
 

  

Abstract—The screening of coal gangue is a crucial aspect of 

the coal mine production process. This paper proposes a new 

algorithm model, GD-YOLO, which improves upon the 

original GD feature fusion mechanism by discarding the 

feature fusion method based on FPN+PAN architecture. The 

objective is to enhance the detection of coal gangue. The 

bottleneck is enhanced into a PConv convolution-based 

FasterNet Block, which enhances the model's capacity to 

extract spatial features by reducing superfluous computation 

and memory access. The EMA attention mechanism is 

integrated into the enhanced C2f-Faster to achieve further 

enhancement in detection performance while utilizing lower 

GFLOPs. In order to address the issue of suboptimal model 

convergence speed and effectiveness, the model is guided to 

predict coal and gangue by improving the loss function to SIoU, 

which is calculated using three key aspects: angle, distance, 

and shape. The results of the validation experiments 

demonstrate the efficacy of the algorithm, with a mean 

accuracy (mAP) of 96.6%, which is 4.9% higher than that of 

the traditional YOLOv8n algorithm. Additionally, the fast 

detection speed reaches 61.5 FPS, indicating excellent potential 

for industrial applications and the capacity to meet the 

industrial requirements of coal gangue detection. 

Index Terms—Gangue detection, Feature fusion, Attention 

mechanism, Deep learning, YOLO 

 

I. INTRODUCTION 

oal gangue is the solid waste produced in the process of 

coal mining and treatment. However, the emission and 

treatment of coal gangue not only results in a considerable 

amount of resource waste, but also causes environmental 

pollution, which is contrary to the principles of developing 

green mines[1]. Therefore, the accurate and efficient 

detection and identification of coal gangue has become a 

pressing issue in contemporary mine management. 

At this juncture, the prevailing gangue sorting 

methodologies are predominantly manual, X-ray gangue 
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selection[2], and heavy media gangue selection[3]. The 

conventional manual sorting approach is inherently 

inefficient and yields a considerable expenditure of human 

resources, while exhibiting a lack of precision. As a physical 

sorting method, heavy media gangue sorting can achieve 

density separation when dealing with coal gangue. However, 

its high equipment cost, energy consumption, high quality 

requirements for gangue, wastewater treatment problems, 

and other shortcomings limit its wide application. X-ray 

gangue sorting can achieve high-precision sorting, but the 

cost of equipment and operating costs are high, and the 

operator's requirements and the environment have a greater 

impact. Consequently, the present situation requires that 

gangue sorting be approached on the basis of a 

comprehensive assessment of the technical, economic, and 

environmental factors, with the objective of selecting the 

most appropriate sorting method. 

The rapid development of deep learning techniques in 

recent years has provided new possibilities for solving this 

problem. Deep learning algorithms have become the tool of 

choice for researchers to study image recognition problems 

due to their excellent performance on image recognition and 

classification tasks, especially CNN[4-7] and vision 

transformer[8-11]. 

The detection of coal gangue based on deep learning is 

confronted with three principal challenges. Initially, the 

shapes of coal and gangue are not fixed, and the visual 

differences are primarily manifested in shape, color, and 

texture. Consequently, the model must possess an 

exceptional capacity for feature information extraction and 

fusion. Secondly, the color between coal and gangue 

Furthermore, the actual background is similar, which will 

result in a reduction in detection accuracy. Thirdly, the 

model must be capable of responding rapidly to coal and 

gangue in the actual production process. Therefore, the 

model's ability to perform rapid inference is essential for 

effective problem-solving. 

In order to address the issues of a limited sensing area and 

the inaccuracy of identifying small targets in gangue 

recognition, Li[12] put forth a deformable convolutional 

YOLOv3-based gangue detection and recognition algorithm. 

Sun[13] put forth an intelligent classification method of 

gangue based on multispectral imaging technology and 

YOLOv5 target detection. In order to address the issue of 

the difficulty in deployment of existing algorithms on 

mobile devices, Guo[14] has developed a lightweight feature 

extraction network by combining CSPDarknet53 and 

GhostNet with embedded efficient channel domain 

consideration. Furthermore, the use of the Meta-ACON 

activation function allows for the adjustment of the 

nonlinearity of each layer of the network. Wang[15] proposes  
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Fig. 2.  Structure of the GD Network. 

 

an inverse residual structure-based coal gangue target 

detection network, designs the DPsP and DsP structures, and 

combines them with GhostModule to construct a GDPs-

YOLO network in YOLOv8s. Zhou proposed the GH-

YOLOv8s model, which enhances the feature fusion 

capability and improves the detection ability of the model by, 

among other things, constructing a HAM structure in the 

backbone. 

