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Abstract—Semantic segmentation plays a crucial role in un-
derstanding and interpreting of high spatiotemporal resolution
remote sensing, which are widely used in many fields such as
agriculture, meteorology, and military. With the continuous ad-
vancement of convolutional neural networks (CNNs), compared
to shallow network learning, the performance of pixel-level
classification accuracy as well as multi-scale feature extraction
has been greatly improved with deep learning (DL). However,
in high spatiotemporal resolution and complex scenarios, the
semantic segmentation of remote sensing still faces many
problems, such as high computational complexity, easy loss of
detail information, and low segmentation accuracy. To address
these issues and enhance semantic segmentation accuracy in
complex scenarios, in this work, a filtered hybrid attention
mechanism network is proposed to provide a robust and
effective multi-scale and multi-granularity backbone system for
semantic segmentation within the encoder-decoder framework.
Firstly, the lightweight network, MobileNetV2 is selected, which
can efficiently extract the high-level and low-level features of
remote sensing. Meanwhile, a multi-scale filtered hybrid mod-
ule is constructed for the spatio-temporal spectral multilayer
features extraction, which can accurately capture the spatial
dependence and spatio-temporal globality of high-level features
with the attention mechanism, so as to obtain a fine depiction
of the remote sensing features. Furthermore, the accuracy of
coarse-grained features is improved by capturing the contextual
information of low-level features with the help of multi-head
attention mechanism. Finally, the results demonstrate that our
method outperforms other methods on the LoveDA urban
dataset, the ISPRS Vaihingen dataset, and the GaoFen-3 (GF-3)
satellite synthetic aperture radar (SAR) dataset, indicating its
effectiveness in performing semantic segmentation for remote
sensing in complex scenes.

Index Terms—remote sensing, semantic segmentation, filtered
hybrid attention mechanism, multi-scale feature.
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REMOTE sensing [1] is a type of Earth observation
data characterized by wide chronological coverage, rich

spectral information, and variable target structure, which
provides a more comprehensive characterization of the sur-
face for many tasks in earth science research, including
change detection, land cover mapping, object extraction,
and other tasks. With the continuous development of high
spatiotemporal resolution imaging technology, the range of
remote sensing observations is further expanded to express
geospatial information in a finer way. These geospatial infor-
mation plays an important role in urban and rural planning
and construction, transportation analysis and prediction, and
military target identification [2]. In particular, by understand-
ing the feature information in remote sensing, classifying the
pixels in remote sensing according to the feature categories
represented, and providing accurate and detailed geospatial
information for the application fields of remote sensing is
an important goal of semantic segmentation. Due to the
high resolution and rich spectral information of remote
sensing, similar appearance features exist between features
such as buildings, vegetation and water bodies, light changes,
shadows and occlusions. Therefore, how to extract effective
information and distinguish similar appearance features from
massive remote sensing observation data is a key task in
semantic segmentation of high spatiotemporal resolution
remote sensing.

Traditional semantic segmentation methods mainly seg-
ment an image into several disjoint regions by extracting the
low-level features of the image (e.g., grayscale, color, spatial
texture, and geometric features used for remote sensing).
According to the consistency or similarity exhibited by the
low-level features within the same region and the significant
differences between different regions, a threshold method
is adopted to divide the image into different regions. In
addition, for improving the accuracy of regional refinement
refine the regions, watershed segmentation algorithm based
on the mathematical morphology of topological theory [3],
normalized segmentation algorithm based on the global infor-
mation of the image [4], and the ideological fuzzy C-means
based on clustering algorithms [5] have been successively
proposed. These segmentation methods, which rely on low-
level features, primarily group pixels into meaningful objects
based on predefined parameters and achieve the semantic
segmentation process by computing additional features such
as texture, context, and shape relevance as a set of classifica-
tion features [6]. During the classification process, traditional
low-level feature extraction methods only consider the value
of each pixel while neglecting the connections between
the current pixel and its surrounding pixels, which cannot
meet the requirements of remote sensing interpretation. As
high spatiotemporal resolution remote sensing contain in-
creasingly richer details and more complex backgrounds,
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it becomes challenging to capture the high-level semantic
information of remote sensing in complex environments
using low-level feature extraction methods. Therefore, to a
certain extent, the limitations of remote sensing semantic
segmentation methods based on low-level features are low
classification accuracy and poor adaptability to complex
samples.

