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Abstract—The Aboodh transform is a mathematical tech-
nique used in the fields of mathematical analysis and signal
processing. The definition of Aboodh transform (AT), fun-
damental properties related to the convolution, linearity, AT
for derivatives, dualities to other transforms, and others are
discussed in this study. This article focuses on various features
and the applications of the AT in solving specific classes of
ordinary differential equation (ODE) systems. In the application
section, the concentration of chemical reactants is computed in a
series of reactions to chemicals using a physical mathematical
problem. To address this problem, ODEs are used to create
a mathematical model, and the AT is applied to obtain the
solution and analyze the results. The findings of this study
are presented through tables and graphs, demonstrating the
accuracy and efficiency of solving ODEs using the AT.

Index Terms—Aboodh transform, Laplace transform, differ-
ential equation, system of differential equation.

I. INTRODUCTION

IN the subject of mathematics, and in its many appli-
cations, differential equations play a crucial role. These

equations are essential for modeling and comprehending dy-
namic processes in physics, engineering, biology, economics,
and other fields because they serve as a fundamental language
for expressing how quantities change in relation to one
another [1], [2], [3]. Differential equations offer a potent
tool for revealing the underlying principles regulating com-
plicated events, whether it be through modelling the behavior
of financial markets, forecasting the trajectory of a rocket, or
studying population increase [4], [5], [6]. They help scientists
and engineers make educated judgments, optimize designs,
and resolve challenging real-world challenges by bridging
the gap between theory and practice. Differential equations
are a cornerstone in the quest for knowledge and innovation
since, in essence, they are studied and used to drive advances
in science and technology.

Diverse mathematical strategies that are used to solve
equations involving derivatives are included in methods
for solving differential equations. Analytical and numerical
approaches can be divided into two basic categories. By
modifying the equation algebraically, analytical techniques
like variable separation [7], [8], substitution, and integrating
factors [9], [10], [11] seek to arrive at precise answers. They
are especially beneficial for straightforward, well-organized
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problems. By dividing the issue into discrete steps and
employing iterative algorithms, numerical methods, including
Euler’s method [12], [13], [14], finite difference methods
[15], [16], and Runge-Kutta methods [17], [18], [19] approx-
imate answers. When working with complicated, non-linear,
or time-dependent systems, these numerical techniques are
essential.

Additionally, integral transformations powerful mathemat-
ical tools that are essential in many fields of science and
engineering are used to solve differential equations. These
changes entail transforming a given function into an alter-
native representation, which frequently simplifies complex
issues and offers new perspectives on several fields. The
Fourier transform [20], [21], [22], one of the most well-
known integral transformations, decomposes a function into
a sum of sinusoidal components, making it useful in signal
processing and spectrum analysis. Another crucial trans-
formation for the analysis of linear time-invariant systems
and the solution of differential equations is the Laplace
transform [23], [24]. The Sumudu-transform [25], [26], [27]
is frequently used in control theory and discrete-time signal
processing. There are many other transforms that have been
introduced in literature with various applications in applied
mathematics, such as Elzaki transform [28], [29], [30], ARA
transform [31], [32], Formable transform [33] and Mohand
transform [34], [35]. Moreover, double integral transforms
have been shown, such as double Laplace [36], [37], double
Formable [38], [39], double ARA and others [40].

The Aboodh integral transform [41], [42] is another mathe-
matical method used to the study of mathematics and signal
processing. This transform, which bears Professor Aboodh
Alkaabi’s name, is vital in moving functions from their
original domain into a new domain where they might be
simpler to comprehend or solve. When analyzing complex
integrals and solving differential equations, it is especially
helpful. A significant tool in many scientific and engineering
applications, the AT can make it easier to handle functions
with complex mathematical features. In conclusion, these
essential changes, among others, are crucial for modeling
and problem-solving across a wide range of fields, enabling
deeper comprehension and creative responses to challenging
problems.

The main goal of this study is to present the definition of
AT, its main properties, and its values for its basic functions.
Moreover, we discuss the solutions to various types of ODEs
and the systems, using the proposed transform with an
applicable approach. The outcomes gained are utilized to
study the concentration of reactants in the chemicals using a
physical chemistry problem. A model is discussed and solved
by AT. We use Python software to generate the numerical
results and sketch the figures.

