
 

 
Abstract—There are two challenges in the development of 

new metaheuristics. The first challenge is the utilization of the 
improving status of agents. The second challenge is the 
employment of stagnation avoidance strategies. This work 
introduces a new metaheuristic called include-exclude 
optimization (IEO). It provides a novel approach by combining 
both the quality and improving statuses of agents to construct 
the reference and determine the direction of the guided search 
or movement. IEO also proposes a new technique to avoid 
stagnation by accepting the best solution candidate when 
stagnation occurs after the agent performs three guided 
searches. Then, IEO is challenged to solve three use cases. The 
first use case is the 23 traditional functions. The second use case 
is ELD problem representing practical problem in electrical 
engineering field. The third use case is gear train design problem 
representing practical problem in mechanical engineering field. 
In this assessment, IEO is benchmarked with five new 
metaheuristics: golden search optimization (GSO), total 
interaction algorithm (TIA), dollmaker optimization algorithm 
(DOA), carpet weaver optimization (CWO), and hiking 
optimization (HO). The result shows that IEO is superior to 
these five metaheuristics in handling 23 traditional functions 
and performs the best in handling ELD problem and gear train 
design problem. 

 
Index Terms—optimization, metaheuristic, economic load 

dispatch problem, gear train problem. 
 

I. INTRODUCTION 

 PTIMIZATION is highly related to the engineering 
field. Optimization studies can be found in many 

engineering studies, including electrical, mechanical, 
industrial, and so on. Optimization studies can be found in 
many electrical engineering studies, especially in power 
systems, including the economic dispatch [1], unit 
commitment [2], power flow [3], and so on. In mechanical 
engineering, optimization can be found easily in many 
engineering designs, such as gear train, three-bar truss, 
spring, welded beam, cantilever beam, tubular column, and 
so on [4]. In industrial engineering, optimization studies are 

 
 

 

employed in vast areas of supply chain management from the 
production scheduling [5], warehousing [6], shipment [7], 
and so on.  

Metaheuristics has been widely employed in various 
optimization studies in engineering fields. In power system, 
some metaheuristics have been employed to solve optimal 
power flow problems, such as particle swarm optimization 
(PSO) [8], Archimedes optimization algorithm (AOA) [3], 
driving training-based optimization (DTBO) [9], marine 
predator algorithm (MPA) [10], and so on. Some 
metaheuristics also have been employed to solve economic 
dispatch problems, including sparrow search algorithm 
(SSA) [11], chameleon algorithm (CA) [12], dandelion 
optimizer (DO) [13], manta-ray foraging algorithm (MRFA) 
[14], teaching learning-based optimization (TLBO) [15], and 
so on. In production system, some metaheuristics have been 
utilized to solve scheduling problems, such as: cuckoo search 
algorithm (CS) [16], genetic algorithm (GA) [17], artificial 
bee colony (ABC) [18], and so on. In mechanical engineering 
design field, some metaheuristics have been employed to 
solve gear train design problems, such as: prairie dog 
optimization (PDO) [4], evolutionary algorithm (EA) [19], 
learning-cooking algorithm (LCA) [20], and so on. 

The vast employment of metaheuristics in various 
optimization studies can be linked to the abundance of new 
metaheuristics. There are a lot of new metaheuristics 
introduced in the recent years, such as: golden search 
optimization (GSO) [21], addax optimization algorithm 
(AOA) [22], carpet weaver optimization (CWO) [23], total 
interaction algorithm (TIA) [24], dollmaker optimization 
algorithm (DOA) [25], hiking optimization (HO) [26], 
hippopotamus optimization (HO) [27], greater cane rat 
algorithm (GCRA) [28], group better-worse algorithm 
(GBWA) [29], artificial protozoa optimization (APO) [30], 
and so on. 

In all studies proposing a new metaheuristic, the proposed 
technique was assessed by employing it to handle certain 
optimization problems. Standard use cases like 23 traditional 
functions or CEC series become the common or mandatory 
use case. Meanwhile, many of these metaheuristics were also 
assessed with the practical problems. The engineering design 
problems become the most popular ones as these problems 
can be found in many studies like in the first introduction of 
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clouded leopard optimization (CLO) [31], chameleon swarm 
algorithm (CSA) [32], walrus optimization algorithm 
(WaOA) [33], deep sleep optimizer (DSO) [34], learning 
cooking algorithm (LCA) [35], HO [27], object-oriented 
programming optimization algorithm (OOPOA) [36], and so 
on. Meanwhile, some studies employed economic dispatch 
problem as their practical use case, such as: squirrel search 
optimization (SSO) [37], stochastic shaking algorithm (SSA) 
[38], technique of narrowing down area (ToNDA) [39], 
iteration-controlled mixture optimization (ICMO) [40], and 
so on. Meanwhile, studies that accommodate practical use 
cases from multiple fields are rare to find. 

Meanwhile, in the technical aspect, many metaheuristics, 
especially the swarm-based ones, focus on the recent quality 
of the agents rather than the improving status of these agents. 
In some metaheuristics, the agents move toward the optimal 
agent [41], a randomly picked better agent [42], or the 
average position of better agents [43]. Meanwhile, in some 
cases, the agents move toward a randomly picked agent if this 
picked agent is better than the moving agent [31]. Otherwise, 
this moving agent moves away from the randomly picked 
agent [31]. This circumstance may lead to stagnation if the 
agent moves toward the reference although this reference is 
better than the moving agent, but it fails to improve. This 
movement may lead to another stagnation. Unfortunately, 
recent metaheuristics that give attention to the improving 
status of the agent to be considered as reference are also rare 
to find. 

Based on these problems, this paper is aimed to introduce 
a new metaheuristic called include-exclude optimization 
(IEO). IEO proposes a new technique in considering both 
recent quality and the improving status of the agent in the 
construction of the reference to be used in the guided search. 
IEO also performs strategy to treat agents that fail to improve. 

Following this objective, the scientific contribution of this 
paper is as follows. 
 This paper proposes a new swarm-based metaheuristic 

called as include-exclude optimization (IEO). 
 IEO introduces a new approach in considering both 

quality and improving status of the agents for 
consideration. 

 IEO introduces a new approach in treating agents that 
fail to improve. 

 This paper provides an assessment to investigate the 
performance of IEO by employing it to solve three use 
cases: 23 traditional functions, ELD problem, and an 
engineering design problem. 

 The performance of IEO is benchmarked with five new 
metaheuristics. 

The structure of the rest of this paper is as follows. Section 
two reviews the recent studies in proposing new 
metaheuristics, especially the use case. Section three 
provides a detailed description of the model of IEO including 
the fundamental idea, algorithm, and mathematical 
formulation. Section four presents the assessment of IEO in 
handling three use cases. Section five provides a 
comprehensive discussion regarding the result, findings, and 
limitations. Section six provides the summary of conclusion 
and tracks for future studies. 

II. RELATED WORKS 

In swarm intelligence, there are a certain number of 
agents that work autonomously in finding a better solution. 
Although these agents work autonomously, interaction 
among agents plays critical roles in finding the quasi-optimal 
solution. In the guided search which is the fundamental or 
primary movement of agents in the swarm intelligence, some 
references are needed. Meanwhile, some metaheuristics are 
also enriched with neighborhood search which does not need 
any references. 

The quality of agents in the population or swarm plays 
important roles in the guided search. First, the quality of 
agents determines whether these agents will be selected to 
construct the reference. Some references include the optimal 
agent [41], a randomly picked better agent, a randomly picked 
agent [24], and so on. Second, the quality of agents 
determines the direction of the movement. In some 
metaheuristics, like TIA [24] or ZOA [44], an agent moves 
toward the reference only if the reference is better than the 
agent. Otherwise, this agent will move away from the 
reference. 