With the impressive performance of image process-
ing techniques based on deep convolutional neural net-
works(CNNs) in semantic segmentation tasks, they have
been widely applied in the field of remote sensing seman-
tic segmentation [7]. Taking advantage of powerful feature
representation and data fitting ability of deep CNNs to
access high-level image semantic information [8], Long et
al. proposed a fully convolutional network (FCN) [9], which
is an end-to-end training network that replaces the fully-
connected layer in traditional CNNs with a convolutional
layer, and directly performs pixel-by-pixel predictions on
inputs of any size through upsampling layers and the output
layer within the network. However, due to the presence of
pooling layers, multiple convolution, and successive pooling
operations, the network continuously expands the receptive
field and aggregates information [10], resulting in a lack of
spatial consistency during downsampling, which reduces the
spatial resolution of the image and ultimately loses global
contextual information.

To further acquire contextual information, Ronnerberge et
al. proposed U-net network [11], which designs two paths
to learn contextual and spatial information by introducing
an encoder-decoder paradigm to obtain feature maps that
are combined within different dimensions to form denser
features. Moreover, by utilizing skip-connection modules, the
network is allowed to transmit information between different
layers, thereby addressing the issue of missing contextual
information and enabling it to acquire both high-level se-
mantic information and low-level detailed information si-
multaneously. However, due to the complex skip-connection
mechanism of the deep network structure [12], [13], [14],
the training speed of U-net is relatively slow, which may
lead to overfitting of the network, thus reducing the general-
ization ability. In addition, when facing the complex ground
information contained in remote sensing, many objects have
similar appearance and the task is easily confused. Then, for
improving the accuracy of complex information segmentation
and fully utilizing the spatial context information, Zhao et al.
proposed a pyramid scene parsing network (PSPNet) [15],
which employs a pyramid pooling module (PPM) module to
add local and global information to the feature map, enabling
the model to consider more global contextual information,
improving the performance of capturing global information,
and performing multi-scale feature fusion. The auxiliary
loss function is also added to make the convergence speed
increase when training the network. The results demonstrate
that the model effectively improves the accuracy of semantic
segmentation.

For enhancing the ability to capture image details and
multi-scale contextual information, Chen et al. proposed the
DeepLabV3 plus [16], which adopts an encoder-decoder
structure based on the atrous spatial pyramid pooling (ASPP)
module to improve the detection speed of the network. By
using different dilation rates, it extracts features from various

receptive fields, expanding the receptive field to capture rich
information for precise segmentation results. The PPM and
ASPP module are capable of considering more contextual
information, enhancing multi-scale feature representation,
and enabling multi-scale features to cover a broader and
denser range of scales, thereby effectively improving the
accuracy of semantic segmentation [17], [18]. Unfortunately,
both DeepLabV3 plus and the PSPNet encounter challenges
in fully harnessing high-level multi-scale feature information
during image feature extraction. This limitation results in the
loss of vital details, ultimately impacting the precision of
segmentation.

The residual ASPP with attention framework network
(RAANet) [19] proposed by Liu et al. introduces residual
blocks in the ASPP module and reconstructs the null con-
volutional units using extended attention convolutional units
to capture important semantic information at multiple scales.
This design allows the network to capture features at different
scales more efficiently, thus improving segmentation perfor-
mance. Also, by introducing residual units, the complexity
of the network is reduced, making the training and inference
process more efficient. In this way, RAANet achieves better
results in semantic segmentation tasks, enabling the network
to understand and interpret semantic information in high-
resolution remote sensing images accurately. However, its
original primitive feature extraction network Xception [20]
has a large number of parameters, resulting in a relatively
complex model, which is not favorable for deployment in
scenarios with limited computational resources, and thus is
not effective in the face of small data samples. Furthermore,
the attention mechanism in the original model may still have
some limitations when dealing with complex scenarios, mak-
ing it difficult to adequately capture semantic information of
various scales and complexities.

Based on these limitations, proposed with a remote sensing
images semantic segmentation model based on a filtered
hybrid attention mechanism

1. Firstly, the lightweight MobileNetV2 was chosen to
extract both low-level and high-level features, and further
optimized on this basis to address the issues of spatial detail
loss and inadequate feature extraction.

2. Secondly, a filtered hybrid attention mechanism module
was designed for use in the high-level feature part of the
backbone network. In order to enhance the model’s ability
to pay attention to features at different scales and to obtain
global contextual information about the entire image, thereby
improving the model’s understanding of object boundaries
and details.

3. Finally, a multi-head attention mechanism module was
employed for the low-level feature part to enhance the
accuracy of semantic segmentation.

