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Abstract—To enhance the balance between global and local
search capabilities of Dung Beetle Optimization (DBO) algo-
rithm, this study proposes a multi-strategy hybrid improvement,
resulting in Dynamic Population Dung Beetle Optimization
(DPDBO) algorithm. Initially, a Piecewise Linear Chaotic Map
(PWLCM) is employed for population initialization, thereby
improving the uniformity of the initial population distribution
and, consequently, enhancing the global search capability of
DPDBO. Subsequently, the disorienting behavior of the ball-
rolling dung beetle is modeled to expand the exploration of
the solution space by integrating the original linear search
method with an enhanced spiral search strategy. Additionally, a
dynamic population strategy is introduced to adaptively allocate
ball-rolling and stealing dung beetles, effectively balancing the
exploration and exploitation capabilities of DPDBO. Compar-
ative analysis of DPDBO against six other meta-heuristic algo-
rithms (DBO, Sparrow Search Algorithm (SSA), Harris Hawks
Optimization (HHO), Whale Optimization Algorithm (WOA),
Genetic Algorithm (GA), and Sine Cosine Algorithm (SCA))
using CEC2017 and CEC2022 test functions demonstrates that
the proposed algorithm achieves faster convergence, higher
optimization accuracy, and greater robustness. Furthermore,
DPDBO is applied to three engineering applications (e.g., sensor
coverage optimization, tension spring design, and welded beam
design) showcasing its efficacy in solving real-world engineering
problems.

Index Terms—Dung beetle optimization algorithm; Chaotic
mapping; Disorienting behavior; Dynamic population strategy;
Engineering problems.

I. INTRODUCTION

OPTIMIZATION problems have been extensively uti-
lized in various fields, including engineering design[1],

neural networks[2], image processing[3], job scheduling[4],
and path planning[5], utilize optimization methods. The
conventional approach to solving optimization problems in-
volves approximating the optimal solution using first-order
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or second-order derivatives. However, this traditional method
is prone to getting trapped in local optima due to its reliance
on derivatives, making it challenging to solve complex multi-
dimensional problems. Therefore, researchers introduced nu-
merous metaheuristic algorithms to address optimization
problems. These algorithms have garnered significant interest
since their inception because of their simplicity, flexibility,
independence from derivatives, and ability to avoid getting
stuck in local optima.

Meta-heuristic algorithms are primarily categorized into
two types: natural physical mechanism-based algorithms
and swarm intelligence-based algorithms. Natural physical
mechanism-based algorithms consist of Genetic Algorithm
(GA) [6], Simulated Annealing (SA) algorithm [7], Optical
Microscope Algorithm (OMA) [8]. GA replicates the pro-
cess of biological evolution by producing offspring through
crossover and mutation operations, and subsequently select-
ing the most optimal individuals to form the next generation.
On the other hand, SA imitates the physical transformation
of a solid material from a high temperature to a low temper-
ature. Additionally, inspired by the concept of magnification
in optical microscopes, Cheng and Sholeh introduced OMA.

The swarm intelligence-based algorithms primarily con-
sist of Ant Colony Algorithm (ACA) [9], Particle Swarm
Optimization (PSO) [10], Artificial Bee Colony Algorithm
(ABC) [11], Grey Wolf Optimizer(GWO) [12], Whale Opti-
mization Algorithm (WOA) [13], Harris Hawks Optimization
(HHO) [14], Sparrow Search Algorithm(SSA) [15], Snake
Optimizer (SO) [16], Sand Cat Swarm Optimization (SCSO)
[17], Spider Wasp Optimizer (SWO) [18]. PSO, as a no-
table example of swarm intelligence optimization algorithms,
was introduced by Kennedy and Eberhart [10]. It emulates
the foraging behavior of bird flocks and achieves global
search capability through adaptive learning and individual
interaction. ACA replicates the behavior of ants releasing
pheromones to determine the optimal path or solution. ABC
imitates the honey harvesting behavior of a bee colony.
GWO achieves optimization by simulating the predation
behavior of a grey wolf pack. WOA utilizes the spiral
search mechanism to mimic humpback whale-specific search
methods. HHO models the predatory characteristics of Harris
hawk and incorporates Levy flights to address complex multi-
dimensional problems. SSA, introduced in 2020, imitates the
behavior of sparrows in the search for food and evasion of
natural enemies. SO and SCSO simulate the foraging and
mating behaviors of snakes and sand cats, respectively. SWO,
by mimicking the hunting, nesting, and mating behaviors of
female wasps, employs various unique updating strategies to
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enhance optimization performance. Additionally, there are
several other algorithms in this category. with outstanding
performance has been suggested in recent years [19-24].

Xue et al. [25] introduced Dung Beetle Optimization
(DBO) algorithm, inspired by dung beetle behaviors such as
foraging and spawning. DBO has gained popularity due to
its minimal adjustable parameters and effective optimization
capabilities. However, similar to other swarm intelligence
algorithms, DBO is prone to slow convergence and local
optima trapping. Consequently, researchers have developed
numerous enhanced algorithms. Zhang et al. [26] proposed a
producer model to accelerate the convergence rate of DBO.
Additionally, a dimension learning strategy was implemented
to facilitate information exchange among individuals within
the population, thereby improving the algorithm’s exploration
of solution spaces. Zhu et al. [27] introduced a Quantum
Computing and Multi-strategy Fusion-based Dung Beetle
Optimization (QHDBO) algorithm. This algorithm utilizes
a good point-set strategy to enhance population diversity.
The quantities of spawning and foraging dung beetles are
dynamically regulated to maintain a balance between global
and local search capabilities. The dynamic parameter R is
adjusted in a non-linear manner to enhance convergence
speed. Furthermore, a t-distribution variation strategy based
on quantum computing is employed to perturb the optimal
solution and increase the algorithm’s ability to escape lo-
cal optima. Zhang et al. [28] proposed an improved DBO
algorithm incorporating cosine inertia weights. A nonlinear
factor was integrated into the ball-rolling dung beetle model
to manage the impact of light intensity on global and local
searches. The cosine inertia weight was embedded in the
stealing dung beetle model to enhance the algorithm’s search
performance. Li et al. [29] utilized Fuch mapping and a
reverse-learning strategy to diversify the population during
initialization.

While these enhancements to DBO demonstrate satisfac-
tory performance, there are still deficiencies present in DBO.
For instance, the initial distribution of the population lacks
uniformity, thereby impacting DBO’s global search capabil-
ity to certain degree. Neglecting to consider the disorienting
behavior of dung beetles in the absence of light can diminish
the diversity of search strategies. The fixed quantities of ball-
rolling dung beetles and dung beetles engaged in stealing
hinder DBO’s capacity to adequately balance exploration and
exploitation.

Based on the aforementioned analysis, this paper posits
the subsequent enhancement strategies:

To improve the global search capability, the population
of DBO algorithm is initialized using a Piece-Wise Linear
Chaotic Map (PWLCM).

The spiral factor is applied to replicate the disorienting be-
havior of ball-rolling dung beetles in the absence of a guiding
light source. This combines the straight-line approach of the
traditional DBO to create a new search strategy, enhancing
DBO’s ability to navigate and explore the solution space.

This study proposes a dynamic population strategy that
is based on an adaptive factor to balance the capacities for
exploration and exploitation.