Unfortunately, the improving status of the agent is not 
considered in most swarm-based metaheuristics. The 
improving status is the status that provides information 
whether an agent improves its quality in its last search. 
Improving status is also important to provide information 
whether a certain area still has probability to generate 
improvement. The opposite of the improvement is stagnation. 

Many metaheuristics, especially the swarm-based 
metaheuristics, do not care about stagnation. In general, they 
focus on the motion to improve the solution. Many 
metaheuristics employ strict acceptance approach to avoid the 
worsening situation by rejecting the candidate that does not 
provide improvement. But it still does not guarantee facing 
stagnation. In some metaheuristics like ABC [45], certain 
penalty is introduced for units that stagnate and forces them 
to move anywhere in the search space. 

The existence of use cases cannot be separated from the 
development of metaheuristics. Any new metaheuristics 
should be assessed to solve various optimization problems in 
their first introduction. This assessment is important to 
investigate the efficacy, strength, and weakness of the 
proposed metaheuristics.  

In general, there are two types of use cases. The first use 
cases are sets of standard functions.  Each set of standard 
functions comprises many functions where each of these 
functions has its own nature. In general, each function has 
only a single objective. Commonly, each set of functions can 
be split into two groups: unimodal functions and multimodal 
functions.  The second use cases are the practical problems.  
The practical problems represent real-world optimization 
problems as they have specific objectives and constraints. 
Some problems are single objective problems while others 
are multi objective problems. Engineering design problems 
become the most popular practical use cases to be used in the 
first introduction of many new metaheuristics. The short 
review of the use cases which were used in the first 
introduction of several recent new metaheuristics is revealed 
in Table 1.
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TABLE I 
REVIEW ON USE CASES IN SEVERAL RECENT METAHEURISTICS 

No Metaheuristics Standard Use Cases Practical Use Cases 
1 ICMO [40] 23 traditional functions ELD 
2 TIA [24] 23 traditional functions - 
3 CWO [23] 23 traditional functions Pressure vessel, speed reducer, welded beam, spring 
4 HO [26] 23 traditional functions, composite 

functions 
I-beam, spring, gear train, NP-hard problem, traveling 
salesman problem, knapsack problem,  

5 HOA [27] 23 traditional functions, 8 ZP functions, 
CEC 2019, CEC 2014,  

Spring, welded beam, pressure vessel 

6 COA [41] CEC 2017, CEC 2011 Pressure vessel, speed reducer, welded beam, spring 
7 WaOA 23 traditional functions, CEC 2015, CEC 

2017 
Spring, welded beam, speed reducer, pressure vessel 

8 SSO [37] - ELD 
9 ToNDA [39] - ELD 
10 proposed work 23 traditional functions ELD, gear train 

 
Table 1 reveals that the set of 23 traditional functions 

dominates the standard functions for assessment of new 
metaheuristics. Meanwhile, CEC series are popular too. 
Some metaheuristics are designed to solve specific cases like 
SSO [37], ToNDA [41], AOA [22], and so on where SSO and 
ToNDA are specific to solve ELD problem while AOA is 
specific to solve four engineering design problems. 

On the other hand, engineering design problems become 
the most popular practical use cases in the first introduction 
of new metaheuristics. Then, economic dispatch problem is 
also used in several studies introducing new metaheuristics. 
Some studies also envoys several other practical use cases. 
Meanwhile, some metaheuristics do not employ to solve any 
practical problems but only the standard functions only. 

This review highlights three circumstances that motivate 
this work. The first circumstance is that the unpopularity of 
improving status of agents while most metaheuristics focus 
on the recent quality of the agents. The second circumstance 
is the unpopularity of stagnation avoidance. The third 
circumstance is the lack of studies that employ practical use 
cases from multiple fields in the introduction of new 
metaheuristics. 

III. PROPOSED MODEL 

In general, include-exclude optimization (IEO) is 
constructed based on the swarm intelligence method. The 
system of IEO consists of a certain number of autonomous 
agents where each of these agents represent the solution. Each 
agent works actively in every iteration to improve its own 
quality and the entire population. Each agent traces for 
possible better solution along the search space. 

The fundamental idea of IEO is the treatment of the agent 
not only based on its recent quality but also its improvement. 
This idea is delivered into two strategies. The first strategy is 
that an agent will move toward a selected agent only if this 
selected agent is better than the related agent but also if this 
selected agent is able to improve itself. Otherwise, the related 
agent will not consider this selected agent or avoid this 
selected agent.  

The second strategy is related to the treatment for an agent 
that fails to improve after it conducts all searches in an 
iteration. In IEO, strict acceptance is employed so that a 
solution candidate replaces the current solution only if this 
candidate is better than the current solution. This approach is 
needed to avoid an agent to be thrown away to the worse 
situation. But on the other hand, this approach may produce 
stagnation. To avoid this stagnation, the best solution 

candidate will replace the recent solution based on the best of 
the worse concept.  

This fundamental idea is converted into three directed 
searches performed by every agent in every iteration. In the 
first search, the agent moves toward the optimal agent which 
is the agent whose quality is the best so far. In the second 
search, the agent moves toward a randomly picked better and 
improving agent. In the third search, the agent will move 
toward a randomly picked agent whose quality is better, and 
it is improving. Otherwise, this agent will move away from 
this randomly picked agent.  

The formal model of IEO is described in mathematical 
formulation and algorithm. The mathematical formulations 
are provided in (1) to (16). Meanwhile, the algorithm of IEO 
is provided in algorithm 1 using pseudocode. 

In the initialization phase, each agent is uniformly placed 
within the search space. It is formalized using (1) where x is 
the agent, i represents the index of the agent and j represents 
the dimension of the space. Then, xlb represents the lower 
boundary of the space and xub represents the upper boundary 
of the space. U1 is a floating-point random number that ranges 
from 0 to 1. 
 
𝑥௜,௝ = 𝑥௟௕,௝ + 𝑈ଵ൫𝑥௨௕,௝ − 𝑥௟௕,௝൯           (1) 
 

Each time an agent is initialized, the updating for the 
optimal agent is performed. Equation (2) formalizes this 
updating process. xopt represents the optimal agent. Variable 
of represents the objective function. 

 

𝑥௢௣௧
ᇱ = ቊ

𝑥௜ , 𝑜𝑓(𝑥௜) < 𝑜𝑓(𝑥௢௣௧)

𝑥௢௣௧ , 𝑒𝑙𝑠𝑒
           (2) 

 
In the beginning of the searching process, the value of the 

agent is stored first. The storing process is formalized using 
(3) where xprev,i stores the value of agent i. This value will be 
used to determine whether the agent improves after it 
performs searches.  
 
𝑥௣௥௘௩,௜ = 𝑥௜                   (3) 
 

The formalization of the first search is provided in (4) and 
(5). Equation (4) formalizes the motion toward the optimal 
solution where c1,i represents the first solution candidate and 
U2 represents the uniform integer random number between 1 
and 2. Equation (5) formalizes the updating process of agent 
i based on the quality comparison with the first solution 
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candidate. After the updating of the related agent is 
performed, the optimal solution is also updated using (2). 
 