II. METHODS

A. Filtered Hybrid Attention Mechanism Module

In order to solve the limited expression capability of a sin-
gle attention mechanism in capturing global information fea-
tures and contextual information, the image detail expression
is enhanced by introducing the 2D Fourier Transform [21],
while a filtered hybrid attention mechanism is designed by
fusing the Convolutional Block Attention Module (CBAM)
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Fig. 1. Module diagram of the filtered hybrid attention mechanism.

[22] and the SE module [23], which solves the problem of
the spatial features ignored by the SE module that primarily
focuses on channel information, respectively. Furthermore,
since CBAM lacks sufficient access to channel information,
a filtered hybrid attention mechanism is able to better capture
global contextual information and enhance detailed feature
extraction capabilities, thereby improving the accuracy and
generalization of the model. Its structure is shown in Fig.1.

Typically, 2D Fourier transforms include both continuous
Fourier transforms and discrete Fourier transforms, where the
continuous Fourier transform is performed as follows:

F (u, v) =

∫ ∫ ∞

−∞
f(xnc, xm) · e−2πi(un+vm)dxmdxn,m

(1)
in which u, v denote the frequency coordinates in the

frequency domain, respectively. N , M and C are the height,
width and number of channels of the feature maps of the
input image X . n and m denote the new pixel point position
and c denotes the channel of x, respectively. The discretized
2D Fourier transform is defined by:

F (u, v) =
N∑

n=1

M∑
m=1

Xn,m · e−j2π(un
N + vm

M ), (2)

frequency domain obtained after discretization:

X̄ = F (u, v) ∈ CC×N×M , (3)

where X̄ is a complex tensor representing the spectrum of
X . A learnable filter K ∈ CC×N×M is then multiplied by

X̄ to modulate the spectrum:

X̃ = K ⊙ X̄, (4)

where ⊙ is the multiplication of elements, the filter K has
the same dimension as X̄ , which is referred to as the global
filter, and X̄ represents filters in the frequency domain.

Finally, we use the inverse Fourier transform to modulate
the spectral X̃ transformed back to the spatial domain:

G = g(i, j) =

∫ ∫ ∞

−∞
X̃ · e2πi(un+vm)dudv, (5)

where g(i, j) denotes the position of the feature image G.
The spatial dependence of the image and the positional
details of the feature G are obtained after global filtering.

In order to further extract the channel and spatial key
feature information of the image features and remove the
redundant information, a hybrid attention mechanism is em-
ployed here. Firstly, the channel features are extracted by
the channel attention module of the CBAM, and the input
feature map G undergoes global average pooling and global
max pooling processes to generate two 1 × 1 × C feature
maps. Secondly, through the multilayer perceptron (MLP) for
feature summation, to obtain the corresponding Mc(G), and
then multiply with the input feature map G. Finally, obtain
the input features G′ of the spatial attention module, which
is mathematically formulated as follows:

Mc(G) = σ(MLP(Avg(G)) +MLP(Max(G))), (6)

G′ = Mc(G)∗G, (7)
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Fig. 2. The Framework diagram of semantic segmentation network based on filtered hybrid attention mechanism.

where σ is the sigmoid operation.
Further, the channel features obtained above are subjected

to global max pooling and global average pooling to obtain
two N × M × 1 feature maps. The corresponding channel
splicing operation is performed on the two feature maps to
obtain the N × M × 2 feature maps, which are then processed
by 7×7 convolutional downscaling and activation function to
generate the N × M × 1 spatial features Ms(G

′). Similar
to the channel feature extraction process, the spatial features
Ms(G

′) are multiplied with the input feature maps G′ to
generate the final spatial feature maps G′′, as follows:

MS(G
′) = σ(f7∗7([Avg(G′);Max(G′)])), (8)

G′′ = MS(G
′)∗G′, (9)

where 7*7 in f7∗7 denotes the size of the convolution kernel,
and the feature map G′ output from the channel attention
module is used as the input feature map for this module.