The remainder of this study is organized as follows:
Section II describes the fundamentals of DBO, Section III
analyzes DBO and outlines three improvement strategies for

Dynamic Population Dung Beetle Optimization (DPDBO).
Following this, Section IV conducts simulation experiments,
while Section V examines and analyzes the engineering
problems. Lastly, Section VI concludes the results of this
study.

II. DUNG BEETLE OPTIMIZATION ALGORITHM

DBO categorizes dung beetles into four groups according
to their behavior: ball-rolling dung beetles, spawning dung
beetles, foraging dung beetles, and stealing dung beetles.

A. Ball-rolling behavior

In nature, the dung beetle transforms dung into a spherical
ball and transports it to its nest. This dung-ball serves as
both its sustenance and a foundation for reproduction. During
the rolling process, the dung beetle relies on sunlight or
moonlight to guide the dung-ball, ensuring it maintains a
consistent trajectory. The equation that governs the location
adjustments involved in this ball-rolling behavior can be
articulated as follows:

xi(t+ 1) = xi(t) + αk · xi(t− 1) + b ·∆x1 (1)

where ∆x1 =| xi(t) − worst | represents the fluctuation
of light intensity; t represents the current iteration number;
xi(t) represents the positional data of the i-th dung beetle
at the t-th iteration; k ∈ (0, 0.2) represents the deflection
coefficients; b represents a constant within the range of (0,
1); α represents a natural coefficient taking values of either
1 or -1, and worst represents the global worst value.

When faced with an obstacle while rolling the dung-ball,
the dung beetle exhibits a dance-like behavior to reorient
itself and proceed in the desired direction. The equation used
to update its position during this behavior is given as follows:

xi(t+ 1) = xi(t) + tan(θ) ·∆x2 (2)

where ∆x2 = |xi(t)− xi(t− 1)| and θ ∈ [0, π]. When θ
= 0, π/2, and π, the position of the dung beetle remains
unchanged.

In summary, the position update formula for the ball-
rolling dung beetle can be derived as follows:{
xi(t+ 1) = xi(t) + α · k · xi(t− 1) + b ·∆x δ < p

xi(t+ 1) = xi(t) + tan(θ) ·∆x2 δ ≥ p
(3)

where δ represents a random number within the range of [0,
1] and p represents a factor that impact the likelihood of
the dung beetle exhibiting dancing behavior. In the original
DBO study, p was assigned a value of 0.9.

B. Spawning behavior

During the breeding season, dung beetles transport dung-
balls to a secure location for reproduction. This secure
location can be determined as follows:{

Lb∗ = max(X∗ · (1−R), Lb)

Ub∗ = min(X∗ · (1 +R), Ub)
(4)

where X ∗ represents the current local optimum position;
Lb∗ and Ub∗ represents the lower and upper bounds of
the spawning region, repectively; R = 1 − t/Tmax, Tmax

denotes the maximum number of iterations; while Lb and
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Ub represent the lower and upper bounds of the optimization
problem, respectively.

Once the spawning area has been identified, the female
dung beetle deposits her eggs in the dung-ball (spawning
ball). Assuming that each female dung beetle lays only one
egg on the hatching ball, the positional adjustment of the
hatching ball can be expressed as follows:

xi(t+ 1) = X∗ + b1 · (xi(t)− Lb∗)

+b2 · (xi(t)− Ub∗) (5)

where b1 and b2 represent two 1-D independent random
vectors, while D represents the dimension of the optimization
problem.

C. Foraging behavior

When the juvenile dung beetles inside the hatching ball
reach maturity, they emerge to search for food, and the area
where they search can be defined as follows:{

Lbb = max(Xb · (1−R), Lb)

Ubb = min(Xb · (1 +R), Ub)
(6)

where Xb represents the global optimal position; while Lbb

and Ubb represent the lower and upper boundaries of the
spawning area, respectively. The position update of the baby
dung beetle during foraging can be described as follows:

xi(t+ 1) = xi(t) + C1 · (xi(t)− Lbb)

+C2 · (xi(t)− Ubb) (7)

where C1 represents a random variable following a normal
distribution, and C2 represents a random vector from the
interval (0, 1).

D. Stealing behavior

Within the dung beetle population, certain individuals
engage in the act of stealing dung-balls from their coun-
terparts. The studies of DBO operated under the assumption
that the global optimum represents the most favorable food
source. Consequently, the dung beetles involved in theft
would navigate towards this global optimum. The equation
used to update the position in response to this behavior is
expressed as follows:

xi(t+ 1) = Xb + S · g · (|xi(t)−X∗|+
∣∣xi(t)−Xb

∣∣) (8)

where X b represents the global optimum; g represents a 1-
D random vector following a normal distribution; and 1-D
represents a constant.

In the original DBO, the distribution of four populations
of dung beetles is predetermined, with 20% for ball-rolling
dung beetles, 20% for dung beetles that spawn balls, 25%
for small dung beetles, and 35% for dung beetles that steal
dung. Fig. 1 illustrates the distribution of the dung beetle
populations.

Roll-20%

Spawn-20% Forage-25%

Steal-35%

Roll Spawn Forage Steal

Fig. 1: Distribution map of dung beetle populations

III. IMPROVED DUNG BEETLE OPTIMIZATION
ALGORITHM

While DBO algorithm outperforms many other swarm
intelligence optimization algorithms, it still exhibits certain
limitations. These include uneven initial population distri-
bution, which hampers the global search capability of the
algorithm; reliance on a single search method, which can
constrain search performance; and a fixed proportion of ball-
rolling and stealing dung beetles, which limits the balance
between exploration and exploitation. To overcome these
challenges, this study proposes three improvement strategies
aimed at enhancing the optimization capability of DBO
algorithm.

A. Population initialization strategy based on PWLCM

In swarm intelligence optimization algorithms, the quality
of the initial population plays a crucial role in enhancing
the convergence speed and global search capability of the
algorithm [30]. However, DBO method employs a random
approach for population initialization, resulting in an uneven
distribution of populations and constraining the search ca-
pacity of DBO. To address this limitation, chaotic maps have
been extensively utilized to enhance the population diversity
of swarm intelligence optimization algorithms, leveraging
their inherent randomness and ergodicity. Notably, chaotic
maps such as Tent [31], Logistic [32], and Sine [33] have
been commonly applied in this domain. Among these maps,
PWLCM stands out for its superior randomness and ergodic-
ity, attributed to its segmentation mechanism within the map-
ping space [34]. Therefore, this study utilizes PWLCM for
population initialization. PWLCM is mathematically defined
by the following equation:

f(i+ 1) =



f(i)
p , 0 ≤ f(i) < p

f(i)−p
0.5−p , p ≤ f(i) < 0.5

1−p−f(i)
0.5−p , 0.5 ≤ f(i) < 1− p

1−f(i)
p , 1− p ≤ f(i) < 1

(9)

where p represents the control parameter of the chaotic
mapping, p ∈ [0, 0.5].

When the values of p and f (0) are determined, it is
possible to generate a random sequence within the interval
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(0,1) through iteration. The initialization procedure for the
dung beetle population according to PWLCM is outlined as
follows:

(1) The control parameters p and f (0) are initialized, where
p ∈ [0, 0.5] and f(0) ∈ [0, 1].