𝑐ଵ,௜,௝ = 𝑥௜,௝ + 𝑈ଵ(𝑥௢௣௧,௝ − 𝑈ଶ𝑥௜,௝)         (4) 
 

𝑥௜
ᇱ = ൜

𝑐ଵ,௜ , 𝑜𝑓(𝑐ଵ) < 𝑜𝑓(𝑥௜)

𝑥௜ , 𝑒𝑙𝑠𝑒
            (5) 

 
The formalization of the second search is provided in (6) 

to (9). Equation (6) formalizes the construction of a pond that 
comprises all agents whose quality is better than the related 
agent and whose status is improving. This pond also includes 
the optimal solution. Variable Xhi,i represents the pond. Then, 
(7) formalizes the random picking of a selected agent from 
this pond. Xsel1,i represents the first selected agent while U3 
represents the uniform random from certain population. 
Equation (8) formalizes the motion toward this first selected 
agent where c2,i represents the second solution candidate. 
Equation (9) formalizes the updating process of the related 
agent by comparing it with the second solution candidate. 
Like the first search, the updating of the optimal solution is 
performed after the updating of the related agent. 
 
𝑋௛௜,௜ = {∀𝑥|𝑜𝑓(𝑥) < 𝑜𝑓(𝑥௜) ∧ 𝑠(𝑥) = 1} ∪ 𝑥௢௣௧    (6) 
 
𝑥௦௘௟ଵ,௜ = 𝑈ଷ(𝑋௛௜,௜)                (7) 
 
𝑐ଶ,௜,௝ = 𝑥௜,௝ + 𝑈ଵ(𝑥௦௘௟ଵ,௜,௝ − 𝑈ଶ𝑥௜,௝)         (8) 
 

𝑥௜
ᇱ = ൜

𝑐ଶ,௜ , 𝑜𝑓(𝑐ଶ) < 𝑜𝑓(𝑥௜)

𝑥௜ , 𝑒𝑙𝑠𝑒
            (9) 

 
The formalization of the third search is provided in (10) 

to (13). Equation (10) formalizes the second randomly picked 
agent from the population where xsel2,i represents the second 
picked agent. Equation (11) formalizes the motion where the 
direction of the motion depends on the certain circumstance. 
Equation (12) formalizes that the motion is toward the 
reference only if the random picked agent is better than the 
related agent and its status is improving. Equation (13) 
formalizes the updating process of the related agent by 
comparing it with the third solution candidate where c3,i 
represents the third solution candidate. Like the first and 
second searches, the updating of the optimal solution is 
performed after the updating of the related agent. 
 
𝑥௦௘௟ଶ,௜ = 𝑈ଷ(𝑋)                 (10) 
 

𝑐ଷ,௜,௝ = ቊ
𝑥௜,௝ + 𝑈ଵ൫𝑥௦௘௟ଶ,௜,௝ − 𝑈ଶ𝑥௜,௝൯, 𝑐𝑎𝑠𝑒 = 1

𝑥௜,௝ + 𝑈ଵ൫𝑥௜,௝ − 𝑈ଶ𝑥௦௘௟ଶ,௜,௝൯, 𝑒𝑙𝑠𝑒
     (11) 

 

𝑐𝑎𝑠𝑒 = ൜
1, 𝑜𝑓൫𝑥௦௘௟ଶ,௜൯ < 𝑜𝑓(𝑥௜) ∧ 𝑠൫𝑥௦௘௟ଶ,௜൯ = 1

0, 𝑒𝑙𝑠𝑒
    (12) 

 

𝑥௜
ᇱ = ൜

𝑐ଷ,௜ , 𝑜𝑓(𝑐ଷ) < 𝑜𝑓(𝑥௜)

𝑥௜ , 𝑒𝑙𝑠𝑒
            (13) 

 
After these three searches are performed, the next process 

is stagnation avoidance. First, the status of the related agent 
is updated by using (14). Then, the best solution candidate 

replaces the current value of the related agent if stagnation 
occurs using (15). Equation (16) provides the selection of the 
best solution candidate among three solution candidates.  
 

𝑠(𝑥௜) = ൜
1, 𝑜𝑓(𝑥௜) < 𝑜𝑓(𝑥௣௥௘௩,௜)

0, 𝑒𝑙𝑠𝑒
          (14) 

 

𝑥௜
ᇱ = ൜

𝑐௦௘௟,௜ , 𝑠(𝑥௜) = 0

𝑥௜ , 𝑒𝑙𝑠𝑒
               (15) 

 
𝑐௦௘௟,௜ = 𝑐 ∈ 𝐶௜ , min (𝑜𝑓(𝑐))            (16) 
 

algorithm 1: include-exclude optimization 
1 start 
2  for all x 
3   initialize x 
4  end 
5  for t=1 to T  
6   for all x 
7    store xprev 
8    perform first search 
9    perform second search 
10    perform third search 
11    perform stagnation avoidance 
12   end 
13  end 
14  return xopt 
15 stop 

 
The explanation of IEO based on algorithm 1 is as 

follows. The initialization is presented from lines 2 to 4. 
Meanwhile, the iteration is presented from lines 5 to 13. Line 
14 states that the optimal solution becomes the final solution.  

The computational complexity of IEO can be investigated 
from algorithm 1 based on the number of loops. In the 
initialization, the complexity is presented as O(n(X).d). This 
presentation means that the complexity is linearly 
proportional to the population size or dimension. In the 
iteration, the complexity is presented as O(T.n(X)2.d) which 
means the complexity is linearly proportional to the 
maximum iteration, or dimension but quadratic proportional 
to population size. 

IV. SIMULATION 

This section provides the assessment of IEO to investigate 
its performance in handling optimization problems. There are 
three problems which are investigated in this work. The first 
problem is the set of standard functions that comprises 23 
functions. The second problem is the economic load dispatch 
(ELD) problem representing optimization problem in 
electrical field. The third problem is the gear train problem 
representing optimization problem in mechanical field. 

In this work, IEO is benchmarked with five new 
metaheuristics: GSO [21], TIA [24], DOA [25], CWO [23], 
and HO [26]. GSO [21]  and HO [26] are metaheuristics that 
employ loose acceptance approach. On the other hand, TIA 
[24], DOA [25], and CWO [23] are metaheuristics that 
employ hard acceptance approach. In these three assessments, 
the population size is 5 while the maximum iteration is 10. 
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The first assessment is employing IEO to handle a set of 
23 standard functions. These functions can be split into three 
groups: seven high dimension unimodal functions, six high 
dimension multimodal functions, and ten fixed dimension 
multimodal functions. The detailed description of these 
functions can be found in [21]. In these 13 multimodal 
functions, the dimension is set to 20. In this assessment, the 
decimal point which is less than 10-4 is rounded to 0. 

Table 2 provides the assessment result in handling seven 
high dimension unimodal functions. In this assessment, IEO 
shows its supremacy as it becomes the best performer in all 
seven functions. Moreover, IEO can find the global optimal 
of f2. In this function, TIA and DOA also can find the global 
optimal solution.  The performance disparity between the best 
performer and the worst one is wide in all these seven 
functions. By comparing the range and the absolute mean of 
IEO in these functions, it is shown that the range is less than 
the absolute mean in two functions (f5 and f6). It means that 
the result in both functions is stable among the sessions. 

Table 3 provides the assessment result in handling six 
high dimension multimodal functions. In this assessment, 
IEO shows its supremacy in handling four out of six functions 
(f9, f10, f11, and f13). Meanwhile, IEO becomes the second best 
in handling f12 where TIA becomes the best one. Fortunately, 

the disparity between IEO and TIA in f12 is narrow. IEO 
becomes the third best in handling f8 where CWO becomes 
the first best and DOA becomes the second best. In this 
second group, the performance disparity between the best and 
the worst is wide in five functions (f9 to f13). Meanwhile, this 
disparity is narrow in f8. The ratio between the range and the 
absolute means of IEO is more than 1 in only two functions 
(f9 and f11). Otherwise, this ratio is less than 1 representing 
stable quality of final solution. 