In order to further extract the interdependence information
between channels, the feature map G of N × M × C, which
contains global information, is compressed into a feature
vector Z of 1 × 1 × C, and the feature data Zc with contextual
information is obtained, as shown in Equation 10:

Zc = Gsq(G) =
1

N ∗M

N∑
i=1

M∑
j=1

g(i, j), (10)

where Zc is the compression feature of channel c.
For determining the dependency between channels, the im-

portance between different channels is obtained by learning
two fully connected layers to calculate the weight of each
channel based on compression, i.e.,

fc = δ(F1(ZC)), (11)

where fc is the feature after nonlinear mapping, F1 denotes
the fully connected layer, and δ is the ReLU activation
function. Then fc is subjected to a second full-connectivity

learning to obtain the excitation weights for each channel as
follows:

Sc = σ(F2(fc)), (12)

where Sc is the excitation weight of channel c, F2 denotes
the fully connected layer, and σ is the Sigmoid activation
function. and the input feature map G is weighted by

Y = Sc ∗G. (13)

The final hybrid feature image M obtained by summing
the channel-space feature map G′′ and the multichannel
characteristic information Y , respectively, is as follows:

M = Y (i, j)+G′′(i, j), (14)

B. Semantic Segmentation Network Based on Filtered Hy-
brid Attention Mechanisms

A semantic segmentation network has been proposed
based on the filtered hybrid attention mechanism module,
as illustrated in Fig.2.

The input image on this network structure first passes
through the MobileNetV2 network to obtain low-level and
high-level features. For enhancing the model’s ability to
understand the global semantic information of the image,
a Filtered Hybrid Attention Mechanism (FHAM) is intro-
duced to enhance the model’s ability to process the global
information of the whole image. The low-level feature part of
MobileNetV2 is mainly responsible for capturing the detail
and texture information of the image but has some deficien-
cies in the global semantic understanding the introduction
of the multi-head Attention mechanism allows the model to
focus more on the important semantic regions in the image
at the low-level feature level, which enhances the delivery
of semantic information. Additionally, the incorporation of
the multi-head attention mechanism enables the model to
better learn feature representations with semantic properties.

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 80-89

 
______________________________________________________________________________________ 



By weighting the attention to different spatial regions of low-
level features, the model is able to capture semantic infor-
mation at different scales in the image more accurately, thus
improving the semanticity of the features. This improvement
allows the model to perceive a wider range of contextual
information, which helps to improve the model’s ability to
understand the subtle structures and boundaries in the image,
resulting in a significant improvement in the accuracy of
semantic segmentation.

1) MobileNetV2 network
MobileNetV2 [24] is improved by adding inverted resid-

uals with a linear bottleneck module to MobileNetV1. The
MobileNet architecture is based on depth-separable convo-
lution, where standard 2D convolution produces an output
channel by processing all input channels directly in the depth
dimension (channels).

Depth-separable convolution, on the other hand, divides
the input image and filters into separate channels, and then
convolves each input channel with the corresponding filter
channel. After generating the filtered output channels, these
output channels are then stacked back. In separated deep
convolution, the stacked output channels are filtered using
a 1×1 convolution, called point-by-point convolution, which
combines the stacked output channels into a single channel.
Deep separable convolution produces the same output as
standard convolution, but is more efficient due to the re-
duction in the number of parameters involved. MobileNetV2
inserts 19 inverted residual bottleneck layers after the first
convolutional layer with 32 filters, and then finishes with
a point-by-point convolution that produces a size of 7 × 7
× 1280 pixels. The residual block connects the beginning
and the end of the convolution block via jump connections,
with the aim of passing information to deeper layers of the
network. In a standard residual block, the beginning and
end of the convolution block typically have more channels
than the middle layer. In the inverted residual block used in
MobileNetV2, the connected layers have fewer channels than
the intermtediate layers, yielding much fewer parameters
than the standard residual block.

TABLE I
MOBILENETV2 NETWORK.

Input Operator t c n s

2242×3 conv2d - 32 1 2
1122×32 bottleneck 1 16 1 1
1122×16 bottleneck 6 24 2 2
562×24 bottleneck 6 32 3 2
282×32 bottleneck 6 64 4 2
142×64 bottleneck 6 96 3 1
142×96 bottleneck 6 160 3 2
72×160 bottleneck 6 320 1 1
72×320 conv2d 1x1 - 1280 1 1
72×1280 avgpool 7x7 - - 1 -

1×1×1280 conv2d 1x1 - k -

Each line describes a sequence of 1 or more identical
layers, repeated n times. All layers in the same sequence
have the same number c of output channels. The first layer
of each sequence has a stride s and all others use stride 1. All
spatial convolutions use 3×3 kernels. The expansion factor t
is always applied to the input size.