(2) PWLCM sequence zij(i = 1, 2, ..., N ; j = 1, 2, ..., D)
is generated through Eq. (9), where N is the number of
populations and D is the dimension of optimization problem.

(3) Transform the resulting disorderly sequence into the
solution space by utilizing Eq. (10):

xij = lbj + (ubj − lbj) · zij (10)

where xij(i = 1, 2, ..., N ; j = 1, 2, ..., D) represents the
coordinate of the i-th dung beetle in the j-th dimension; lbj
and ubj represent the upper and lower bounds of the j-th
dimension coordinate.

Fig. 2 depicts the initial positions of 30 dung beetle
individuals acquired through PWLCM initialization in a 2D
space.

0 5 10 15 20 25 30

-100

-50

0

50

100

Fig. 2: Populations initialization using PWLCM in 2D
space

In Fig. 2, the populations produced by PWLCM exhibit
an even distribution in the solution space. This characteristic
is advantageous as it enhances the quality of the initial
populations.

B. Modeling the Disorienting behavior of dung beetles

In Eq. (3), the ball-rolling dung beetle depends on light
source guidance to navigate and performs rectilinear motion.
The study does not address the movement patterns of dung
beetles when there is no light source to guide them. In natural
settings, without light cues, dung beetles struggle to orient
themselves accurately, leading to erratic movements such as
walking in curved paths or forming elliptical trajectories [35].
The behavior of the ball-rolling dung beetle is defined by Eq.
(11):

xi(t+ 1) = xi(t) + b · l · cos(2πl)· | xi(t)− worst |
+α · k · xi(t− 1) (11)

where b · l · cos(2πl) represents a spiral factor designed to
emulate the helix-shaped motion of Disorienting ball-rolling
dung beetle. α is utilized to quantify the impact of wind and
other environmental variables, typically assigned a value of
1 or -1. The parameter k is set at 0.1.

The spiral factor b · l · cos(2πl) represents an isosceles
spiral, with b denoting a constant that determines the pitch

of the spiral line. A larger value of b corresponds to a larger
pitch. The variable l ranges randomly between -1 and 1. Fig.
3 illustrates 2D trajectories of a disorienting ball-rolling dung
beetle for b values of 3, 4, and 5.

-80 -60 -40 -20 0 20 40 60 80

-60

-40

-20

0

20
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b=2

b=3

b=4

b=4

b=3

b=2

Fig. 3: 2D representation of spiral curve

In Fig. 3, the pitch of the spiral curve widens with an
increase in the parameter b. Consequently, the search range
expands while the search accuracy diminishes. In this study,
a value of 4 was selected for b.

The ball-rolling dung beetle moves in a straight line when
guided by a light source, but exhibits disorienting behavior
and follows a spiral trajectory in the absence of light. To
accurately model this dual behavior, a probability p1 is
introduced, representing the likelihood of selecting either
the straight-line motion or the spiral trajectory to update the
position of the ball-rolling dung beetle. The corresponding
mathematical model is presented as follows:{

Eq.(3) α > p1
Eq.(11) α ≤ p1

(12)

where α represents a random number within the range of
[0, 1]. Given the infrequent occurrence of Disorienting in
dung beetles in their natural habitat, the value of p1 is set
at 0.3. The incorporation of the spiral search strategy into
the conventional linear search approach enhances the search
capabilities of DBO, elevates the probability of discovering
the optimal solution, and serves as a deterrent against DBO
being trapped in local optimal solutions.

C. Dynamic population strategy

Dung beetles exhibit communal behavior by releasing
pheromones to attract additional companions when food
is located, aiding in the search for resources and their
transportation to the habitat. However, as the food availability
within the habitat grows, an increasing number of dung
beetles opt to pilfer resources rather than actively search for
them. Consequently, the population of dung beetles engaged
in rolling dung balls diminishes with successive iterations,
while the population of dung beetles engaged in stealing food
increases.

To replicate the behavior of dung beetles, it was hypoth-
esized that the combined population of ball-rolling dung
beetles and dung beetles engaged in stealing constitutes 55%
of the total population. The quantities of ball-rolling dung
beetles and stealing dung beetles fluctuate with each iteration.
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The mathematical model is outlined as follows:
pS = pTS − pT

pTS = pop · 55%
pT = Round(w)

w = w1 + c− (w1−w2)
(0.75+e−2(2t−M)/M )

(13)

where pS represents the number of stealing dung beetles;
pTS represents the sum of ball-rolling beetles and stealing
dung beetles; and pT represents the number of ball-rolling
dung beetles; w represents the adaptive factor; t represents
the number of iterations; M represents the maximum number
of iterations, c is the adjustment factor; while w1 and w2

represent the initial and final values of the ball-rolling dung
beetle.

w1 = pTS ×Q1, w2 = pTS ×Q2 (14)

where Q1 and Q2 represent the initial and final ratios of the
rolling dung beetles, respectively. In the scenario where Q1

equals 80%, Q2 equals 20%, and c equals 1.25, the graph
depicting the variation curve of the number of ball-rolling
dung beetles is illustrated in Fig. 4.
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Round(w)

Fig. 4: Convergence curve of algorithm post-rounding

In Fig. 4, the quantity of ball-rolling dung beetles di-
minishes with successive iterations and stabilizes within a
specific range. This range spans approximately M /(w1−w2)
iterations. For a more elucidated understanding of the dy-
namic population strategy, the evolutionary progression of
the dung beetle population over 500 iterations is depicted in
Fig. 5.

Fig. 5: Population size dynamics across 500 iterations

DBO algorithm balances global and local search perfor-
mance primarily through the complementary behaviors of
ball-rolling and stealing dung beetles. The ball-rolling dung
beetles, characterized by their unrestricted range and larger
step size, enhance the global search capability of DBO.
Conversely, stealing dung beetles focus their search around
the global optimum, thereby improving the algorithm’s local
search performance. By adaptively adjusting the proportions
of ball-rolling and stealing dung beetles, DPDBO algorithm
effectively enhances global search capability during the early
iterations, increasing the likelihood of identifying the global
optimum. In later iterations, the algorithm shifts towards a
stronger local search focus, thereby improving convergence
accuracy and reducing the risk of entrapment in local optima.

Algorithm 1 DPDBO algorithm

Input: Pop, MaxIter and Dim .
Output: Optimal position Xb and its fitness value fb.

1: Initialisation of populations by Eq.(10)
2: while t ≤ T max do
3: Determine the number of ball-rolling dung beetles

and stealing dung beetles by Eq.(13)
4: if i = ball-rolling dung beetle then
5: α = rand(1), δ = rand(1)
6: if α < 0.7 then
7: if δ < 0.9 then
8: Update the location by Eq.(1).
9: else

10: Update the location by Eq.(2).
11: end if
12: else
13: Update the location by Eq.(11)
14: end if
15: end if
16: if i = hatching balls then
17: Update the location by Eq.(4) and Eq.(5)
18: end if
19: if i = foraging dung beetle then
20: Update the beetle location by Eq.(6) and Eq.(7).
21: end if
22: if i = stealing dung beetle then
23: Update stealing dung beetle location by Eq.(8).
24: end if
25: t = t+ 1
26: end while
27: return Xb and its fitness fb

D. complexity analysis

Assuming a population size of N , a maximum of T
iterations, a problem dimension of D , and a time com-
plexity of O(N ∗D) for population initialization. The time
complexity for individual fitness calculation and position
update is O(N ∗ T ∗D). The overall time complexity of
DBO is O(N ∗D +N ∗ T ∗D). The population initial-
ization complexity for DPDBO, as proposed in this study
using PWLCM mapping, is O(N ∗D). Despite potential
changes in the number of populations during the iteration
process, the total number of populations remains constant,
and no new loops are introduced. Consequently, the time
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complexity for individual fitness computation and location
update in DPDBO is O(N ∗ T ∗D). Therefore, the time
complexity of DPDBO remains O(N ∗D +N ∗ T ∗D). In
conclusion, DPDBO exhibits a similar order of magnitude
as standard DBO and does not compromise time complexity
for performance.