Table 4 shows the competitiveness of IEO in handling the 
fixed dimension multimodal functions. It becomes the first 
best in two functions (f19 and f22), second best in f15, third best 
in six functions (f14, f16, f17, f18, f21, and f23), and fourth best in 
f20. The disparity between the best and the worst is wide in f18. 
Otherwise, this disparity is narrow. The ratio between the 
range and the absolute mean of IEO is smaller than 1 only in 
f19 which indicates the stable final solution. Otherwise, this 
ratio is bigger than 1. 

Table 5 summarizes the supremacy of IEO compared to 
other metaheuristics based on the group of functions. Overall, 
IEO is absolute superior to GSO and HO as it outperforms 
both in all 23 functions. Meanwhile, IEO is better than TIA, 
DOA, and CWO in 17, 13, and 16 functions.

 
TABLE II 

BENCHMARK SIMULATION RESULT ON SOLVING HIGH DIMENSION UNIMODAL FUNCTIONS 
F Parameter GSO [21] TIA [24] DOA [25] CWO [23] HO [26] IEO 
1 mean 1.5802x104 3.2028 1.1978x102 1.3246x104 1.0124x102 0.0004 

range 1.4478x104 1.2548x101 1.4581x102 7.7226x103 2.4654x102 0.0025 
mean rank 6 2 4 5 3 1 

2 mean 1.7312x1023 0.0000 0.0000 1.8447x1021 2.2082x102 0.0000 
range 1.2039x1024 0.0000 0.0000 2.9748x1022 2.3605x103 0.0000 
mean rank 6 1 1 5 4 1 

3 mean 3.1571x104 3.2133x102 3.3848x103 2.3129x104 9.2134x102 5.9739 
range 5.8186x104 9.1523x102 9.7469x103 2.8273x104 1.8743x103 5.1489x101 
mean rank 6 2 4 5 3 1 

4 mean 5.4337x101 1.6101 9.1905 5.1060x101 4.2934 0.0598 
range 3.3162x101 1.9599 1.4997x101 2.1571x101 4.3326 0.1748 
mean rank 6 2 4 5 3 1 

5 mean 2.7682x107 8.0393x101 5.7027x103 1.6132x107 8.4320x104 1.8949x101 
range 6.6276x107 1.7271x102 2.0817x104 2.0852x107 4.7671x105 0.0988 
mean rank 6 2 3 5 4 1 

6 mean 1.4610x104 5.2259 6.9737x101 1.1486x104 9.1759x101 3.4568 
range 1.4292x104 6.1248 1.7829x102 7.8755x103 2.1800x102 1.2755 
mean rank 6 2 3 5 4 1 

7 mean 6.3712 0.0633 0.0804 6.4945 1.1451x102 0.0182 
range 1.9700x101 0.1627 0.1720 8.3692 3.2108x102 0.0508 
mean rank 4 2 3 5 6 1 

 
TABLE III 

BENCHMARK SIMULATION RESULT ON SOLVING HIGH DIMENSION MULTIMODAL FUNCTIONS 
F Parameter GSO [21] TIA [24] DOA [25] CWO [23] HO [26] IEO 
8 mean -1.4667x103 -1.4947x103 -1.9597x103 -2.0882x103 -1.5823x102 -1.7713x103 

range 2.7501x103 1.6238x103 1.5566x103 1.0522x103 2.4319x102 1.4145x103 
mean rank 6 5 2 1 4 3 

9 mean 1.7409x102 4.9037x101 6.3818x101 1.9683x102 2.2187x102 1.4469 
range 8.1798x101 1.0503x102 9.2964x101 5.2515x101 1.1491x102 2.5503x101 
mean rank 4 2 3 5 6 1 

10 mean 1.8308x101 1.0956 3.8604 1.7701x101 6.6976 0.0041 
range 5.2981 1.3121 4.5986 2.4453 4.5398 0.0011 
mean rank 6 2 3 5 4 1 

11 mean 1.4000x102 0.8888 2.0063 1.1805x102 1.0247 0.0290 
range 1.7246x102 0.5904 2.0577 6.6353x101 0.7474 0.5743 
mean rank 6 2 4 5 3 1 

12 mean 2.3228x107 0.8659 3.2792 1.1723x107 7.5764 0.9393 
range 1.0759x108 1.1503 4.8871 2.1076x107 9.7004 0.8789 
mean rank 6 1 3 5 4 2 

13 mean 7.8677x107 3.4491 3.8415x101 4.6308x107 1.1113x101 2.9676 
range 2.5273x108 2.5076 3.6286x102 6.4507x107 4.6060x101 0.7562 
mean rank 6 2 4 5 3 1 
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TABLE IV 
BENCHMARK SIMULATION RESULT ON SOLVING FIXED DIMENSION MULTIMODAL FUNCTIONS 

F Parameter GSO [21] TIA [24] DOA [25] CWO [23] HO [26] IEO 
14 mean 3.0309x101 1.3742x101 1.0151x101 9.4918 2.1643x101 1.0742x101 

range 3.6658x102 3.1491x101 1.5505x101 2.1998x101 1.2572x102 1.4392x101 
mean rank 6 4 2 1 5 3 

15 mean 0.4354 0.0101 0.0275 0.0269 0.2474 0.0124 
range 5.2839 0.0446 0.0742 0.0973 1.6114 0.0883 
mean rank 6 1 5 3 4 2 

16 mean -0.6778 -1.0192 -0.9671 -0.8966 3.0957 -0.9121 
range 2.3412 0.1214 0.3437 0.7196 4.3897x101 1.0314 
mean rank 5 1 2 4 6 3 

17 mean 4.1276 2.3927 0.4873 0.5421 2.3867 2.1166 
range 2.1737x101 8.1835 0.5160 0.4233 6.5076 1.5367x101 
mean rank 6 5 1 2 4 3 

18 mean 2.4641x101 2.9092x101 6.2122 8.1557 6.9100x102 1.8662x101 
range 1.2548x101 1.2791x102 2.7800x101 2.4637x101 2.5619x103 8.2351x101 
mean rank 4 5 1 2 6 3 

19 mean -0.0048 -0.0495 -0.0495 -0.0472 -0.0291 -0.0495 
range 0.0207 0.0000 0.0000 0.0173 0.0495 0.0000 
mean rank 6 1 1 4 5 1 

20 mean -1.7627 -2.1229 -2.8617 -2.7206 -0.7853 -1.9992 
range 2.5220 1.3723 0.8939 0.9705 2.4338 2.4594 
mean rank 5 3 1 2 6 4 

21 mean -1.1639 -1.7390 -2.5339 -1.9477 -0.6482 -1.9144 
range 2.3088 3.2959 3.3103 3.9522 1.1022 3.1388 
mean rank 5 4 1 2 6 3 

22 mean -2.0836 -2.1139 -2.4082 -1.9625 -0.9900 -2.4700 
range 5.5080 8.1125 6.5471 4.4641 2.8435 5.8247 
mean rank 4 3 2 5 6 1 

23 mean -1.6253 -1.7754 -2.5307 -2.2080 -1.1519 -1.9228 
range 5.0674 3.0456 2.0553 2.6619 1.6755 3.4290 
mean rank 5 4 1 2 6 3 

 
TABLE V 

GROUP BASED COMPARISON 

Cluster 
GSO 
[21] 

TIA 
[24] 

DOA 
[25] 

CWO 
[23] 

HO 
[26] 