The paper is based on the MobileNetV2 network architec-
ture of Table I for low-level feature and high-level feature

extraction of remote sensing images.
2) Multi-head Attention Mechanism
Multi-head Attention Mechanism (MAM) [25] is a net-

work structure based on self-attention [26] for enhancing the
degree of attention of a neural network to different parts
or different levels of features, allowing the network to learn
multiple attentional weights at the same time and apply these
weights to different feature representations. Its mathematical
structure is as follows, first for the self-attention mechanism
is defined as shown in equation (15):

Att(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (15)

where Q, K, V are multidimensional vectors (each of its
dimensions is qi, ki, vi respectively), which are computed
by multiple input nodes through Wq , Wk, Wv transformation
matrices respectively. The process of matching q and k can
be regarded as calculating the correlation between the two,
and the larger the correlation, the larger the weight of the
corresponding v. Q dot product KT for q and k matching,
QKT is divided by

√
dk (d represents the length of vector

k) to scale the dot product result, and then processed by
Softmax function to get the weight for v, and then multiplied
by vector V for weighting to get the final result.

In order to correspond to the semantic segmentation net-
work structure, the self-attention mechanism designed in this
paper is:

Att(XL1,XL2, XL3) = softmax

(
XL1X

T
L2√

dk

)
XL3, (16)

where XL = {xn,m,c}, based on the self-attention basis, then
constructs the multi-head attention mechanism as follows:

Multi(XL1,XL2, XL3) = Concat(h1, h2, ..., hi)W
O, (17)

hi = Att(XL1Wi
Q, XL2Wi

K , XL3Wi
V ), (18)

where i is the number of head, WO is the learnable param-
eter.

III. EXPERIMENTATION AND RESULTS

A. Datasets

In order to fully evaluate the effectiveness of the proposed
method, three datasets are used to validate the effectiveness
of the proposed method in semantic segmentation of multi-
categorized complex scenes and semantic segmentation of
a small number of datasets. The urban area portion of
the LoveDA dataset and the ISPRS Vaihingen dataset are
validated for multi-categorized complex scenarios, and the
data from raft farming areas are used to validate the under-
categorized small number of sample scenarios.

1) LoveDA dataset
The Land-cOVEr Domain Adaptive (LoveDA) semantic

segmentation dataset [27] is used to validate the semantic
segmentation of the proposed method in complex scenarios,
which contains 5987 remote sensing images with a spatial
resolution of 3m (high), and the resolution of each image is
1024 × 1024. The dataset includes remote sensing images
from different urban and rural areas in Nanjing, Changzhou
and Wuhan. It encompasses six land use categories, namely
building, road, water, barren land, forest, and agriculture.
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Given its intricate background, multi-scale objects, and vari-
able class distribution, this dataset presents a formidable
challenge for semantic segmentation tasks. In this study, we
utilise the urban subset of this dataset to assess the model’s
performance.

2) ISPRS Vaihingen dataset
The ISPRS Vaihingen dataset [28] offers a cutting-edge

compilation of aerial imagery, optimized for urban classifi-
cation and 3D building reconstruction initiatives. The dataset
features a digital surface model (DSM) derived from high-
resolution orthophotos and dense image matching techniques,
which encompass a variety of urban scenes. The dataset
primarily represents a small village with numerous individual
structures and low-rise buildings. The dataset comprises 33
remote sensing images of varying dimensions, each extracted
from a larger top-level orthophoto. The compilation process
ensures the exclusion of areas without data. The remote sens-
ing images are presented in the 8-bit TIFF file format, com-
prising three bands: near-infrared, red, and green. Due to the
considerable dimensions of the original images, which would
render direct use impractical, they have been processed to
conform to a standardized dataset format. Specifically, the
original images were cropped to produce 3,300 images, each
512×512 pixels in size. The dataset categorizes these images
into six primary land cover classes: impervious surfaces,
buildings, low vegetation, trees, cars, and background.

3) Remote sensing image dataset of raft farming area
This paper presents a limited number of samples

from semantic segmentation experiments, primarily utilizing
Gaofen-3 (GF-3) satellite synthetic aperture radar (SAR)
remote sensing images of a specific sea area within the
raft aquaculture region. The remote sensing images exhibit a
spectral composition of R, G, and B, with a spatial resolution
of less than one meter. The dataset comprises four high-
resolution SAR remote sensing images, each of which has a
different size. The largest image is 10724 × 8040, while the
smallest is 10525 × 8048. As the images are too large to be
used directly, they must be cropped to the standard dataset
format. To facilitate the image processing, the segmented
network model can be trained and features extracted from the
image with greater accuracy. Additionally, the position of the
ocean rafts can be more effectively displayed. The original
image was cropped to obtain an image of size 416×416.