IV. EXPERIMENTAL RESULTS

CEC2017 [36] and CEC2022 [37] test functions were
utilized to assess and compare the performance of DPDBO
against other optimization algorithms (DBO [25], SSA [15],
HHO [14], WOA [13], GA [6], and Sine Cosine Algorithm
(SCA) [22]) in this section. To ensure a fair comparison,
all experiments were carried out on MATLAB (2023b)
platform on Windows 11, with a fixed population size of
30. To mitigate the impact of randomness, each experiment
was independently executed 50 times, with the mean (Ave)
and standard deviation (Std) serving as evaluation criteria.
Friedman test [38] was employed to analyze the experimental
results. Table I outlines the parameters of the seven algo-
rithms.

TABLE I: Compared algorithm parameters

Algorithm Parameter Value

DPDBO k and λ, b,S 0.1, 0.3, 0.5
w1, w2 13, 4

DBO k and λ, b,S 0.1, 0.3, 0.5
SSA PD ,SD ,R2 0.2, 0.1, 0.8
HHO E0 [-1, 1]
WOA a Decreased from 2 to 0
SCA a 2
GA Cross, mutation 0.2, 0.1

A. Analysis of the effectiveness of improvement strategies

In this research, three enhanced strategies are suggested.
To assess the impact of each strategy, they are integrated with
the conventional DBO method, resulting in three upgraded
algorithms (DBO1, DBO2, and DBO3). DBO1 incorporates
PWLCM strategy into DBO. DBO2 accounts for the disori-
enting behavior observed in ball-rolling dung beetles, while
DBO3 implements the dynamic population strategy.

Six benchmark functions from CEC2005 test functions
[39] were selected for analysis. These functions are detailed
in Table II, with F1-F3 representing unimodal functions and
F4-F6 representing multimodal functions.

Table III illustrates that DBO1, DBO2, DBO3, and
DPDBO algorithms exhibit superior convergence accuracy
compared to DBO, with DPDBO demonstrating the best per-
formance. These results suggest that each strategy employed
in this research contributes to enhancing the balance be-
tween exploration and exploitation capabilities. Furthermore,
DPDBO proves to be the most effective across the majority
of test functions due to its simultaneous utilization of three
enhanced strategies.

The convergence curves of DBO, DBO1, DBO2, DBO3,
and DPDBO algorithms for the six benchmark functions are
illustrated in Fig. 6, Fig. 7. It reveals that DBO1, DBO2,

TABLE II: CEC2005 benchmark test functions

Type Function Mim

Unimodal F1(x) =
∑n

i=1 x
2
i 0

F2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 0

F3(x) =
∑n

i=1

(∑i
j=1 xj

)2

0

Multimodal F5(x) =
∑n

i=1 −xi sin(
√

|xi|) 0

F6(x) =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10]

F7(x) = 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 0

DBO3, and DPDBO algorithms exhibit different convergence
patterns during the optimization of the test functions.

Firstly, DBO1 demonstrates a tendency to exhibit higher
initial accuracy and converge rapidly towards the optimal
solution (F4 and F5). This can be attributed to PWLCM
strategy, which evenly distributes the initial population across
the solution space, thereby increasing the probability of
discovering the potentially optimal solution. Secondly, the
convergence curves of DBO2 consistently lie below those of
DBO across all test functions, likely due to the introduction
of the disorienting behavior of the ball-rolling dung beetle.
This behavior enriches the search method and enhances the
likelihood of attaining the optimal solution. Thirdly, DBO3
exhibits a higher convergence speed during later iterations
(F1 and F3). This accelerated convergence is possibly a result
of the dynamic population strategy, which adaptively adjusts
the number of ball-rolling dung beetles and stealing dung
beetles to further enhance the algorithm’s global and local
search capabilities. Fourthly, DPDBO integrates three im-
provement strategies and showcases the fastest convergence
rate and highest accuracy. Furthermore, it illustrates that
DPDBO effectively balances the exploration and exploitation
aspects of the algorithm, thereby facilitating the discovery of
the global optimum.

TABLE III: Performance comparison of different
optimization strategies

Algorithm DBO DBO1 DBO2 DBO3 DPDBO

F1 mean 8.73E-101 6.88E-112 2.32E-118 1.64E-124 1.21E-127

std 4.78E-100 3.74E-111 1.26E-117 8.98E-124 5.92E-127

F2 mean 6.72E-52 9.91E-55 4.37E-60 2.17E-60 8.52E-63

std 3.67E-51 5.41E-54 1.66E-59 1.19E-59 4.63E-62

F3 mean 3.29E-49 4.49E-61 7.23E-70 1.83E-87 6.59E-103

std 1.80E-48 2.46E-60 3.96E-69 1.00E-86 3.61E-102

F4 mean -8.34E+03 -1.26E+04 -1.04E+04 -1.11E+04 -1.26E+04

std 1.70E+03 3.83E+00 1.82E+03 1.85E+03 7.43E-02

F5 mean 7.30E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

std 2.89E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6 mean 4.82E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00

std 2.00E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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B. Results and Analysis of CEC2017 test functions

To evaluate the efficacy of DPDBO introduced in this
study in comparison to other meta-heuristic algorithms (such
as DBO, SSA, HHO, WOA, GA, and SCA), simulation
experiments were conducted using CEC2017 test functions.

1) Introduction of CEC2017 test functions: Introduction
of CEC2017 test functions: CEC2017 test functions consist
of a variety of function types. Specifically, F1-F3 are uni-
modal functions, while F4-F10 are multimodal functions. In
this study, F2 is excluded due to its limited testing capability
[25]. Additionally, F11-F20 are hybrid functions, and F21-
F30 are composite functions. Further details regarding these
functions are outlined in Table IV. The benchmark functions
are standardized to have dimensions of 10, and the number
of iterations is fixed at 1000.