1 7 6 6 7 7 
2 6 5 5 5 6 
3 10 6 2 4 10 

Total 23 17 13 16 23 

 
TABLE VI 

RESULT WITH INCREASING MAXIMUM ITERATION 

Function 
Average Fitness Score Improve 

Significantly T = 20 T = 40 
1 0.0000 0.0000 no 
2 0.0000 0.0000 no 
3 0.0001 0.0000 no 
4 0.0000 0.0000 no 
5 1.8912x101 1.8933x101 no 
6 3.5255 3.5211 no 
7 0.0046 0.0020 yes 
8 -1.7712x103 -1.8628x103 no 
9 0.0000 0.0000 no 

10 0.0000 0.0000 no 
11 0.0000 0.0000 no 
12 0.9452 0.8266 no 
13 2.8116 2.8643 no 
14 1.0146x101 8.3496 no 
15 0.0071 0.0053 no 
16 -0.9868 -1.0274 no 
17 1.0599 0.4545 no 
18 1.4345x101 1.4077x101 no 
19 -0.0495 -0.0495 no 
20 -2.2821 -2.3260 no 
21 -1.8327 -2.6322 no 
22 -2.6056 -2.4514 no 
23 -2.4431 -3.3457 no 

 
Table 6 and Table 7 provide the sensitivity assessment 

result of IEO in handling 23 functions. Table 6 provides the 
performance difference due to the increasing of maximum 
iteration from 20 to 40. Meanwhile, Table 7 provides the 
performance difference due to the increasing of population or 

swarm size from 10 to 20. 
Table 6 shows that the performance improvement due to 

the increasing of maximum iteration from 20 to 40 does not 
occur in almost all functions. The significant improvement 
occurs only in f7. Meanwhile, the stagnation for eight 
functions (f1 to f4, f9 to f11, and f18) occurs because the final 
solution is close to the global optimal solution, or the global 
optimal solution has been achieved. 

 
TABLE VII 

RESULT WITH INCREASING POPULATION SIZE 

Function 
Average Fitness Score Improve 

Significantly n(X) = 10 n(X) = 20 
1 0.0001 0.0000 no 
2 0.0000 0.0000 no 
3 0.8578 0.2488 yes 
4 0.0220 0.0098 yes 
5 1.8918x101 1.8826x101 no 
6 3.0968 2.5308 no 
7 0.0068 0.0045 no 
8 -1.9971x103 -2.3863x103 no 
9 0.2481 0.0007 yes 

10 0.0021 0.0015 no 
11 0.0002 0.0028 no 
12 0.7584 0.4353 no 
13 2.6800 2.5066 no 
14 7.6320 5.0217 no 
15 0.0061 0.0018 yes 
16 -1.0298 -1.0315 no 
17 0.4102 0.3995 no 
18 8.0512 5.8768 no 
19 -0.0495 -0.0495 no 
20 -2.6461 -2.8424 no 
21 -2.5481 -3.8214 no 
22 -2.7357 -3.2213 no 
23 -2.6233 -3.1876 no 

 
Table 7 also shows that the significant improvement 

regarding the increasing of population size from 10 to 20 also 
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does not occur in most of functions. The significant 
improvement occurs only in four functions (f3, f4, f9, and f15). 

The second assessment is employing IEO to handle ELD 
problem. ELD problem is popular in electrical engineering 
field as this the optimization problem in power system. The 
system comprises several generating units or power plants 
that work together to supply the demand or load. Its general 
objective is minimizing the operational cost while in some 
cases it also minimizes the emission cost. As a practical 
problem, it also contains the constraints which are the 
equality and inequality constraints. The equality constraint is 
that the total generated power should be equal to the demand 
or load. In some cases, the spinning reserve and the power 
loss is considered. The inequality constraint is that the power 
of each generating unit should be within its range. In some 
cases, especially in multiple timeframes, the ramp rate is 
introduced as an extra limitation to avoid wider power 
difference between adjacent timeframes. 

The formal model of ELD problem in this work is 
provided in (17) to (21). Equation (17) states that the 
objective is minimizing the total cost where ofELD represents 
the objective function and cototal represents the total cost. 
Equation (18) states that the total cost is obtained by 
accumulating cost from all generating units where coi 
represents the cost of generating unit i. Equation (19) 
represents the general quadratic function of the cost where pi 
represents the power of generating unit i while a1, a2, and a3 
represent the constants of the quadratic function. Equation 
(20) states the inequality constraint where po,i represents the 
lower power limit of generating unit i while phi,i represents 
the higher power limit of generating unit i. Equation (21) 
states the equality constraint where the total power of the 
system should meet the load. In (21), pload represents the load 
or demand. 
 
𝑜𝑓ா௅஽ = min(𝑐𝑜௧௢௧௔௟)              (17) 
 
𝑐𝑜௧௢௧௔௟ = ∑ 𝑐𝑜௜∀௜                 (18) 
 
𝑐𝑜௜ = 𝑎ଵ,௜ + 𝑎ଶ,௜𝑝௜ + 𝑎ଷ,௜𝑝௜

ଶ            (19) 
 
𝑝௟௢,௜ ≤ 𝑝௜ ≤ 𝑝௛௜,௜                 (20) 
 
𝑝௟௢௔ௗ = ∑ 𝑝௜∀௜                  (21) 
 

In this work, the use case for ELD problem is a set 
comprising 13 generating units. The lower power limits range 
from 0 MW to 60 MW. Meanwhile, the higher power limits 
range from 120 MW to 680 MW. The power demand is 2,600 
MW. The detailed specification of each generating unit 
including the power limit and the constants for its quadratic 
cost function can be found in [39]. The assessment result is 
provided in Table 8. 
 

TABLE VIII 
RESULT FOR ELD PROBLEM WITH 13 UNITS 

Metaheuristic Mean (USD) Range (USD) 
GSO 24,849 82 
TIA 24,815 43 
DOA 24,797 50 
CWO 24,812 72 
HO 24,905 70 
IEO 24,797 50 

 
Table 8 exhibits that ELD problem is a highly competitive 

problem. The total cost disparity among metaheuristics is 
very narrow where the minimum average total cost is USD 
24,797 while the maximum average total cost is USD 24,905. 
It means the disparity between the best result and the worst 
result is USD 108. IEO and DOA become the best performers 
in handling this problem. The minimum range is USD 43 
which is obtained by TIA while the maximum range is USD 
82 which is obtained by GSO. This result shows that the result 
fluctuation is verry low. 

The third assessment is employing IEO to handle gear 
train problems. The gar train problem is a classic optimization 
problem in mechanical engineering field. The system consists 
of several number of gears which are connected to each other. 
The number of gears represents the dimension of the problem. 
Meanwhile, the number of teeth of each gear represents the 
value of the solution. It means that the value of the solution 
will be discrete.  

In this work, the system consists of four gears as it can be 
found in [4]. The number of teeth ranges from 12 to 600. The 
objective function is minimizing the ratio of the output/input 
shaft angular velocity as presented in (22) where ofGT 
represents the objective function and g represents the number 
of teeth. Equation (23) states that the number of teeth ranges 
from 12 to 600 units. The result is provided in Table 9. The 
decimal point less than 10-4 is rounded to 0. 
 

𝑜𝑓 ் = min((
ଵ

଺.ଽଷଵ
−

௚మ௚య

௚భ௚ర
)ଶ)            (22) 

 
12 ≤ 𝑔௜ ≤ 600                 (23) 
 

TABLE IX 
RESULT FOR GEAR TRAIN DESIGN PROBLEM 
Metaheuristic Mean Range 

GSO 0.0252 0.3555 
TIA 0.0000 0.0003 
DOA 0.0000 0.0001 
CWO 0.0000 0.0002 
HO 0.0524 0.4299 
IEO 0.0000 0.0000 

 

Table 9 shows that IEO, TIA, CWO, and DOA perform 
better than GSO and HO. All these four metaheuristics can 
find the global optimal solution while the final solution of 
GSO and HO is much worse. Meanwhile, based on the range, 
IEO is better than TIA, DOA, and CWO as its range is lower 
than the others. It means that IEO produces result with lower 
fluctuation. 