B. Evaluation metrics

In order to effectively evaluate the performance of the
proposed method, metrics such as mean Intersection over
Union (mIoU), mean Recall (mRecall), mean Precision
(mPrecision), and F1-Score are used to assess the overall
performance of the different models.

IoU is the ratio of the intersection and concatenation of the
predicted results with the true values. mIoU is a standardized
evaluation of the average IoU of all types with the following
formula:

IoU =
TP

TP + FN + FP
, (19)

mIoU =
1

k + 1

k∑
i=0

TP

TP + FN + FP
, (20)

where True Positive (TP): indicates that the model correctly
predicts the number of positive class samples as positive

class samples. False Positive (FP): indicates that the model
incorrectly predicts the number of negative class samples as
positive class samples. False Negative (FN): indicates the
number of positive class samples that the model incorrectly
predicts to be negative class samples.

Recall is used to evaluate the ability of the classifier to
find all positive samples, and mRecall is the average recall
across all types, calculated as follows.

Recall=
TP

TP + FN
, (21)

mRecall =
1

k + 1

k∑
i=0

TP

TP + FN
. (22)

Precision denotes the ability of the classifier to label a
sample as positive, while mPrecision is the average precision
across all types, calculated as follows:

Precision=
TP

TP + FP
, (23)

mPrecision =
1

k + 1

k∑
i=0

TP

TP + FP
. (24)

The F1-Score is defined as the reconciled mean of recall
and accuracy; it focuses on precision and recall and provides
an overall measure of the performance of a change detection
model. The higher the F1-score, the more accurate the
performance, which is calculated as follows:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
. (25)

C. Ablation experiment

The ablation experiments on the LoveDA dataset are
validated based on the MobileNetV2, MobileNetV2+ FHAM
and MobileNetV2+ FHAM +MAM backbone networks, and
the performance metrics are shown in Table II.

Through the experimental results, it can be seen that the
added FHAM module, compared with the backbone network,
improves the mIoU value by 3.83% and the F1 value by
1.92%, which can show that the FHAM is able to extract the
detail information of the remote sensing image very well,
and furthermore, the added FHAM module and the MAM
module improve the mIoU value by 0.96% and the F1 value
by 0.52%, which is able to capture the shallow semantic
information of the remote sensing images.

Ablation experiments were also performed on the ISPRS
Vaihingen dataset and the performance metrics are shown in
Table III.

The experimental results show that the addition of the
FHAM module increases the mIoU value by 1.01% and the
F1 value by 0.48% compared to the backbone network, and
the addition of the FHAM module and the MAM module
increases the mIoU value by 0.33% and the F1 value by
0.18%.

D. Segmentation Experiments on the LoveDA Dataset

In order to verify the effectiveness of the proposed method
in remote sensing semantic segmentation in complex scenes,
through the LoveDA dataset, the proposed method in this
paper and a variety of mainstream network models conducted
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TABLE II
ABLATION EXPERIMENT ON THE LOVEDA DATASET.

methods mIoU mPrecision mRecall F1-Score

MobileNetV2 59.07 74.63 74.34 74.48
MobileNetV2+FHAM 62.90 74.31 78.62 76.40

MobileNetV2+FHAM+MAM 63.86 75.52 78.38 76.92

TABLE III
ABLATION EXPERIMENT ON THE ISPRS VAIHINGEN DATASET.

methods mIoU mPrecision mRecall F1-Score

MobileNetV2 86.03 91.63 93.35 92.48
MobileNetV2+FHAM 87.04 92.36 93.70 93.02

MobileNetV2+FHAM+MAM 87.37 92.75 93.66 93.20

TABLE IV
METRICS VALUES FOR DIFFERENT SEMANTIC SEGMENTATION MODELS

ON THE LOVEDA DATASET.

methods mIoU mPrecision mRecall F1-Score

PSPNet 52.92 64.98 72.47 68.52
Unet 59.87 71.12 77.45 74.15

DeepLabV3 plus 52.70 69.39 67.39 68.37
RAANET 59.07 74.63 74.34 74.48

Ours 63.86 75.52 78.38 76.92

a comprehensive comparison experiment, and obtained the
relevant image segmentation effect as shown in Fig.3, and
the performance indexes as shown in Table IV.