2) Comparison of Test Results: The statistical outcomes
for DPDBO, DBO, SSA, HHO, WOA, GA, and SCA after
1000 iterations and 50 independent runs against CEC2017
test function are presented in Table V. It illustrates the mean
and standard deviation (std) for each algorithm, with bolded
values highlighting the superior results. Additionally, Table
V includes a summary at the bottom indicating the number of
victories (+), draws (=), and failures (-) for each algorithm.
Further discussion on the analysis of these results follows:

The analysis of Table V reveals that the average perfor-
mance of DPDBO across 21 test functions surpasses that
of other algorithms. Additionally, the standard deviation of
DPDBO is notably lower than that of the other algorithms
across most test functions, indicating superior optimization

TABLE IV: CEC2017 benchmark test functions

Func No. Dim Range Min

Unimodal 1 10 [-100,100] 100
Function 3 10 [-100,100] 300

Multimodal 4 10 [-100,100] 400
Functions 5 10 [-100,100] 500

6 10 [-100,100] 600
7 10 [-100,100] 700
8 10 [-100,100] 800
9 10 [-100,100] 900
10 10 [-100,100] 1000

Hybrid 11 10 [-100,100] 1100
Functions 12 10 [-100,100] 1200

13 10 [-100,100] 1300
14 10 [-100,100] 1400
15 10 [-100,100] 1500
16 10 [-100,100] 1600
17 10 [-100,100] 1700
18 10 [-100,100] 1800
19 10 [-100,100] 1900
20 10 [-100,100] 2000

Composition 21 10 [-100,100] 2100
Functions 22 10 [-100,100] 2200

23 10 [-100,100] 2300
24 10 [-100,100] 2400
25 10 [-100,100] 2500
26 10 [-100,100] 2600
27 10 [-100,100] 2700
28 10 [-100,100] 2800
29 10 [-100,100] 2900
30 10 [-100,100] 3000

capabilities and stability. The following analyses are derived
from Table V:

The results pertaining to the unimodal functions F1 and F3
indicate that DPDBO exhibits a superior convergence rate.
Furthermore, DPDBO demonstrates optimal performance in
relation to both mean and standard deviation across these
functions. In the case of the multimodal functions F4-
F10, DPDBO surpasses other algorithms in performance,
with the exception of F4. DPDBO algorithm demonstrates
superior performance compared to other algorithms when
applied to function F10. For hybrid functions, a competitive
relationship is observed between DPDBO and SSA. While
DPDBO exhibits slightly weaker performance than SSA
on functions F13, F15, F18, and F19, it surpasses other
algorithms in overall performance. Experimental results on
composition functions (F21-F29) indicate that DPDBO is
highly competitive, outperforming other algorithms in all
functions except for F25 and F28, where it marginally un-
derperforms compared to HHO and SCA. Notably, DPDBO
shows a significant advantage on function F30, emphasizing
its effectiveness in solving composite problems.

3) Convergence curves comparison: The convergence
curves of various algorithms including DPDBO, DBO, SSA,
HHO, WOA, GA, and SCA for CEC2017 test functions are
depicted in Fig. 8. DPDBO algorithm demonstrates superior
performance compared to the other algorithms across most
functions in CEC2017, achieving the highest level of accu-
racy. Notably, the convergence of DPDBO shows an accel-
erated trend with increasing iterations. This behavior can be
attributed to the utilization of chaotic map initialization in
DPDBO, which aids in exploring promising regions of the
search space during the initial iterations. Additionally, the
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TABLE V: CEC2017 benchmark test functions results

Algorithm DPDBO DBO SSA HHO WOA GA SCA

F1 Ave 4.461E+03 1.101E+04 4.573E+03 2.570E+05 1.235E+05 3.562E+05 5.369E+08
Std 3.565E+03 2.361E+04 4.073E+03 1.458E+05 3.161E+05 7.420E+05 2.346E+08

F3 Ave 3.000E+02 3.000E+02 3.000E+02 3.011E+02 5.872E+02 5.403E+04 9.786E+02
Std 4.845E-14 3.507E-07 7.764E-14 3.567E-01 3.762E+02 2.169E+049 2.993E+02

F4 Ave 4.082E+02 4.206E+02 4.029E+02 4.150E+02 4.155E+02 4.616E+02 4.348E+02
Std 1.601E+01 2.802E+01 1.014E+01 2.701E+01 3.148E+01 5.669E+01 1.473E+01

F5 Ave 5.287E+02 5.329E+02 5.353E+02 5.445E+02 5.496E+02 5.798E+02 5.422E+02
Std 1.065E+01 1.198E+01 1.189E+01 1.722E+01 2.235E+01 1.842E+01 6.870E+00

F6 Ave 6.063E+02 6.087E+02 6.073E+02 6.254E+02 6.338E+02 6.552E+02 6.150E+02
Std 5.042E+00 5.953E+00 5.047E+00 1.449E+01 1.333E+01 1.615E+01 3.137E+00

F7 Ave 7.443E+02 7.451E+02 7.717E+02 7.788E+02 7.785E+02 7.812E+02 7.675E+02
Std 1.321E+01 1.465E+01 2.677E+01 1.951E+01 2.605E+01 2.097E+01 7.162E+00

F8 Ave 8.236E+02 8.288E+02 8.299E+02 8.302E+02 8.406E+02 8.677E+02 8.379E+02
Std 4.932E+00 1.064E+01 1.108E+01 7.133E+00 1.615E+01 1.514E+01 6.977E+00

F9 Ave 9.401E+02 9.602E+02 1.084E+03 1.326E+03 1.292E+03 9.758E+02 9.941E+02
Std 5.010E+01 9.284E+01 2.508E+02 2.351E+02 2.535E+02 1.207E+02 5.288E+01

F10 Ave 1.443E+03 1.754E+03 1.905E+03 1.967E+03 2.063E+03 1.805E+03 2.197E+03
Std 1.484E+02 3.126E+02 2.937E+02 2.538E+02 3.102E+02 2.974E+02 2.115E+02

F11 Ave 1.143E+03 1.175E+03 1.178E+03 1.161E+03 1.223E+03 6.815E+03 1.188E+03
Std 3.201E+01 6.635E+01 5.566E+01 5.567E+01 7.552E+01 7.978E+03 3.834E+01

F12 Ave 1.010E+04 1.952E+06 1.353E+04 1.745E+06 4.530E+06 4.965E+06 6.377E+06
Std 1.574E+04 3.156E+06 3.487E+04 1.819E+06 4.541E+06 5.432E+06 5.046E+06

F13 Ave 9.191E+03 9.576E+03 6.944E+03 1.601E+04 1.986E+04 2.201E+04 1.842E+04
Std 9.194E+03 9.577E+03 6.941E+03 1.609E+04 1.983E+04 2.201E+04 1.846E+04

F14 Ave 1.475E+03 1.506E+03 1.491E+03 1.516E+03 1.590E+03 7.914E+03 1.577E+03
Std 2.937E+01 5.003E+01 3.651E+01 2.788E+01 3.604E+02 7.166E+03 5.211E+01

F15 Ave 1.688E+03 1.823E+03 1.577E+03 2.490E+03 3.582E+03 1.024E+04 2.001E+03
Std 9.283E+01 3.678E+02 5.985E+01 8.443E+02 1.801E+03 8.406E+03 7.135E+02

F16 Ave 1.763E+03 1.752E+03 1.808E+03 1.867E+03 1.802E+03 1.920E+03 1.693E+03
Std 1.112E+02 9.412E+01 1.635E+02 1.429E+02 1.200E+02 1.396E+02 6.244E+01

F17 Ave 1.750E+03 1.752E+03 1.782E+03 1.778E+03 1.782E+03 1.790E+03 1.775E+03
Std 2.122E+01 2.061E+01 6.915E+01 2.590E+01 4.075E+01 5.235E+01 2.911E+01