The location of the gangue screening site is illustrated in 

Fig. 1. In order to meet the industrial requirements of coal 

gangue detection, this paper proposes a GD-YOLO 

algorithm model based on YOLOv8n. The original 

algorithm's feature fusion method based on FPN+PAN 

architecture has been discarded in favor of a new GD feature 

fusion mechanism. The bottleneck is enhanced with the 

incorporation of the FasterNet Block, which is based on 

PConv convolution. This improvement facilitates an 

enhancement in the model's capacity to extract spatial 

features, achieved through a reduction in redundant 

computation and memory access. Subsequently, the EMA 

attention mechanism was integrated into the enhanced C2f-

Faster to further enhance detection performance while 

reducing the GFLOPs. By refining the loss function to SIoU, 

the model was guided to predict coal and gangue, addressing 

the issue of slow model convergence and effectiveness. 

 
Fig. 1.  On-site working environment. 

 

II. RELATED WORKS 

The YOLOv8 algorithm model has been demonstrated to 

be highly effective in real-time gangue detection tasks. It 

has also been shown to be adaptable and accurate in a 

variety of different scenarios, and it can be used in industrial 

production environments. Furthermore, it has undergone 

multiple versions of improvement, indicating strong 

stability[16-18]. Despite the YOLOv8 model's notable 

performance, it is not without limitations in complex 

scenarios. This paper proposes a novel GD-YOLO 

algorithm model, which, upon subsequent experimental 

evaluation, has demonstrated superior performance in 

gangue detection across multiple key indicators compared to 

the YOLOv8 algorithm. 

This chapter presents the GD-YOLO model, which is 

comprised of three primary components: the enhanced GD 

feature fusion network, the enhanced C2f-Faster-EMA 

module, and the refined SIOU loss function. 

 

A. Improved GD feature fusion network 

The feature fusion component of the YOLO series has 

been significantly advanced from the conventional FPN-

based architectural framework, which addresses the multi-

scale feature fusion challenge through a network of parallel 

branches[19,20]. However, the feature fusion structure based 

on the traditional FPN architecture is only capable of 

completely fusing the feature information of neighboring 

layers. It is unable to obtain the feature information of other 

layers directly, but can only do so indirectly through 

recursion. As a result, this traditional FPN-based feature 

fusion structure causes a significant amount of feature 

information loss during the model's calculation process. The 

unutilized feature information is then discarded by the 

feature fusion network. This will have an impact on the 

overall effect of the feature information. In YOLOv8[21,22], 

the GD network mechanism is employed in place of the 

feature fusion network of FPN+PAN, and the GD network 

structure is illustrated in Fig. 2. 

The GD feature fusion network comprises three principal 

modules: the FIAM (Feature Information Alignment 

Module), the FIFM (Feature Information Alignment 

Module), and the FIIM (Feature Information Injection 

Module). 

The FIAM feature alignment module is comprised of two 

distinct modules: L-FIAM (Low-stage Feature Information 

Alignment Module) and High-FIAM (High-stage Feature 

Information Alignment Module). This is illustrated in Fig. 3. 

 

The B2, B3, and B4 features are subjected to a reduction 

and sampling process utilising the Average Pooling function 

in L-FIAM. This is employed to achieve a uniform size, 

whereby the input features are adjusted to the smallest 

feature size within the group(𝑅𝐵4 =
1

4
𝑅), we obtain 𝐹𝑎𝑙𝑖𝑔𝑛, 

the formula is as follows: 

align ([ 2, 3, 4, 5])F L FIAM B B B B−=  (1) 

( , )

1

ij

kij kpq
p q

ij

y x


=   (2) 

where 𝑦𝑘𝑖𝑗  represents the average pooled output value of 

the k-feature graph in ℛ𝑖𝑗 , 𝑥𝑘𝑝𝑞  denotes the element at 
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(𝑝, 𝑞) in ℛ𝑖𝑗 , and |ℛ𝑖𝑗| denotes the number of elements in 
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Fig. 3.  Structure of the FIAM. 

 

Concurrently, bilinear interpolation up-samples the B5 

feature information output from the backbone, which is 

based on the linear interpolation extension of the 

interpolation function of the two variables. 

While a larger feature size may retain more of the original 

underlying information, it will also increase the 

computational burden as the feature size increases. 

Therefore, in order to maintain a balance between the 

computational speed and accuracy of the model, it is 

necessary to determine the optimal feature size. This model 

adopts 𝑅𝐵4  as the target size for feature information 

alignment. 