Fig.3 shows the results of image segmentation, it can be
seen from Fig.4 (a) that PSPNet, Unet, DeepLabV3 plus and
RAANET are good for semantic segmentation of most of
the buildings in the remote sensing map, however, there are
some details that these networks cannot recognize effectively,
for example, the house in the lower right corner, which is
effectively recognized by the proposed method in this paper.

Fig.3 (b) in the whole scene boundaries is relatively fuzzy,
DeepLabV3 plus, RAANET on the forest and wasteland
detail portrayal is not enough, resulting in the results com-
pared with other networks is poor, and PSPNet, Unet in the
segmentation of buildings above the details of the processing
is not good, this paper’s proposed method of the details of
the two cases segmentation effect is relatively better.

Fig.3 (c) shows that PSPNet, Unet, DeepLabV3 plus and
RAANET are able to recognize the corresponding wasteland
and buildings in the figure, but the mis-segmentation phe-
nomenon is generated for the parts that do not belong to the
labels, and the method proposed in this paper generates less
mis-segmentation.

Fig.3 (d) shows that PSPNet, Unet, DeepLabV3 plus and
RAANET are able to recognize the red building part of the
map, but are not effective in the face of the yellow road area
which has a small difference in boundaries, and the method
proposed in this paper is able to recognize the road part of
the map effectively.

Table IV shows that the proposed method obtained 10.94%
higher mIoU value and 8.4% higher F1 value compared to
PSPNet, 3.99% higher mIoU value and 2.77% higher F1
value than Unet, 11.26% higher mIoU value and 8.55%
higher F1 value than DeepLabV3 plus,4.79% higher mIoU
value and 2.44% higher F1 value than RAANET. The results
show that all the indexes are better than the other compared

networks, thus proving that the network works well in
multiclassification complex scenarios.

E. segmentation Experiments on the ISPRS Vaihingen
dataset

TABLE V
METRICS VALUES FOR DIFFERENT SEMANTIC SEGMENTATION MODELS

ON THE ISPRS VAIHINGEN DATASET.

methods mIoU mPrecision mRecall F1-Score

PSPNet 70.44 79.19 86.73 82.79
Unet 82.73 90.16 90.69 90.42

DeepLabV3 plus 80.60 87.62 90.95 89.25
RAANET 85.04 90.96 92.79 91.86

Ours 87.37 92.75 93.66 93.20

In order to further validate the performance of the method
proposed in this paper for remote sensing semantic segmen-
tation in complex scenarios, further comparative validation is
carried out using the ISPRS Vaihingen dataset and on the cor-
relation network model, and the relevant image segmentation
effect is obtained as shown in Fig. 4, and the performance
indices are shown in Table V.

Fig. 4 depicts the outcomes of image segmentation. As
illustrated in Fig. 5 (a) that PSPNet, Unet, DeepLabV3
plus and RAANET are effective for semantic segmentation
of the majority of buildings in the remote sensing map.
However, the differentiation between low vegetation and
trees is not as apparent as desired, and among these methods,
PSPNet, Unet, and DeepLabV3 plus are generally effective
in segmenting cars. This is effectively recognized by the
proposed method presented in this paper.

Fig. 4 (b) demonstrates that PSPNet, Unet, DeepLabV3
plus, and RAANET yield favorable outcomes for the com-
prehensive segmentation of the image. However, they are
less effective in differentiating between low vegetation and
trees, where there is minimal variability, and in identifying
small targets. In contrast, the proposed method demonstrates
proficiency in these tasks.

Fig. 4 (c) illustrates that while PSPNet, Unet, and
RAANET are effective at segmenting large buildings, they
are less adept at discerning smaller structures. While
DeepLabV3 plus is unable to distinguish between buildings
and low vegetation, the method proposed in this paper is
capable of effectively detecting the corresponding parts.
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Fig. 3. Comparison of image segmentation results on the LoveDA dataset.

Fig. 4. Comparison of image segmentation results on the ISPRS Vaihingen dataset.
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Fig. 5. Comparison of image segmentation results on the remote sensing image dataset of raft culture area.

Fig. 4 (d) demonstrates that while PSPNet, Unet,
DeepLabV3 plus, and RAANET are proficient at overall part
segmentation, they are not as effective at segmenting parts
of complex scenes with low differentiation. In such cases,
the method proposed in this paper is more advantageous.

Table V illustrates that the proposed method yielded
16.93% higher mIoU value and 10.41% higher F1 value in
comparison to PSPNet, 4.64% higher mIoU value and 2.78%
higher F1 value than Unet, 6.77% higher mIoU value and
3.95% higher F1 value than Deeplabv3 plus,2.33% higher
mIoU value and 1.34% higher F1 value than RAANET.
These results demonstrate that all the indices outperform
those of the other comparative networks, thus providing
further evidence that the network is more effective for
segmentation in multi-categorized complex scenarios.