F18 Ave 7.932E+03 1.747E+04 3.930E+03 1.947E+04 2.252E+04 1.577E+04 6.211E+04
Std 7.784E+03 1.535E+04 4.960E+03 1.281E+04 1.312E+04 1.216E+04 3.823E+04

F19 Ave 2.025E+03 2.155E+03 1.976E+03 7.112E+03 2.990E+04 9.173E+03 2.316E+03
Std 2.855E+02 3.939E+02 6.101E+01 5.511E+03 5.496E+04 7.348E+03 3.193E+02

F20 Ave 2.049E+03 2.083E+03 2.095E+03 2.156E+03 2.142E+03 2.184E+03 2.089E+03
Std 3.932E+01 4.530E+01 5.385E+01 6.902E+01 6.126E+01 7.488E+01 1.514E+01

F21 Ave 2.201E+03 2.205E+03 2.326E+03 2.299E+03 2.324E+03 2.371E+03 2.226E+03
Std 1.822E+00 1.998E+00 4.264E+01 7.260E+01 6.122E+01 4.025E+01 4.001E+01

F22 Ave 2.298E+03 2.314E+03 2.303E+03 2.362E+03 2.346E+03 2.492E+03 2.351E+03
Std 1.845E+01 9.000E+00 3.065E+02 2.748E+02 1.672E+02 3.295E+02 3.121E+01

F23 Ave 2.620E+03 2.641E+03 2.636E+03 2.667E+03 2.652E+03 2.705E+03 2.655E+03
Std 1.329E+01 1.573E+01 1.752E+01 2.917E+01 2.414E+01 1.781E+01 6.215E+00

F24 Ave 2.555E+03 2.602E+03 2.746E+03 2.809E+03 2.784E+03 2.866E+03 2.748E+03
Std 7.751E+01 1.198E+02 8.433E+01 1.036E+02 2.443E+01 5.297E+01 9.765E+01

F25 Ave 2.923E+03 2.942E+03 2.948E+03 2.920E+03 2.949E+03 3.013E+03 2.956E+03
Std 2.102E+01 6.554E+01 2.316E+01 6.538E+01 4.793E+01 6.303E+01 1.887E+01

F26 Ave 2.924E+03 3.049E+03 3.372E+03 3.403E+03 3.365E+03 3.532E+03 3.055E+03
Std 1.633E+02 1.212E+02 5.406E+02 5.559E+02 5.421E+02 5.320E+02 5.691E+01

F27 Ave 3.095E+03 3.103E+03 3.112E+03 3.154E+03 3.147E+03 3.230E+03 3.101E+03
Std 7.366E+00 6.363E+00 2.802E+01 5.122E+01 4.579E+01 4.438E+01 1.286E+00

F28 Ave 3.396E+03 3.307E+03 3.403E+03 3.372E+03 3.411E+03 3.455E+03 3.243E+03
Std 6.799E+01 1.392E+02 1.334E+02 1.577E+02 1.908E+02 1.831E+02 1.473E+01

F29 Ave 3.168E+03 3.206E+03 3.271E+03 3.282E+03 3.346E+03 3.324E+03 3.219E+03
Std 4.432E+01 4.676E+01 9.678E+01 7.049E+01 9.233E+01 7.695E+01 2.257E+01

F30 Ave 3,962E+05 5.371E+05 4.806E+05 1.063E+06 3.966E+05 2.212E+06 4.287E+05
Std 3.533E+05 5.292E+05 6.505E+05 1.558E+06 5.721E+05 2.970E+06 3.073E+05

+/=/- 21/1/7 0/1/28 5/1/23 1/0/28 0/0/29 0/0/29 2/0/27
Friedman Rank 1.4138 2.7241 3.2586 4.6897 5.2069 6.4483 4.2586
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Fig. 8: Comparison of convergence curves for CEC2017 benchmark test functions

dynamic population and hybrid search strategies (spiral and
linear search) employed by DPDBO contribute to maintain-
ing search capabilities in the latter stages of the iterations.
This superiority is particularly evident in functions F5, F10,
F24, and F30.

C. Results and Analysis of the CEC2022 test functions

In this section is to assess the superiority of DPDBO
over DBO, SSA, HHO, WOA, GA, and SCA by utilizing
CEC2022 test functions.

1) Introduction of CEC2022 test functions: This section
provides an overview of CEC2022 test functions, which
are characterized by a dimension of 20 and a total of 500
iterations. CEC2022 test functions encompass various types,
including unimodal function (F1), elementary functions (F2-

F5), hybrid functions (F6-F8), and combined functions (F9-
F12). Further details can be found in Table VII.

2) Comparison of Test Results: The results from
CEC2022 evaluation are outlined in Table VI. The high-
lighted data signify the superior results, while the tally of
victories (+), ties (=), and shortcomings (-) for each algorithm
is displayed at the table’s conclusion.

The experiments conducted in this section once again
highlight the efficacy of DPDBO algorithm. In general, DBO
algorithm exhibits subpar performance on CEC2022 test
functions, displaying a search accuracy that is inferior to
that of HHO, WOA, GA, and SCA algorithms, and surpass-
ing only the SSA algorithm. However, DPDBO algorithm
integrates three enhancement strategies to attain optimal
performance across all functions, except for F1 where it
demonstrates slightly lower performance compared to SCA
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TABLE VI: CEC2022 benchmark test functions results

Algorithm DPDBO DBO SSA HHO WOA GA SCA

F1 Ave 3.162E+04 3.954E+04 6.844E+04 2.404E+04 3.937E+04 9.199E+04 2.233E+04
Std 9.861E+03 9.142E+03 2.305E+04 7.492E+03 1.677E+04 2.499E+04 5.624E+03

F2 Ave 4.232E+02 8.734E+02 9.445E+02 4.583E+02 4.721E+02 5.034E+02 4.812E+02
Std 2.012E+01 3.195E+02 5.644E+02 7.785E+01 1.035E+02 4.463E+01 2.948E+01

F3 Ave 6.113E+02 6.385E+02 6.488E+02 6.412E+02 6.377E+02 6.634E+02 6.230E+02
Std 8.041E+00 8.762E+00 1.865E+01 9.589E+00 1.193E+01 1.505E+01 4.117E+00

F4 Ave 8.261E+02 8.398E+02 8.633E+02 8.284E+02 8.357E+02 8.699E+02 8.441E+02
Std 6.443E+00 8.498E+00 1.475E+01 7.331E+00 1.216E+01 1.485E+01 7.114E+00

F5 Ave 1.015E+03 1.337E+03 1.704E+03 1.432E+03 1.536E+03 1.299E+03 1.084E+03
Std 8.836E+01 2.122E+02 2.355E+02 1.931E+02 2.913E+02 3.464E+02 1.190E+02

F6 Ave 2.364E+03 4.292E+06 1.988E+07 6.013E+03 8.022E+03 6.184E+03 4.665E+06
Std 7.921E+02 1.082E+07 3.964E+07 4.285E+03 8.237E+03 4.792E+03 4.233E+06

F7 Ave 2.036E+03 2.071E+03 2.128E+03 2.082E+03 2.085E+03 2.124E+03 2.068E+03
Std 9.372E+00 2.315E+01 4.035E+01 3.387E+01 3.111E+01 3.932E+01 1.204E+01