The High-FAM module reduces the dimensionality of the 

input feature information to a uniform size through an 

average pooling operation, thereby obtaining 𝐹𝑎𝑙𝑖𝑔𝑛. As the 

module extracts higher-order information, the average 

pooling operation promotes the aggregation of the 

information and improves the speed of the subsequent 

model computation. The formula is as follows: 

align ([ 2, 3, 4])F High FAM P P P−=  (3) 

The FIFM comprises two distinct modules: L-FIFM 

(Low-stage Feature Information Fusion Module) and H-

FIFM (High-stage Feature Information Fusion Module). 

These are illustrated in Fig. 4. 

The L-FIFM incorporates both RepBlock and splitting 

operations. The initial convolution transforms the number of 

feature information channels into an intermediate channel. 

𝐹𝑎𝑙𝑖𝑔𝑛  is employed as the input to RepBlock, and 𝐹𝑓𝑢𝑠𝑒  is 

calculated. The fusion of feature information is conducted 

by RepConv-blocks, and subsequently, the number of 

feature information channels is transformed to a 𝐶𝐵3 + 𝐶𝐵4 

size through a convolution operation. The feature 

information computed by RepBlock is partitioned into two 

parts, 𝐹𝑖𝑛𝑗_𝑃3  and 𝐹𝑖𝑛𝑗_𝑃4 , which are then fused with the 

feature information of different layers. The formula for this 

process is as follows: 

( )fuse alignF RepBlock F=  (4) 

( )inj 3 inj_ 4 fuse,P PF F Split F
−

=  (5) 

H-FIFM is comprised of two primary components: the 

Swin Transformer Block and the Split. The former contains 

W-MSA (Windows Multi-head Self-Attention), SW-MSA 

(Shifted Windows Multi-Head Self-Attention), LE-FFN 

(Locally Enhanced Feed-Forward Network), and residual 

connectivity components. The latter is a residual connection 

that allows for the integration of external data. 

The multi-head self-attention (MHA) mechanism captures 

global attention, necessitating the computation of all patches. 

Consequently, high-resolution image processing requires a 

considerable computational burden. To address this, the 

adoption of W-MSA with SW-MSA in lieu of global 

attention can significantly reduce the model's complexity. 

The underlying mathematical formulas for MSA and W-

MSA are as follows: 
2 2Ω( ) 4 2( )MSA hwC hw C= +  (6) 

2 2Ω( ) 4 2( )W MSA hwC hw C− = +  (7) 
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Fig. 4.  Structure of the FIFM. 

 

W-MSA is capable of extracting the feature relationship 

within the local window and carrying out the self-attention 

calculation within the window. However, W-MSA is limited 

in its ability to intersect neighboring windows. To address 

this, the SW-MSA mechanism has been developed, which 

employs a slice-and-block interaction approach. This 

enables the transfer of information between windows, 

facilitating interaction and enhancing the capture of local 

and global feature information in the image. It addresses the 

limitations of W-MSA and improves the detection efficacy 

of the model in challenging coal and gangue working 

conditions. 

The traditional FFN does not consider the spatial 

relationship between significant tokens, which necessitates a 

substantial amount of training data to learn the 

generalization bias. Consequently, the traditional FFN 

module is substituted with LE-FFN, whose structure is 
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illustrated in Fig. 5. This alternative is designed to enhance 

the correlation between diverse tokens in the spatial domain. 

The LE-FFN module process is as follows: first, the tokens 

𝑥𝑐
ℎ
∈ ℝ(𝑁+1)×𝐶  computed from the MSA module are split 

into patch tokens and class tokens. The patch tokens are then 

projected to higher dimensions 𝑥𝑝
𝑙1 ∈ ℝ𝑁×(𝑒×𝐶)  by linear 

projection, where e is the expansion ratio. Subsequently, the 

original image is reduced to the spatial dimension based on 

its relative position. Then, a deep convolution operation is 

performed on the reduced patch tokens, where the size of the 

convolution kernel is k, with the objective of enhancing the 

correlation with the neighboring 𝑘2 − 1   tokens, thus 

obtaining 𝑥𝑝
𝑑 ∈ ℝ√𝑁×√𝑁×(𝑒×𝐶). Finally, the patch tokens are 

linearly projected to the initial dimension and then 

connected to the class token. 
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Fig. 5.  Structure of the LE-FFN. 

 

In order to enhance the efficacy of the model in 

integrating global information, the FIIM module leverages 

the expertise in segmentation and integrates the data through 

the application of an attention operation, as illustrated in Fig. 

6. The model simultaneously inputs the local information 

𝐹𝑙𝑜𝑐𝑎𝑙  derived from the current hierarchical features and the 

global injected information 𝐹𝑖𝑛𝑗   derived from the IFM 

computation. Since 𝐹𝑙𝑜𝑐𝑎𝑙  and 𝐹𝑔𝑙𝑜𝑏𝑎𝑙  are of different sizes, 

they are adjusted by average pooling and bilinear 

interpolation. Subsequently, the RepBlock module is added 

to further extract and fuse the information following the 

attention fusion. 