V. DISCUSSION 

Overall, the assessment result shows the competitiveness 
of IEO in handling all three use cases: 23 standard functions, 
ELD problem, and gear train problem. The supremacy of IEO 
in handling all high dimension unimodal functions highlights 
the capability of IEO to perform exploitation as each of these 
functions has only one optimal solution. The supremacy of 
IEO in most high dimension multimodal functions highlights 
the capability of IEO to perform exploration as each of these 
functions has multiple optimal solutions so that the ability to 
avoid local entrapment plays a critical role. Meanwhile, the 
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competitiveness of IEO in handling all fixed dimension 
multimodal functions highlights its capability in balancing 
the exploration and exploitation as each of these functions 
have multiple optimal solutions but fewer than the high 
dimension multimodal ones. But the terrain of these functions 
is ambiguous which provides different levels of entrapment. 

The competitiveness of IEO is also shown in handling 
ELD problem. IEO still performs the best although with a 
close gap as the fierce competition in ELD problem. In 
general, a quadratic function is a unimodal function as it has 
only one optimal solution, the combination of several 
quadratic functions with various constants makes this 
problem turn to multimodal. The more difficult circumstance 
comes from the equality constraint that makes the search 
space narrower as the minimum power is difficult to reach. 

The competitiveness of IEO also be found in the gear train 
problem. In general, gear train problem does not have any 
equality constraint so that the solution can be generated 
anywhere in the search space. But the gear train problem 
provides a specific characteristic which is a discrete problem. 
The solution should be presented in integer numbers rather 
than floating point so that the disparity among metaheuristics 
is difficult to achieve. 

The result shows that strict acceptance approach is proven 
better than the loose acceptance approach. This strict 
acceptance is employed in TIA, DOA, CWO and IEO where 
they achieve equal results. Meanwhile, IEO is proven more 
stable than TIA, DOA, and CWO as its range is the lowest. 

The sensitivity assessment result shows that IEO performs 
well in circumstances where the maximum iteration and 
population size are low. The increasing of maximum iteration 
or population size does not improve the result significantly in 
almost all functions. Meanwhile, in some functions, the 
increase of maximum iteration is better than the increase of 
the population size. On the other hand, in some other 
functions, the increase of population size gives higher yield 
rather than the increase of iteration. This circumstance is 
relevant to the no-free-lunch theory whereas the nature of the 
problem affects the quality of the produced solution as there 
is not any technique the is superior to solve all problems. 

This work still has limitations despites it has provided 
acceptable result in providing the quasi-optimal solution and 
IEO is proven competitive compared to the existing 
metaheuristics. There are three limitations in this work that 
can be split into three aspects: technique, investigation, and 
use case. There are still a lot of available methods including 
the searching processes, role division, and the stagnation 
avoidance, but it is impossible to accommodate all these 
technique into single metaheuristic. This searching process 
can be a guided search or random direction search. IEO also 
does not employ role division whether it is the quality-based 
split or not while some others employ this technique. There 
are also many stagnations avoidance techniques such as full 
random search as in artificial bee colony (ABC) algorithm or 
transforming loose to strict acceptance approach as iteration 
goes like in simulated annealing (SA). This work also has not 
performed more complex assessment, such as the variety in 
dimension. This work also has not performed a single search 
investigation or missing search investigation to observe the 
significance of the existence of a search. In the use case 
aspect, this work also assesses IEO using three use cases. 

Meanwhile, there are a lot of optimization problems from 
various sectors that can be employed. There are also several 
common engineering design problems, such as pressure 
vessel, welded beam, spring, and speed reducer [46]. Besides, 
there are other standard functions such as CEC series which 
are also commonly employed in the studies proposing new 
metaheuristic.  

The implementation of IEO in the optimization in farming 
system is also challenging as the optimization studies in 
farming are too few compared to in the manufacturing 
system. In the farming system, especially in the context of 
smart or precision farming, optimization is needed in three 
segments: the upstream, farm, and downstream. The 
upstream segment is highly related with the suppliers that 
provide seed, food, and other supporting stuff. In the farm, 
optimization is important to achieve efficiency of the 
resource and keep the operational cost low. In the 
downstream segment, optimization is needed to distribute the 
harvested products in more efficient and effective ways. 

The implementation of IEO to optimize computational 
systems is also interesting, especially in the cloud system era. 
There are many studies that utilized metaheuristics to solve 
optimization problems in the cloud system. For example, the 
adaptive walrus optimization algorithm has been utilized to 
optimize the intrusion detection system while minimizing the 
computational complexity to reduce the time consumption 
[47]. GA and PSO has been utilized to optimize the 
scheduling process in mobile edge computing [48]. The black 
widow optimization algorithm has been hybridized with the 
chaos theory to optimize the load balancing process in the 
cloud computing system [49]. This example becomes the 
motivation of implementing IEO in the cloud computing in 
the future. 

VI. CONCLUSION 

A new metaheuristic called as include-exclude 
optimization (IEO) has been introduced in this paper. It 
proposes a novel technique in considering not only the quality 
of an agent but also its improving status. This technique is 
taken with the idea as an agent that still improves gives more 
probability for other agents to improve. On the other hand, it 
will be hard to improve by following other agents that fail to 
improve. The assessment to investigate the performance of 
IEO has been conducted by employing IEO to solve 23 
standard functions, ELD problem, and gear train problem. 
The result shows the absolute supremacy of IEO in handling 
23 standard functions compared to GSO and HO. Meanwhile, 
IEO is still superior to TIA, CWO, and DOA, especially in 
handling high dimension functions. The result also shows that 
IEO is superior to other metaheuristics with narrow gap in 
handling both ELD and gear train problems. In the future, 
studies can be conducted in three tracks: modifying the 
technique, performing more comprehensive investigation, 
and employing more various use cases, especially the farming 
system to achieve profitability and in the end the 
sustainability. 

REFERENCES 
[1] H. M. Rosli, S. A. Halim, L. J. Awalin, and S. M. Mustaza, 

“Economic-emission load dispatch for power system operation using 
enhanced sunflower optimization,” Indonesian Journal of Electrical 

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 104-113

 
______________________________________________________________________________________ 



 

Engineering and Computer Science, vol. 27, no. 1, pp. 1–10, Jul. 
2022, doi: 10.11591/ijeecs.v27.i1.pp1-10. 

[2] V. K. Kamboj and O. P. Malik, “Optimal Unit Commitment and 
Generation Scheduling of Integrated Power System with Plug-In 
Electric Vehicles and Renewable Energy Sources,” Energies (Basel), 
vol. 17, no. 1, p. 123, Dec. 2023, doi: 10.3390/en17010123. 

[3] M. H. Ali, Ahmed. M. A. Soliman, and S. K. Elsayed, “Optimal 
power flow using archimedes optimizer algorithm,” International 
Journal of Power Electronics and Drive Systems (IJPEDS), vol. 13, 
no. 3, pp. 1390–1405, Sep. 2022, doi: 
10.11591/ijpeds.v13.i3.pp1390-1405. 

[4] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, and A. H. 
Gandomi, “Prairie Dog Optimization Algorithm,” Neural Comput 
Appl, vol. 34, no. 22, pp. 20017–20065, Nov. 2022, doi: 
10.1007/s00521-022-07530-9. 