F. Segmentation Experiments on the Remote sensing image
dataset of raft farming area

The remote sensing image dataset in the raft farming area
can be taken from a small amount of data with better results,
in which the training data is only 159, and the relevant image
segmentation effect is obtained as shown in Fig. 5, and the
performance indexes are shown in Table VI.

As illustrated in Fig.5 (a), networks such as PSPNet, Unet,
DeepLabV3 plus, and RAANET are effective in identifying
the clearly classified parts. However, they are less effective in
discerning regions with insignificant differences and in seg-
menting results obtained from small-sample data. In contrast,
the network proposed in this paper is effective in identifying
target regions.

The Fig.5 (b) illustrates that PSPNet, Unet, DeepLabV3
plus, and RAANET are effective in segmenting the cor-
responding regions. However, mis-segmentation occurs for

TABLE VI
METRICS VALUES FOR DIFFERENT SEMANTIC SEGMENTATION MODELS

ON THE REMOTE SENSING IMAGE DATASET OF RAFT CULTURE AREA.

methods mIoU mPrecision mRecall F1-Score

PSPNet 77.99 86.50 88.47 87.47
Unet 78.85 86.74 88.17 87.44

DeepLabV3 plus 77.54 86.99 87.21 87.09
RAANET 63.28 76.98 76.47 76.72

Ours 79.92 87.61 89.82 88.70

regions that do not belong to the labels. In contrast, the
method proposed in this paper avoids this phenomenon.

As illustrated in Fig.5 (c), networks such as PSPNet,
Unet, and DeepLabV3 plus yield satisfactory results for the
classified regions but exhibit deficiencies in handling intricate
details. In contrast, the proposed method demonstrates supe-
rior performance in terms of detail-oriented segmentation.

As illustrated in Fig. 5(d), while networks such as PSP-
Net, Unet, DeepLabV3 plus, and RAANET demonstrate
proficiency in overall image segmentation, they tend to
exhibit limitations in regions where the segmentation is less
apparent. In contrast, the proposed method demonstrates the
capacity to perform effective segmentation in such challeng-
ing regions.

Table VI demonstrates that our network attains 1.93%
higher mIoU values and 1.23% higher F1 values than
PSPNet, 1.07% higher mIoU values and 1.26% higher F1
values than Unet, and 2.38% higher mIoU values and 1.61%
higher F1 values than DeepLabV3 plus, 16.64% higher mIoU
values and 11.98% higher F1 values than RAANET, and it
is found that RAANET has poor segmentation results with
only a small number of samples. 16.64% and 11.98% higher
F1 value, respectively. It is evident that RAANET exhibits
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suboptimal segmentation outcomes with a limited number of
samples. This substantiates the assertion that our network can
achieve superior results with a minimal sample size.

IV. CONCLUSIONS

This study proposes an enhanced DL network model for
the effective exploration of remote sensing image seman-
tic segmentation. A FHAM is introduced based on Mo-
bileNetV2, a lightweight backbone network, to enhance the
degree of attention to features at different scales. Further-
more, a MAM is employed in the low-level feature part to
improve the accuracy of semantic segmentation. The experi-
mental results demonstrate that our model exhibits significant
performance improvements, with a 63.86% increase in mIoU,
a 75.52% enhancement in mPrecision, a 78.38% rise in
mRecall, and a 76.92% boost in F-score. The 1-score on
the LoveDA dataset exhibited an improvement of 4.79%,
0.89%, and 4.04% in comparison to the RAANET model,
respectively, with a 2.44% improvement. These findings sug-
gest that the proposed model exhibits superior performance
in semantic segmentation tasks and demonstrates enhanced
capacity to comprehend and interpret semantic information in
high-resolution remote sensing images with greater precision.

The proposed model is capable of more effectively cap-
turing the semantic information present in the image through
the incorporation of a filtered hybrid and MAM. These
attention mechanisms enable the network to focus more
on important features and suppress unimportant features,
thereby improving the performance and accuracy of the
model. Consequently, the results are of great practical signifi-
cance for improving the accuracy and efficiency of semantic
segmentation of remote sensing images. Furthermore, they
can be used as an efficient, accurate, and applicable solution
for semantic segmentation of remote sensing images in a
variety of scenarios.
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