In particular, a lightweight neighbor layer fusion (LAF) 

module is incorporated at the input position of the FIIM 

module to facilitate cross-layer information flow, as 

illustrated in Fig. 7. The LAF model exhibits distinct 

characteristics in the shallow and deep feature processing 

modules. The LAF is configured using average pooling and 

bilinear interpolation, which enables the optimization of 

information flow paths between different layers and 

enhances the overall performance of the module without 

significantly impacting the computational speed. 
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Fig. 6.  Structure of the FIIM. 
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Fig. 7.  Structure of the LAF. 

 

B. Improved C2f-Faster-EMA module 

The FasterNet Block is designed based on PConv, which 

can further reduce the computational burden of the model 

while ensuring its accuracy. The FasterNet Block consists of 

one PConv convolutional layer and two 1×1 Conv ordinary 

convolutional layers. The first 1×1 convolutional layer in the 

FasterNet Block is followed by the batch normalization (BN) 

and ReLU activation layer. However, excessive use of these 

two elements may result in suboptimal model performance. 

Therefore, they are placed in the first 1×1 convolutional 

layer. Subsequently, the batch normalization (BN) and 

ReLU activation layer are employed. However, excessive 

utilization of these two elements may result in a decline in 

model performance. Therefore, they are situated after the 

initial 1×1 Conv ordinary convolutional layer. The 

configuration of the FasterNet Block and PConv is 

illustrated in Fig. 8. 

For the memory sequential access case, PConv keeps 

most of the channels unchanged, and only the input channel 

𝐶𝑝  is used for spatial feature extraction, and when the 

number of input and output feature map channels are the 

same, the FLOP is ℎ × 𝑤 × 𝑘2 × 𝑐𝑝
2 , and the FLOP of 

ordinary convolution is sixteen times higher than that of 

PConv if 𝑟 =
𝑐𝑝

𝑐
=

1

4
, and the memory access of PConv is 

reduced drastically in comparison with ordinary convolution, 

and it is about 1/4 that of the original convolution, in which 

the memory access of PConv is ℎ × 𝑤 × 2𝑐𝑝 + 𝑘2 × 𝑐𝑝
2. 
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The EMA is an efficient multi-scale attention mechanism 

that enhances the correlation between different information, 

improves the integrity of channel information retention, 

increases the uniformity of spatial feature distribution within 

each feature group, and realizes richer feature fusion effects 

by employing feature grouping, parallel sub-networks, and 

cross-spatial learning. The structure of the EMA module is 

illustrated in Fig. 9. 

 
Fig. 9.  Structure of the EMA. 

 

EMA divides the input feature map X ∈ R^(C×H×W) 

into G sub-features across channel dimension directions, 

where sub-features 𝑋 = [𝑋0, 𝑋0, … , 𝑋𝐺−1], 𝑋𝑖 ∈ ℝ𝐶∕∕𝐺×𝐻×𝑊 . 

Three parallel paths are employed to extract the attention 

weight descriptors, which are subdivided into two 1×1 

branches and one 3×3 branch. This parallel approach 

enables the effective utilization of resources and the 

optimization of the module's computational logic. However, 

there is a dearth of feature aggregation capability. To 

address this, EMA employs a cross-space information 

aggregation approach across different spatial dimensions. 

This is achieved by introducing two tensors in the output 

portion of the 1×1 branch and the 3×3 branch, and encoding 

the global spatial information using two-dimensional global 

average pooling. This is illustrated in the following 

equations: 

1
( , )

H W

c c
j i

Z x i j
H W

= 


 (8) 

 

The three attention mechanisms of SENet, CBAM, and 

EMA are sequentially embedded in the C2f-Faster model for 

model improvement. Their comprehensive performance is 

then compared through comparative experiments, and it is 

ultimately found that the selection of the EMA attention 

mechanism is integrated into the C2f-Faster model with the 

best effect. Accordingly, the EMA attention mechanism has 

been incorporated into the FasterNet Block module, 

resulting in the C2f-Faster-EMA configuration, as illustrated 

in Fig. 10. 

Conv

Split

Faster-EMA 

Block

Faster-EMA 

Block

Concat

Conv

...
n

 
Fig. 10.  Structure of the C2f-Faster-EMA. 
 

The structure of the enhanced GD-YOLO model is 

illustrated in Fig. 11. Initially, the feature fusion 

methodology based on the FPN+PAN architectural 

configuration in the original algorithm is refined into a novel 

GD feature fusion mechanism by eliminating it. 