[5] G. Ni and L. Chen, “Improved Scheduling for the Three-Machine 
Proportionate Open Shop and Mixed Shop Minimum Makespan 
Problems,” IEEE Access, vol. 8, pp. 186805–186812, 2020, doi: 
10.1109/ACCESS.2020.3030694. 

[6] P. D. Kusuma, “Weighted Round Robin (WRR) Based 
Replenishment Model in Vendor Managed Inventory (VMI) 
System,” International Journal of Integrated Engineering, vol. 14, 
no. 1, pp. 191–202, Mar. 2022, doi: 10.30880/ijie.2022.14.01.017. 

[7] B. Ma, D. Hu, X. Chen, Y. Wang, and X. Wu, “The vehicle routing 
problem with speed optimization for shared autonomous electric 
vehicles service,” Comput Ind Eng, vol. 161, p. 107614, Nov. 2021, 
doi: 10.1016/j.cie.2021.107614. 

[8] A. Khan, H. Hizam, N. I. bin Abdul Wahab, and M. Lutfi Othman, 
“Optimal power flow using hybrid firefly and particle swarm 
optimization algorithm,” PLoS One, vol. 15, no. 8, p. e0235668, Aug. 
2020, doi: 10.1371/journal.pone.0235668. 

[9] C. Paul, T. Sarkar, S. Dutta, and P. K. Roy, “Integration of optimal 
power flow with combined heat and power dispatch of renewable 
wind energy based power system using chaotic driving training based 
optimization,” Renewable Energy Focus, vol. 49, p. 100573, Jun. 
2024, doi: 10.1016/j.ref.2024.100573. 

[10] R. A. Swief, N. M. Hassan, H. M. Hasanien, A. Y. Abdelaziz, and 
M. Z. Kamh, “Multi-Regional Optimal Power Flow Using Marine 
Predators Algorithm Considering Load and Generation Variability,” 
IEEE Access, vol. 9, pp. 74600–74613, 2021, doi: 
10.1109/ACCESS.2021.3081374. 

[11] G. Xie, M. Zhang, M. Yang, and D. Wang, “Economic Dispatch of 
Isolated Microgrids Based on Enhanced Sparrow Search Algorithm,” 
Engineering Letters, vol. 32, no. 4, pp. 753–760, 2024. 

[12] Y. Zahraoui, I. Alhamrouni, S. Mekhilef, T. Korõtko, A. Jusoh, and 
T. Sutikno, “A Chameleon algorithm for solving economic dispatch 
problem in microgrid system,” Bulletin of Electrical Engineering 
and Informatics, vol. 12, no. 4, pp. 1982–1992, Aug. 2023, doi: 
10.11591/eei.v12i4.4700. 

[13] H. D. Nguyen and L. H. Pham, “Solutions of economic load dispatch 
problems for hybrid power plants using Dandelion optimizer,” 
Bulletin of Electrical Engineering and Informatics, vol. 12, no. 5, pp. 
2569–2576, Oct. 2023, doi: 10.11591/eei.v12i5.5245. 

[14] S. R. Spea, “Optimizing economic dispatch problems in power 
systems using manta ray foraging algorithm: an oppositional-based 
approach,” Computers and Electrical Engineering, vol. 117, p. 
109279, Jul. 2024, doi: 10.1016/j.compeleceng.2024.109279. 

[15] T. Khobaragade and K. T. Chaturvedi, “Enhanced Economic Load 
Dispatch by Teaching–Learning-Based Optimization (TLBO) on 
Thermal Units: A Comparative Study with Different Plug-in Electric 
Vehicle (PEV) Charging Strategies,” Energies (Basel), vol. 16, no. 
19, p. 6933, Oct. 2023, doi: 10.3390/en16196933. 

[16] L. Zhang, Y. Yu, Y. Luo, and S. Zhang, “Improved cuckoo search 
algorithm and its application to permutation flow shop scheduling 
problem,” J Algorithm Comput Technol, vol. 14, p. 
174830262096240, Jan. 2020, doi: 10.1177/1748302620962403. 

[17] M. S. Umam, M. Mustafid, and S. Suryono, “A hybrid genetic 
algorithm and tabu search for minimizing makespan in flow shop 
scheduling problem,” Journal of King Saud University - Computer 
and Information Sciences, Sep. 2021, doi: 
10.1016/j.jksuci.2021.08.025. 

[18] D. Lei and H. Yang, “Scheduling unrelated parallel machines with 
preventive maintenance and setup time: Multi-sub-colony artificial 
bee colony,” Appl Soft Comput, vol. 125, p. 109154, Aug. 2022, doi: 
10.1016/j.asoc.2022.109154. 

[19] Q. Liu, Y. Feng, B. Liu, J. Yang, and Z. Dong, “Optimal Sizing, Gear 
Ratios, and Shifting Schedule of Battery‐Electric Mining Haul 
Trucks to Enhance Energy Efficiency,” Energy Technology, vol. 12, 
no. 5, p. 2301123, May 2024, doi: 10.1002/ente.202301123. 

[20] S. Gopi and P. Mohapatra, “Opposition-based Learning Cooking 
Algorithm (OLCA) for solving global optimization and engineering 
problems,” International Journal of Modern Physics C, vol. 35, no. 
05, p. 2450051, May 2024, doi: 10.1142/S0129183124500517. 

[21] M. Noroozi, H. Mohammadi, E. Efatinasab, A. Lashgari, M. Eslami, 
and B. Khan, “Golden Search Optimization Algorithm,” IEEE 
Access, vol. 10, pp. 37515–37532, 2022, doi: 
10.1109/ACCESS.2022.3162853. 

[22] T. Hamadneh et al., “Addax Optimization Algorithm: A Novel 
Nature-Inspired Optimizer for Solving Engineering Applications,” 
International Journal of Intelligent Engineering and Systems, vol. 
17, no. 3, pp. 732–743, Jun. 2024, doi: 10.22266/ijies2024.0630.57. 

[23] S. Alomari et al., “Carpet Weaver Optimization: A Novel Simple and 
Effective Human-Inspired Metaheuristic Algorithm,” International 
Journal of Intelligent Engineering and Systems, vol. 17, no. 4, pp. 
230–242, Aug. 2024, doi: 10.22266/ijies2024.0831.18. 

[24] P. D. Kusuma and A. Novianty, “Total Interaction Algorithm: A 
Metaheuristic in which Each Agent Interacts with All Other Agents,” 
International Journal of Intelligent Engineering and Systems, vol. 
16, no. 1, pp. 224–234, Feb. 2023, doi: 10.22266/ijies2023.0228.20. 

[25] S. Al-Omari et al., “Dollmaker Optimization Algorithm: A Novel 
Human-Inspired Optimizer for Solving Optimization Problems,” 
International Journal of Intelligent Engineering and Systems, vol. 
17, no. 3, pp. 816–828, Jun. 2024, doi: 10.22266/ijies2024.0630.63. 

[26] S. O. Oladejo, S. O. Ekwe, and S. Mirjalili, “The Hiking 
Optimization Algorithm: A novel human-based metaheuristic 
approach,” Knowl Based Syst, vol. 296, no. 5, p. 111880, Jul. 2024, 
doi: 10.1016/j.knosys.2024.111880. 

[27] M. H. Amiri, N. Mehrabi Hashjin, M. Montazeri, S. Mirjalili, and N. 
Khodadadi, “Hippopotamus optimization algorithm: a novel nature-
inspired optimization algorithm,” Sci Rep, vol. 14, no. 1, p. 5032, 
Feb. 2024, doi: 10.1038/s41598-024-54910-3. 

