Neck section of the
foundational algorithm with SC2f modules.

3.Incorporating the SEAHead detection head into the orig-
inal algorithm.

4.Combining the BiFPN Feature Pyramid Network and
SC2f modules into the original algorithm.

5.Applying the BiFPN Feature Pyramid Network, SC2f
modules, and SEAHead detection head simultaneously in the
YOLOv8n algorithm to assess the overall effectiveness of
these modules integrated into the original network.

The proposed BiFPN Network reduced the number of
parameters by approximately 1 million, decreased mAP@0.5
by 0.5%, decreased FLOPs by 1 billion, and increased
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TABLE IV: Performance comparison of mainstream algorithms

Model Name P(%) R(%) mAP@0.5(%) Params FLOPs(G) FPS

Faster-RCNN [8] 62.7 59.3 60.2 38.3 47.4 51

YOLO-LRDD [34] 59 58.2 57.6 19.8 17.4 86

YOLOv5s 61.9 56.5 56.7 9 17.5 90

YOLOv6s [17] 63.6 53.4 57.9 16 44.5 66

YOLOv7-tiny [35] 59.2 51.6 56.3 6.1 13.2 101

YOLOv8s 60.4 57.7 58.2 11.1 28.7 80

YOLOv8n 60.7 50.5 55.5 3 8.1 126

YOLOv9-T [36] 57.2 53 56.2 2.6 10.7 130

YOLOv10n [37] 60.5 54.5 54.5 2.2 6.5 137

FasterNet-YOLOv8n 55.6 48.5 52.3 1.7 5.1 133

BSE-YOLO(ours) 59 52.1 55.4 1.7 5.9 129

FPS by 1. Incorporating the SC2f module into the original
algorithm increased mAP@0.5 by 0.14%, reduced the num-
ber of parameters by approximately 0.3 million, decreased
FLOPs by 0.9 billion, and increased FPS by 2. Integrating
the SEAHead detection head into the algorithm increased
mAP@0.5 by 0.2%, reduced the number of parameters by
0.2 million, decreased FLOPs by 1.1 billion, and increased
FPS by 1. Experimental data indicate that incorporating the
BiFPN Feature Pyramid Network significantly reduces model
complexity. The incorporation of the SC2f module and SEA-
Head detection head significantly mitigated the decline in
mAP@0.5 attributed to the BiFPN feature pyramid network,
and upon fully integrating these three enhanced modules
into the original algorithm, both the parameter count and
computational load were reduced. In comparison to the initial
model, the BSE-YOLO algorithm features fewer parameters,
reduced complexity, and maintains nearly identical detection
performance. The experimental results presented in Table III
substantiate the effectiveness of the proposed enhancements
to the original algorithm.

In conclusion, this study achieved a reduction of approx-
imately 40% in parameter count and 2.2 billion FLOPs
compared to the original algorithm, with a slight reduction
of 0.1% in mAP@0.5. This suggests that the suggested
enhancements had a negligible effect on the model’s de-
tection capabilities, while considerably decreasing both the
number of parameters and computational demands. These
modifications not only lowered the model’s parameter count
and processing requirements but also preserved detection
accuracy, achieving an effective balance between real-time
performance and precision in detection.

F. Compared with the Performance of Advanced Object
Detection Algorithms

To validate the advantages of the proposed BSE-YOLO
algorithm for road damage detection, we conducted experi-
ments using the RDD2022 dataset. The evaluation compared
BSE-YOLO with several algorithms, including Faster R-
CNN [8], YOLO-LRDD [34], YOLOv5s, YOLOv6s [17],

YOLOv7-tiny [35], YOLOv8s, YOLOv8n, YOLOv9-T [36]
and YOLOv10n [37]. Additionally, one lightweight models
based on YOLOv8n were FasterNet-YOLOv8n. The perfor-
mance of these models was assessed by evaluating detection
accuracy, recall rate, model parameter count, floating-point
operations per second (FLOPs), mean average precision
(mAP) at an IoU threshold of 0.5, and frames per second
(FPS). The detailed results are presented in Table IV. While
YOLOv9 and YOLOv10 represent the latest iterations of
the model, their enhancements yield superior performance
when assessed against consistent evaluation metrics. As
shown in Table 4, the proposed model demonstrates superior
performance compared to other algorithms regarding pa-
rameters, computational complexity, and frames per second
(FPS). While its accuracy is marginally lower than that of
certain other algorithms, the detection capability of the model
remains largely unaffected.

G. Detection on Random Images

Fig. 6 illustrates the detection results of both YOLOv8n
and the BSE-YOLO algorithm on the RDD2022 dataset.
The top three images in Fig. 6 display the detection re-
sults of the YOLOv8n algorithm, while the bottom three
images present the results of the BSE-YOLO algorithm.
The comparison of these images indicates that the BSE-
YOLO algorithm achieves similar detection performance to
the original YOLOv8n algorithm.

IV. CONCLUSION

This study introduces a lightweight algorithm for detecting
road damage, referred to as BSE-YOLO, which is built upon
the YOLOv8n framework and exhibits enhanced overall per-
formance when compared to existing mainstream object de-
tection algorithms. The principal advancements introduced in
this research encompass the incorporation of a BiFPN feature
pyramid network, which enables more efficient feature aggre-
gation and context propagation. This enhancement enhances
the model’s recognition capabilities and accuracy while con-
currently reducing the number of parameters. Implementing
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Fig. 6: Different detection results between the YOLOv8n and the BSE-YOLO algorithms

a new SC2f module in the neck section enhances feature
representation while minimizing computational and parame-
ter overhead, thereby enabling efficient inference on mobile
devices. Integrating the SEAHead detection head improves
feature representation and localization accuracy, enhances
model generalization and small object detection, reduces
redundant computations, and decreases computational and
parameter demands in the detection head. These lightweight
improvements result in the BSE-YOLO algorithm surpassing
some current mainstream object detection algorithms in
comprehensive performance. By achieving lightweight opti-
mization and enhancing real-time performance, the model’s
detection capability is effectively preserved.
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