Subsequently, the Bottleneck is enhanced into a FasterNet 

Block-based Subsequently, the EMA attention mechanism is 

integrated into the enhanced C2f-Faster, followed by the 

incorporation of the SIoU loss function, which considers the 

three dimensions of angles, distances, and shapes, enabling 

the model to make predictions regarding coal and gangue. 
 

C. Improved SIOU loss function 

The SIoU Loss function is constructed based on three 

fundamental relationships between two frames: angle, 

distance, and shape. The angle loss is dynamically adjusted 

based on the angle difference between the centroid 

coordinates of the two frames, and this adjustment is 

prepared for by the distance loss, which is also dynamically 

adjusted based on the Euclidean distance between the 

centroid coordinates of the two frames. Finally, the shape 

loss is penalized based on the shape difference between the 

two frames, as illustrated in Fig. 12. 
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Fig. 11.  Structure of the GD-YOLO. 

 

 
Fig. 12.  SIoU Parameter Schematic. 

 

The angular loss of SIoU first determines the size of 𝛼. If 

𝛼 ≤ 90°, the prediction frame is moved along the y-axis to 

minimize 𝛼, and vice versa, it is moved along the x-axis to 

minimize 𝛽, the formula is as follows: 

2Λ 1 2 sin arcsin( )
4

x
 

= −  − 
 

 (9) 

sin( )hc
x 


= =  (10) 

( ) ( )
22

x x y y

gt gt

c c c cb b b b = − + −  (11) 

( ) ( )max , min ,
y y y y

gt gt

h c c c cc b b b b= −  (12) 

Distance loss is calculated based on angular, the formula 

is as follows: 

( )
,

Δ 1 t

t x y

e
−

=

=  −  (13) 

22

, , 2 Λ
y yx x

gtgt
c cc c

x y

w h

b bb b

c c
  

 − −
 = = = − 

   
   

 (14) 

The formula for calculating shape loss is shown below: 

( )
,

Ω 1 t

t w h

e


−

=

=  −  (15) 

( ) ( )
,

max , max ,

gt gt

w hgt gt

w w h h

w w h h
 

− −
= =  (16) 

In this formula, 𝜃 affects the degree of control of shape 

loss in SIoU. 

III. EXPERIMENTS 

A. Dataset 

At the time of writing, there is no publicly available, 

high-quality dataset of coal and gangue. Furthermore, the 

complete laboratory environment does not provide a 

superior response to that of the coal mine site environment. 

Consequently, the coal and gangue dataset used in this paper 

is derived primarily from the Inner Mongolia coal mine site 

conditions and laboratory simulation environment and 

labeling. 

The dataset presented in this paper comprises 2,775 

original images, distributed as follows: 2,369 images in the 

training set, 304 images in the validation set, and 102 

images in the test set. All images in the dataset have been 

resized to 640×640 pixels. The manual image annotation 

process has been conducted using LabelImg, and the 

resulting labeling division of the training set is illustrated in 

Fig. 13. 

The uneven distribution of coal and gangue on the 

conveyor belt, as observed on the coal mine site, has been 

taken into account in the construction of the dataset. The 

actual number of coal has been increased in order to achieve 

a closer match with the on-site production situation. Due to 

the inherent ambiguity in the spatial distribution of coal and 

gangue on the conveyor belt, these materials are represented 

in the image at varying positions and weights to elicit the 

model's comprehensive attention to the image as a whole. 

The number of specific labels is presented in Table I. 
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Fig. 13.  Visualization of the dataset labels. 

 
TABLE I 

STATISTICS OF DATASET LABELS 

Class Coal Rock 

train 4436 2654 

validation 562 323 

test 186 101 

 

B. Experimental configurations 

The GD-YOLO model and other deep learning models 

are characterised by higher complexity and the utilisation of 

a greater number of datasets. Consequently, GPUs are 

employed to accelerate the computation. The details of the 

experimental equipment employed in this study are 

presented in Table II. 
TABLE II 

COMPUTER ENVIRONMENT 

Item Value 

CPU Intel(R) Core(TM) i5-12490F 

GPU NVIDIA GeForce RTX 4060 

CPU Clock Speed 3.0GHz 

Memory DDR5 5600MHz 32GB 

PyTorch 2.0.1 

Python 3.8.18 

CUDA 11.8.0 

Operating System Win10 

 

The training process of each parameter is of significant 

importance; thus, the selection of appropriate parameters is 

of paramount importance, directly influencing the model's 

ability to detect the final results of coal and gangue. 

Following comprehensive experimentation, this paper 

employs the model parameters as illustrated in Table III. 