F8 Ave 2.231E+03 2.235E+03 2.278E+03 2.243E+03 2.246E+03 2.299E+03 2.242E+03
Std 4.166E+00 6.803E+00 4.711E+01 1.324E+01 1.255E+01 5.478E+01 3.481E+00

F9 Ave 2.534E+03 2.702E+03 2.680E+03 2.611E+03 2.602E+03 2.765E+03 2.587E+03
Std 1.311E+01 5.443E+01 7.826E+01 4.166E+01 6.000E+01 5.612E+01 1.777E+01

F10 Ave 2.581E+03 2.564E+03 2.805E+03 2.678E+03 2.791E+03 2.765E+03 2.531E+03
Std 6.188E+01 7.875E+01 3.811E+02 1.873E+02 4.377E+02 3.902E+02 5.695E+01

F11 Ave 2.696E+03 3.944E+03 3.268E+03 2.802E+03 2.831E+03 3.385E+03 2.787E+03
Std 1.122E+01 3.334E+02 4.876E+02 1.223E+02 1.688E+02 4.702E+02 9.594E+01

F12 Ave 2.878E+03 2.903E+03 2.911E+03 2.945E+03 2.907E+03 3.023E+03 2.889E+03
Std 2.406E+00 2.377E+01 4.041E+01 6.588E+01 3.673E+01 6.744E+01 1.640E+01

+/=/- 11/0/1 0/0/12 0/0/12 0/0/12 0/0/12 0/0/12 1/0/11
Friedman Rank 1.1667 4.6667 6.4167 2.75 3.8333 6.25 2.9167

TABLE VII: CEC2022 benchmark test functions

Func No. Dim Range Min

Unimodal Functions 1 20 [-100,100] 300
Basic Functions 2 20 [-100,100] 400

3 20 [-100,100] 600
4 20 [-100,100] 800
5 20 [-100,100] 900

Hybrid Functions 6 20 [-100,100] 1800
7 20 [-100,100] 2000
8 20 [-100,100] 2200

Composition Functions 9 20 [-100,100] 2300
10 20 [-100,100] 2400
11 20 [-100,100] 2600
12 20 [-100,100] 2700

algorithm.
3) Convergence curves comparison: Fig. 9 presents the

convergence curves of DPDBO, DBO, SSA, HHO, WOA,
GA, and SCA algorithms for 20D CEC2022 test functions.
It provides insights into the convergence speed, accuracy,
and optimization process of each algorithm, allowing for a
clearer understanding of their performance.

Therefore, this study presents the following analyses: In
comparison to alternative algorithms, DPDBO demonstrates
superior ability in balancing exploration and exploitation
behaviors, thereby mitigating the risk of the algorithm getting
trapped in a local optimum. Initially, the convergence rate
of DPDBO aligns closely with that of other algorithms;
however, as iterations progress, DPDBO exhibits a notably
accelerated convergence rate, consistently achieving optimal
results. Notably, on F6, and F10, while other algorithms tend
to converge slowly or cease convergence after 250 iterations,
potentially leading to local optima, DPDBO continues to
explore and ultimately secures superior values.

DPDBO can achieve optimal results for several reasons.
Firstly, the utilization of PWLCM strategy during population
initialization results in a more even distribution of initial
individuals, thereby enhancing the chances of identifying the
optimal solution. Secondly, the introduction of disorienting
behavior for ball-rolling dung beetles enhances the search
process, thereby increasing the probability of result the opti-
mal solution to certain extent. Lastly, the adaptive application
of the dynamic population strategy adjusts the quantity of
ball-rolling dung beetles and stealing dung beetles, thereby
promoting a balance between the exploitation and exploration
aspects of DBO.

V. ENGINEERING APPLICATION PROBLEMS

A. Sensor coverage issues

This section explores the deployment of wireless sensor
nodes within a 2D rectangular area to maximize wireless
network coverage. The sensor model utilized is Boolean
perception model, which operates under the premise that a
monitored point is sensed if it falls within the perception
radius of a sensor node. Therefore, the likelihood of a
monitored point Xm,n being detected by sensor node pi can
be defined as follows:

cXm,n
(pi) ==

{
1, disp

(
Xm,n, p

i
)
≤ R

0, disp
(
Xm,n, p

i
)
> R

(15)

where Xm,n represents the monitored point located at
(xm, yn), pi represents the coordinates of the i-th sensor
node (i = 1, 2, · · · , N ); N represents the number of sen-

sor nodes, disp
(
Xm,n, p

i
)
=
√

(xm − pix)
2
+
(
yn − piy

)2
represents the distance from the monitored point Xm,n to
the sensor node; pi, pix and piy represent the horizontal and
vertical coordinates of the i-th sensor node, respectively.
Assuming that there are N nodes in the monitored area
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Fig. 9: Comparison of convergence curves for CEC2022 benchmark test functions

with the coordinates of (p1, p2, · · · , pN ), the joint perception
probability of all sensor nodes to the monitored point Xm,n

can be defined as follows:

cXm,n
(A) = 1−

N∏
i=1

(
1− cXm,n

(
pi
))

(16)

where A represents all sensors within the monitored region,
the monitored area is assumed to take the form of a rectangle
with an area of LW m2, L and W denote the length
and width of the rectangle, respectively. For the ease of
computation, the rectangle is partitioned into LW grids of
uniform area, with the monitored point positioned at the
center of each grid. The coverage area and coverage rate
of the sensor network can be determined using Eq. (17) and
(18) as follows:

C(A) =
W∑
n=1

L∑
m=1

(
cXm,n

(A)
)

(17)

Cr(A) = C(A)/LW =

W∑
n=1

L∑
m=1

(
cXm,n(A)

)
/LW (18)

The objective of this section is to achieve the highest cov-
erage rate through the selection of sensor node coordinates
(A). Therefore, the optimization problem can be defined as:

f(A) = max
A

[Cr(A)] (19)

where A represents the positions of N sensor nodes in the
monitoring.

To validate the effectiveness of DPDBO in addressing the
wireless sensor network deployment problem, simulations
were conducted across three scenarios involving 30, 35, and
40 nodes. The remaining parameters for the sensor nodes are
detailed in Table VIII.

TABLE VIII: Parameter settings for optimization
experiments

Parameters Takes values

Regional Scope 100m*100m
Number of nodes 20,25,30
Perception radius 12m

Communication Radius 20m

DPDBO was executed independently 30 times. Table IX
outlines the coverage (best and average) for 20 nodes, 25
nodes, and 30 nodes. The results in Table IX indicate that
DPDBO consistently outperforms other algorithms regardless
of the wireless sensor network size. The optimal and average
coverage rates are approximately 4% and 8% higher than
those achieved by DBO, respectively.