[28] J. O. Agushaka, A. E. Ezugwu, A. K. Saha, J. Pal, L. Abualigah, and 
S. Mirjalili, “Greater cane rat algorithm (GCRA): A nature-inspired 
metaheuristic for optimization problems,” Heliyon, vol. 10, no. 11, 
p. e31629, Jun. 2024, doi: 10.1016/j.heliyon.2024.e31629. 

[29] P. D. Kusuma, “Group Better-Worse Algorithm: A Superior Swarm-
based Metaheuristic Embedded with Jump Search,” IAENG 
International Journal of Applied Mathematics, vol. 54, no. 4, pp. 
614–622, 2024. 

[30] X. Wang, V. Snášel, S. Mirjalili, J.-S. Pan, L. Kong, and H. A. 
Shehadeh, “Artificial Protozoa Optimizer (APO): A novel bio-
inspired metaheuristic algorithm for engineering optimization,” 
Knowl Based Syst, vol. 295, p. 111737, Jul. 2024, doi: 
10.1016/j.knosys.2024.111737. 

[31] E. Trojovska and M. Dehghani, “Clouded Leopard Optimization: A 
New Nature-Inspired Optimization Algorithm,” IEEE Access, vol. 
10, pp. 102876–102906, 2022, doi: 
10.1109/ACCESS.2022.3208700. 

[32] M. S. Braik, “Chameleon Swarm Algorithm: A bio-inspired 
optimizer for solving engineering design problems,” Expert Syst 
Appl, vol. 174, p. 114685, Jul. 2021, doi: 
10.1016/j.eswa.2021.114685. 

[33] P. Trojovský and M. Dehghani, “A new bio-inspired metaheuristic 
algorithm for solving optimization problems based on walruses 
behavior,” Sci Rep, vol. 13, no. 1, p. 8775, May 2023, doi: 
10.1038/s41598-023-35863-5. 

[34] S. O. Oladejo, S. O. Ekwe, L. A. Akinyemi, and S. A. Mirjalili, “The 
Deep Sleep Optimizer: A Human-Based Metaheuristic Approach,” 
IEEE Access, vol. 11, pp. 83639–83665, 2023, doi: 
10.1109/ACCESS.2023.3298105. 

[35] S. Gopi and P. Mohapatra, “Learning cooking algorithm for solving 
global optimization problems,” Sci Rep, vol. 14, no. 1, p. 13359, Jun. 
2024, doi: 10.1038/s41598-024-60821-0. 

[36] K. M. Hosny, A. M. Khalid, W. Said, M. Elmezain, and S. Mirjalili, 
“A novel metaheuristic based on object-oriented programming 
concepts for engineering optimization,” Alexandria Engineering 
Journal, vol. 98, pp. 221–248, Jul. 2024, doi: 
10.1016/j.aej.2024.04.060. 

[37] M. Suman, V. Sakthivel, and P. Sathya, “Squirrel Search Optimizer: 
Nature Inspired Metaheuristic Strategy for Solving Disparate 
Economic Dispatch Problems,” International Journal of Intelligent 
Engineering and Systems, vol. 13, no. 5, pp. 111–121, Oct. 2020, doi: 
10.22266/ijies2020.1031.11. 

[38] P. D. Kusuma and A. L. Prasasti, “Stochastic Shaking Algorithm: A 
New Swarm-Based Metaheuristic and Its Implementation in 
Economic Load Dispatch Problem,” International Journal of 
Intelligent Engineering and Systems, vol. 17, no. 3, pp. 276–289, Jun. 
2024, doi: 10.22266/ijies2024.0630.23. 

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 104-113

 
______________________________________________________________________________________ 



 

[39] H. Zein, J. Raharjo, and I. R. Mardiyanto, “A Method for Completing 
Economic Load Dispatch Using the Technique of Narrowing Down 
Area,” IEEE Access, vol. 10, pp. 30822–30831, 2022, doi: 
10.1109/ACCESS.2022.3158928. 

[40] P. D. Kusuma, “Iteration Controlled Mixture Optimizer: A New 
Metaheuristic and Its Application to Solve Economic Load Dispatch 
Problem,” IAENG International Journal of Applied Mathematics, 
vol. 54, no. 6, pp. 1073–1082, 2024. 

[41] M. Dehghani, Z. Montazeri, E. Trojovská, and P. Trojovský, “Coati 
Optimization Algorithm: A new bio-inspired metaheuristic algorithm 
for solving optimization problems,” Knowl Based Syst, vol. 259, p. 
110011, Jan. 2023, doi: 10.1016/j.knosys.2022.110011. 

[42] O. Alsayyed et al., “Giant Armadillo Optimization: A New Bio-
Inspired Metaheuristic Algorithm for Solving Optimization 
Problems,” Biomimetics, vol. 8, no. 8, p. 619, Dec. 2023, doi: 
10.3390/biomimetics8080619. 

[43] S. Suyanto, A. A. Ariyanto, and A. F. Ariyanto, “Komodo Mlipir 
Algorithm,” Appl Soft Comput, vol. 114, pp. 1–17, Jan. 2022, doi: 
10.1016/j.asoc.2021.108043. 

[44] E. Trojovska, M. Dehghani, and P. Trojovsky, “Zebra Optimization 
Algorithm: A New Bio-Inspired Optimization Algorithm for Solving 
Optimization Algorithm,” IEEE Access, vol. 10, pp. 49445–49473, 
2022, doi: 10.1109/ACCESS.2022.3172789. 

[45] E. E. Hassan, H. I. M. Noor, M. R. Bin Hashim, M. F. Sulaima, and 
N. Bahaman, “Optimal economic environmental power dispatch by 
using artificial bee colony algorithm,” IAES International Journal of 
Artificial Intelligence (IJ-AI), vol. 13, no. 2, pp. 1469–1478, Jun. 
2024, doi: 10.11591/ijai.v13.i2.pp1469-1478. 

[46] X.-R. Zhao, X.-H. Chen, and J.-S. Wang, “An Improved Wild Horse 
Optimizer Incorporating Dual Weight Starvation Strategy and 
Randomized Convergence Factor,” Engineering Letters, vol. 32, no. 
9, pp. 1794–1813, 2024. 

[47] K. V. K. Chithanya and V. L. Reddy, “Automatic intrusion detection 
model with secure data storage on cloud using adaptive cyclic shift 
transposition with enhanced ANFIS classifier,” Cyber Security and 
Applications, vol. 3, p. 100073, Dec. 2025, doi: 
10.1016/j.csa.2024.100073. 

[48] Safaa Nouman Alali and Abdulkarim Assalem, “New Methods for 
Optimal Power Allocation and Joint Resource Scheduling in 5G 
Network which Use Mobile Edge Computing,” Journal of Advanced 
Research in Applied Sciences and Engineering Technology, vol. 47, 
no. 2, pp. 237–265, Jun. 2024, doi: 10.37934/araset.47.2.237265. 

[49] V. Hayyolalam and Ö. Özkasap, “CBWO: A Novel Multi-objective 
Load Balancing Technique for Cloud Computing,” Future 
Generation Computer Systems, vol. 164, p. 107561, Mar. 2025, doi: 
10.1016/j.future.2024.107561. 

  
Purba Daru Kusuma is an assistant professor in computer engineering in 
Telkom University, Indonesia. He received his bachelor’s and master’s 
degrees in electrical engineering from Bandung Institute of Technology, 
Indonesia. He received his doctoral degree in computer science from Gadjah 
Mada University, Indonesia. His research interests are in artificial 
intelligence, machine learning, and operational research. He is currently 
becoming a member of IAENG. 
 
 

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 104-113

 
______________________________________________________________________________________ 