 

 

 

 

 

 

TABLE III 
PARAMETERS 

Parameters Value 

Epochs 200 

Input size 640 

Optimizer Adam 

Lr0 0.01 

Weight decay 0.0005 

Batch 16 

 

C. Evaluation Metrics 

In order to evaluate the model performance in a more 

comprehensive and accurate manner, this paper employs a 

range of metrics, including the number of parameters 

(Params), the number of billion floating point operations per 

second (GFLOPs), precision, recall, average precision (AP, 

mAP), and frames per second (FPS). 

The precision and recall results are comprised of the four 

results presented in the confusion matrix in Table IV. 
TABLE IV 

PARAMETERS 

Actual 
Predicted 

Positive Negative 

Positive TP FN 

Negative FP TN 

 

The aforementioned four results are calculated in order to 

ascertain the precision and recall. The calculation process is 

illustrated in the following section. 

Pr
TP

TP FP
ecision

+
=  (17) 

Re
TP

TP FN
call =

+
 (18) 

The AP value is calculated by integrating the precise 

value corresponding to each recall point on the precision-

recall curve. The calculation is as follows: 
1

0 ( )AP p r dr=   (19) 

The mAP is calculated by averaging the AP values of 

each category, which is an important indicator for evaluating 

the effectiveness of the model in detecting coal and gangue. 

The calculation process is outlined below: 

1

1 k n

k
k

mAP AP
n

=

=

=   (20) 

D. Position comparison experiments 

Once the C2f module has undergone enhancements and 

optimizations, it is essential to consider the issue of location 

selection in order to fully leverage the potential of the model. 

To this end, an experiment was conducted, in which the C2f 

module was replaced in various locations within the 

Backbone, as illustrated in Fig. 14. In this experiment, the 

C2f-Faster-EMA was implemented in place of the C2f 

module in locations a, b, c, d, and in the entirety of the C2f 

module within the Backbone. 
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Fig. 14.  C2f-Faster-EMA Replacement Location. 

 

Following the implementation of the aforementioned 

replacement module in accordance with the prescribed 

methodology, the resulting experimental outcomes are 

illustrated in Fig. 15. 

 
Fig. 15.  Comparison of Replacement Positions. 

A review of the experimental results indicates that the 

replacement of all C2f modules in Backbone with C2f-

Faster-EMA yields the highest accuracy, with an mAP value 

of 93.5%. 

E. Ablation Experiments 

The GD-YOLO model proposed in this paper exhibits 

enhanced accuracy and convergence speed. However, the 

comprehensive performance of the overall improved model 

requires verification through the design of ablation 

experiments for comprehensive performance testing. In this 

paper, YOLOv8n is utilized as the base model, and the 

parameters employed in the model are presented in Table 

3.7. The four improvements implemented as follows: 

(1) T: Neck part of FPN+PAN architecture is improved to 

GD architecture. 

(2) U: Bottleneck improved to FasterNet Block. 

(3) V: EMA mechanism is introduced to enhance the 

model's feature information extraction ability for coal and 

gangue. 

(4) W: CIoU Loss is improved to SIoU Loss. 

The model performance evaluation indexes are carried 

out by Params, GFLOPs, Precision, Recall, AP, mAP@50, 

and FPS. The experimental results are shown in Table V. 
TABLE V 

RESULTS OF ABLATION EXPERIMENTS 

T U V W P(%) 
mAP@

50(%) 

Params 

(M) 

GFLOPs(

G) 

FPS 

(f/s) 

× × × × 91.2 91.7 3.1 8.7 82.1 

√ × × × 94.7 94.9 6.5 13.8 75.6 
× √ √ × 92.3 93.5 2.5 6.9 70.2 

× × × √ 91.2 91.7 3.1 8.7 81.6 

√ √ √ √ 95.7 96.6 6.1 12.3 61.5 

 

The ablation experiments demonstrate that after 

improving the traditional FPN+PAN architecture in the 

model to a GD architecture, there is a 3.5% improvement in 

precision and a 3.3% improvement in recall, resulting in a 

3.2% improvement in mAP@50. These findings indicate 

that enhancing the feature fusion network can significantly 

enhance the accuracy of the model. Following the 

enhancement of the Bottleneck to FasterNet Block, the C2f-

Faster-EMA exhibited a reduction in Params and GFLOPs 

by 19.4% and 20.6%, respectively, in comparison to C2f. 

This indicates a decrease in the model's parameters and 

complexity, which can mitigate the adverse impact of 

superfluous information on the model and enhance its 

capability for feature extraction. Following the improvement 

of CIou to SIou, the precision, recall, and mAP@50 of the 

model exhibited varying degrees of enhancement. The 

integration of these modalities demonstrated the optimal 

performance of the model, with precision improving by 

4.5%, recall improving by 4.4%, and mAP@50 improving 

by 4.9%. Despite the reduction in model detection speed, 

these outcomes still satisfy industrial production 

requirements. 