Fig. 10 depicts 2D node distribution plots for DPDBO
algorithm, and DBO algorithm after 200 iterations, with 20
nodes deployed. DPDBO achieves higher node uilization.
For instance, in DBO scheme, sensor nodes tend to cluster,
significantly reducing overall coverage. In contrast, DPDBO
scheme exhibits a more dispersed node arrangement, mini-
mizing overlap and thereby increasing the effective coverage
area. Additionally, DBO algorithm, at times, arranges multi-
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TABLE IX: Sensor coverage results across different node configurations

Algorithm DPDBO DBO SSA HHO WOA GA SCA

20Nodes mean 0.80872 0.73702 0.73216 0.74275 0.71484 0.66816 0.66094
best 0.8376 0.79 0.7916 0.7748 0.7512 0.706 0.696

25Nodes mean 0.86789 0.79542 0.78837 0.79024 0.76982 0.72071 0.70662
best 0.888 0.8452 0.836 0.8204 0.8108 0.7516 0.7564

30Nodes mean 0.87014 0.80278 0.79208 0.79916 0.77792 0.71809 0.70363
best 0.8956 0.8492 0.844 0.8284 0.8132 0.7556 0.7312

TABLE X: Results for tension/compression spring design optimization

Algorithm DPDBO DBO SSA HHO WOA GA SCA

Best 0.012665 0.012769 0.012799 0.012732 0.012765 0.013195 0.012789
Ave 0.013111 0.014094 0.014799 0.01335 .013872 0.016625 0.013235
x1 0.0506705 0.05 0.0530632 0.053625 0.0515924 0.05 0.0519108
x2 0.332704 0.316827 0.25 0.4051 0.354396 0.310463 0.361104
x3 12.8493 14.1209 13.0087 8.9293 11.4264 15 11.1426

TABLE XI: Optimization results for welded beam design

Algorithm DPDBO DBO SSA HHO WOA GA SCA

Best 1.670411 1.703598 1.717704 1.773721 1.724646 1.934308 1.740212
Ave 1.715 1.7974 2.622 2.0644 2.9001 2.2724 1.8419
x1 0.19867 0.17943 0.18882 0.20238 0.20175 0.125 0.19017
x2 3.341 3.7836 3.7975 3.8452 3.6107 5.55105 3.738
x3 9.1925 9.1774 9.1735 9.0162 9.1112 10 9.1687
x4 0.19884 0.19982 0.19965 0.20666 0.20237 0.195463 0.20333

ple nodes along the boundary, leading to inefficient coverage
and suboptimal solutions. However, the DPDBO algorithm
avoids such inefficiencies, further validating its enhanced
global search ability and capacity to achieve more optimal
solutions.

B. Tension/compression spring design

The primary objective of this issue is to reduce the weight
of the tension or compression spring [40]. The optimization
procedure must adhere to various constraints, including shear
stress, resonance frequency, and minimal deflection.

There are three variables that impact the weight of the
spring: the diameter of the wire (x1), the average of the
coil diameters (x2), and the number of active coils (x3). The
problem is defined and described as follows:

Minimize :
f(x̄) = x2

1x2(2 + x3)

subject to :

g1(x̄) = 1− x3
2x3

71785x4
1

≤ 0,

g2(x̄) =
4x2

2 − x1x2

12566(x2x3
1−4

1)
+

1

5108x2
1

− 1 ≤ 0,

g3(x̄) = 1− 140.45x1

x2
2x3

≤ 0,

g4(x̄) =
x1 + x2

1.5
− 1 ≤ 0,

with bounds :

0.05 ≤ x1 ≤ 2.00

0.25 ≤ x2 ≤ 1.30

2.00 ≤ x3 ≤ 15.0

The experimental results of DPDBO and other compar-
ative algorithms in the design of welded beams are sum-
marized in Table X and Fig. 11. The results indicate that
DPDBO consistently outperforms the other algorithms in
both average and optimal values across 30 runs, and it
converges to the optimal value near the early stage, showing
a faster convergence speed. DPDBO identifies the optimal
solution for the problem, demonstrating its robust global
search capability in addressing real-world challenges.

C. Welded beam design
The objective of the welded beam design problem is

to minimize construction expenses [40]. This optimization
challenge encompasses five limitations: shear stress (δ), beam
bending stress (τ ), beam end deflection (σ), and bar buckling
load (Pc). It involves four variables: weld thickness (x1),
length of the attached bar segment (x2), bar height (x3),
and bar thickness (x4). The optimization problem can be
expressed as follows:

Minimize :

f(x̄) = 0.04811x3x4(x2 + 14) + 1.10471x2
1x2
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Fig. 10: Node arrangement simulation diagram
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Fig. 11: convergence plot

subject to :

g1(x̄) = x1 − x4 ≤ 0,

g2(x̄) = δ(x̄)− δmax ≤ 0,

g3(x̄) = P ≤ Pc(x̄)

g4(x̄) = τmax ≥ τ(x̄),

g5(x̄) = σ(x̄)− σmax ≤ 0,

where :

τ =

√
τ ′2 + τ ′′2 + 2τ ′τ ′′

x2

2R
, τ ′′ =

RM

J
, τ ′ =

P√
2x2x1

,

M = p
(x2

2
+ L

)
, R =

√
x2
2

4
+

(
x1 + x3

2

)2

,

J = 2

((
x2
2

4
+

(
x1 + x3

2

)2
)
√
2x1x2

)
,

σ(x̄) =
6PL

x4x2
3

, δ(x̄) =
6PL3

Ex2
3X4

, L = 14in, P = 6000lb,

Pc(x̄) =
4.013Ex3x

3
4

6L2

(
1− x3

2L

√
E

4G

)
, E = 30.106psi.

with bounds :

0.1 ≤ x3, x2 ≤ 10

0.1 ≤ x4 ≤ 2

0.125 ≤ x1 ≤ 2

The experimental results of the DPDBO algorithm and
other contrast algorithms on the design welded beam are
shown in Fig. 11. DPDBO and the other algorithms were
executed separately 30 times. The results, including optimal
values, average values, and optimal design solutions, are
presented in Table XI. The experimental results indicate
that DPDBO consistently achieved the highest rankings for
both average and optimal values across all 30 runs, thereby
demonstrating the method’s efficacy in addressing real-world
challenges.

VI. CONCLUSION

This study presents three significant improvements to DBO
algorithm. First, the integration of PWLCM for population
initialization ensures a more uniform distribution of the
initial population, thereby reducing the likelihood of the
algorithm becoming trapped in local optima. Second, unlike
the classical DBO, the proposed approach incorporates the
disorienting behavior of ball-rolling dung beetles in the
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absence of a light source, resulting in a hybrid search
strategy that combines linear and spiral trajectories. This
enhancement enriches DBO’s search methods, increases the
probability of identifying the global optimum, and improves
convergence speed. Third, the dynamic population strategy
adaptively allocates individuals as either ball-rolling or steal-
ing dung beetles, guided by a nonlinear factor. During the
initial iterations, a higher proportion of ball-rolling dung
beetles enhances global search capability, while in later
iterations, the increasing number of stealing dung beetles
ensures a balanced exploration and exploitation process. The
performance of DPDBO algorithm was rigorously evaluated
using CEC2017 and CEC2022 benchmark test functions.
Comparative results indicate that DPDBO exhibits superior
global search capability and robustness relative to other meta-
heuristic algorithms, including DBO, SSA, HHO, WOA, GA,
and SCA. Furthermore, DPDBO was applied to two common
engineering problems (e.g., tension spring design and welded
beam design) as well as a more complex sensor coverage
optimization problem. The results demonstrate that DPDBO
effectively addresses these engineering challenges, confirm-
ing its practical applicability and enhanced performance.
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