To more effectively illustrate the impact of the enhanced 

GD-YOLO model, a comparative analysis was conducted 

between the improved GD-YOLO model and the initial 

YOLOv8 model. This involved the generation of mAP 

curves based on 200 epochs, with identical parameters and 

operational environments, as illustrated in Fig. 16. 

 
Fig. 16.  Comparison of model mAP values. 

 

To enhance the interpretability of the enhanced model, we 

conducted experiments utilizing a GradCAM visualization 

to ascertain the model's responsiveness to coal and gangue, 

as well as its capacity to integrate features. The findings 

from these experiments are presented in Fig. 17. 

 
Fig. 17.  GradCAM Experiment. 
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Fig. 18.  Comparison of model detection results. ( The initial row presents the outcomes of the YOLOv8n model detection, 

while the subsequent row illustrates the results of GD-YOLO model detection.) 

 

TABLE VI 
COMPARISON OF EXPERIMENTAL RESULTS 

Model P(%) R(%) Map@50(%) Params(M) GFLOPs(G) FPS(f/s) 

YOLOv5n 83.3 82.6 84.5 3.1 8.7 84.5 

YOLOv7-Tiny 87.6 86.8 88.7 6.2 5.8 92.4 

YOLOvX-Tiny 88.5 87.6 89.1 5.1 6.5 89.1 

YOLOv6n 91.3 90.2 91.8 4.7 11.4 99.2 

YOLOv8n 91.2 90.1 91.7 3.1 8.7 82.1 

GD-YOLO 95.7 94.5 96.6 6.1 12.3 61.5 

 

As illustrated by the heat map visualization results, the 

GD-YOLO model exhibits high feature sensitivity, 

demonstrating an ability to discern and attend to the 

distinctive characteristics of coal and gangue. Additionally, 

it displays a noteworthy aptitude for integrating feature 

information, which further substantiates the superiority of 

the GD-YOLO algorithm model. 

In order to directly reflect the actual effect of the final 

model for the detection of coal and gangue, the photos in the 

test set for detection were randomly selected for analysis. 

The resulting experimental results are presented in Fig. 18. 

F. Comparative Experiments 

In order to evaluate the efficacy of the GD-YOLO 

algorithm in coal and gangue detection, a comparative 

analysis was conducted with other models, including 

YOLOv5n, YOLOv7, YOLOv8n, and Faster-RCNN. The 

experiments were conducted under identical configuration 

environments and the results are presented in Table VI. The 

mAP curves for each model are presented in Figures 19. 

While the YOLOv5n, YOLOv6n, YOLOv7-Tiny, 

YOLOvX-Tiny, and YOLOv8n models demonstrate 

enhanced detection speeds, they exhibit reduced accuracy, 

which is inadequate for meeting the specified application 

requirements. In contrast, the results of the validation 

experiments demonstrate the efficacy of GD-YOLO, with a 

mean accuracy (mAP) of 96.6%, which is 4.9% higher than 

that of the traditional YOLOv8n. 

 

 
Fig. 19.  The mAP curves for each model 
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IV. CONCLUSION 

In order to address the issue of gangue detection, a novel 

GD-YOLO algorithm model has been proposed. This 

comprises a feature extraction network, a feature fusion 

network, a detection layer, and a loss function. Additionally, 

the bottleneck has been enhanced through the incorporation 

of a FasterNet Block, which is based on PConv convolution, 

with the objective of enhancing the model's capacity to 

extract spatial features. Concurrently, the EMA attention 

mechanism is integrated into the enhanced C2f-Faster, 

resulting in the creation of C2f-Faster-EMA. Subsequent 

position comparison experiments are conducted to ascertain 

the optimal replacement position, thereby further enhancing 

the detection performance. Furthermore, the issue of the 

model's slow convergence speed and poor performance can 

be effectively addressed by modifying the loss function to 

SIoU. Ablation and comparison experiments demonstrate 

that the mAP of the algorithm is 96.6%, a 4.9% 

improvement over the traditional YOLOv8n algorithm. 

Additionally, the GD-YOLO algorithm achieves a FPS of 

61.5, conferring a notable advantage in terms of accuracy 

compared to current mainstream algorithms. These findings 

indicate that the algorithm has considerable potential for 

industrial applications. 

 

REFERENCES 

[1] Yutao, W. (2022). Status and prospect of harmless disposal and 

resource comprehensive utilization of solid waste of coal gangue. 
Coal Geology & Exploration, 50(10), 54-66. 

[2] Xue, B., Zhang, Y., Li, J., & Wang, Y. (2023). A review of coal 

gangue identification research—application to China’s top coal 
release process. Environmental Science and Pollution Research, 30(6), 

14091-14103. 

[3] Xian, Y., Tao, Y., Ma, F., & Zhou, Y. (2022). The study of enhanced 
gravity concentrator for maceral enrichment of low-rank coal with 

heavy medium. International Journal of Coal Preparation and 

Utilization, 42(12), 3777-3793. 
[4] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet 

classification with deep convolutional neural networks. Advances in 

neural information processing systems, 25. 
[5] Xie, L., & Yuille, A. (2017). Genetic cnn. In Proceedings of the IEEE 

international conference on computer vision (pp. 1379-1388). 

[6] Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on 
Convolutional Neural Networks (CNN) in vegetation remote sensing. 

ISPRS journal of photogrammetry and remote sensing, 173, 24-49. 

Alzubaidi L, Zhang J, Humaidi A J, et al. Review of deep learning: 
concepts, CNN architectures, challenges, applications, future 

directions[J]. Journal of big Data, 2021, 8: 1-74. 

[7] Alexey D. An image is worth 16x16 words: Transformers for image 
recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020. 

[8] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. 

(2021). Swin transformer: Hierarchical vision transformer using 

shifted windows. In Proceedings of the IEEE/CVF international 

conference on computer vision (pp. 10012-10022). 
[9] Song, B., Wu, Y., & Xu, Y. (2024, March). ViTCN: Vision 

Transformer Contrastive Network For Reasoning. In 2024 5th 

International Seminar on Artificial Intelligence, Networking and 
Information Technology (AINIT) (pp. 452-456). IEEE. 

[10] Yang, J., Liu, J., Xu, N., & Huang, J. (2023). Tvt: Transferable vision 

transformer for unsupervised domain adaptation. In Proceedings of 
the IEEE/CVF Winter Conference on Applications of Computer 

Vision (pp. 520-530). 

[11] Li, D. Y., Wang, G. F., Zhang, Y., & Wang, S. (2022). Coal gangue 
detection and recognition algorithm based on deformable convolution 

YOLOv3. IET Image Processing, 16(1), 134-144. 

[12] Yan, P., Sun, Q., Yin, N., Hua, L., Shang, S., & Zhang, C. (2022). 
Detection of coal and gangue based on improved YOLOv5. 1 which 

embedded scSE module. Measurement, 188, 110530. 

[13] Guo, Y., Zhang, Y., Li, F., Wang, S., & Cheng, G. (2023). Research 
of coal and gangue identification and positioning method at mobile 

device. International Journal of Coal Preparation and Utilization, 
43(4), 691-707. 

[14] Wang, S., Zhu, J., Li, Z., Sun, X., & Wang, G. (2024). GDPs-YOLO: 

an improved YOLOv8s for coal gangue detection. International 
Journal of Coal Preparation and Utilization, 1-14. 

[15] Talaat, F. M., & ZainEldin, H. (2023). An improved fire detection 

approach based on YOLO-v8 for smart cities. Neural Computing and 
Applications, 35(28), 20939-20954. 

[16] Xiao, B., Nguyen, M., & Yan, W. Q. (2024). Fruit ripeness 

identification using YOLOv8 model. Multimedia Tools and 
Applications, 83(9), 28039-28056. 

[17] Soylu, E., & Soylu, T. (2024). A performance comparison of 

YOLOv8 models for traffic sign detection in the Robotaxi-full scale 
autonomous vehicle competition. Multimedia Tools and Applications, 

83(8), 25005-25035. 

[18] Chen, X., Wang, M., Ling, J., Wu, H., Wu, B., & Li, C. (2024). Ship 
imaging trajectory extraction via an aggregated you only look once 

(YOLO) model. Engineering Applications of Artificial Intelligence, 

130, 107742. 
[19] Gaikwad, D. P., Sejal, A., Bagade, S., Ghodekar, N., & Labade, S. 

(2024). Identification of cervical spine fracture using deep learning. 

Australian Journal of Multi-Disciplinary Engineering, 1-9. 
[20] Hussain, M. (2023). YOLO-v1 to YOLO-v8, the rise of YOLO and its 

complementary nature toward digital manufacturing and industrial 

defect detection. Machines, 11(7), 677. 
[21] Sohan, M., Sai Ram, T., Reddy, R., & Venkata, C. (2024). A review 

on yolov8 and its advancements. In International Conference on Data 
Intelligence and Cognitive Informatics (pp. 529-545). Springer, 

Singapore. 

 

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 59-68

 
______________________________________________________________________________________ 