This article is organized as follows: In Section 2, we

Engineering Letters

Volume 33, Issue 1, January 2025, Pages 38-47

 
______________________________________________________________________________________ 



introduce the main definitions and properties of AT. The
application of AT to solve systems of ODEs is discussed
in Section 3, we move on physical chemical application
in Section 4, and we show the results in Section 5 as a
conclusion.

II. PRELIMINARIES

In this section, some fundamental definitions and proper-
ties of AT are presented.

Definition 2.1: [41] The Aboodh transform (AT) is de-
fined by the integral equation

A [ψ (η)] =
1

δ

∫ ∞

0

e−δηψ (η) dη = Ψ(δ) , η > 0. (1)

Definition 2.2: [41] If Ψ(δ) = A [ψ (η)] then ψ (η) is the
inverse of AT of Ψ(δ), can be expressed as

ψ (η) = A−1 [Ψ (δ)] =
1

2πi

∫ c+i∞

c−i∞
δe−ηδ Ψ(δ) dδ, c ∈ R,

(2)
where A−1 is the operator of inverse AT.

A. Some Properties of AT

[41] Herein we present the fundamental properties of AT.
i. Linearity property of AT.

Let A [ψ1 (η)] = Ψ (δ) and A [ψ2 (η)] = Ψ2 (δ) then

A [bψ1 (η) + cψ2 (η)] = bΨ1 (δ) + cΨ2 (δ) ,

where b and c are arbitrary constants.
Proof: From the definition of AT, we have

A
[
bψ1 (η) + c ψ2 (η)

]
=

1

δ

∫ ∞

0

( bψ1 (η) + c ψ2 (η)) e
−δηdη

= b

(
1

δ

∫ ∞

0

ψ1 (η) e−δηdη

)
+ c

(
1

δ

∫ ∞

0

ψ2 (η) e
−δηdη

)
= b A[ψ1 (η) + c A[ψ2 (η)]

= bΨ1 (δ) + cΨ2 (δ) .
(3)

Moreover, the inverse AT is linear. If

A−1 [Ψ1 (δ)] = ψ1 (η)

and

A−1 [Ψ2 (δ)] = ψ2 (η) .

(4)

Then,

A−1
[
bΨ1 (δ) + cΨ2 (δ)

]
= bA−1 [Ψ1 (δ)] + cA−1 [Ψ2 (δ)]

= bψ1 (η) + cψ2 (η) .

(5)

ii. Scaling property of AT
If AT of a function ψ (η) is Ψ(δ), then AT of ψ(kη) is
defined by 1

k2

(
Ψ
(
δ
k

))
, where k is any real number.

Proof: The definition of AT, implies

A[ψ(kη)] =
1

δ

∫ ∞

0

ψ (kη) e−δηdη. (6)

Putting kη = p, then kdη = dp in the equation (6), we
have

A [ψ(kη)] =
1

δ

(∫ ∞

0

ψ (p) e−
δ
k p
dp

k

)
=

1

k2

(
k

δ

∫ ∞

0

ψ (p) e−
δ
k pdp

)
=

1

k2

(
Ψ

(
δ

k

))
.

(7)

iii. Shifting property of AT
If AT of a function ψ(η) is Ψ(δ), then AT of the
function ekηψ(η) is given by

(δ −K)

δ
Ψ(δ − k) ,

where k ∈ R.
Proof: By the definition of AT, we get

A[ekηφ (η)] = A [ψ (η)] =
1

δ

∫ ∞

0

e−δηψ (η) dη

=
1

δ

∫ ∞

0

e−(δ−k)ηψ (η) dη

=
(δ −K)

δ

1

(δ − k)

∫ ∞

0

e−(δ−k)ηψ (η) dη

=
(δ −K)

δ
Ψ(δ − k) .

(8)

The AT of some functions are presented in Table I,
below.

TABLE I
AT OF SOME ELEMENTARY FUNCTIONS

Function ψ(η) A [ψ (η)] = Ψ(δ)

1 1
δ2

η 1
δ3

η2 2
δ4

ηα, α > 0
Γ(α+1)

δα+2

eaη 1
δ2−αδ

sin (αη) 1
δ(δ2+α2)

cos (αη) 1
δ2+α2

sinh (αη) 1
δ(δ2−α2)

cosh (αη) 1
δ2−α2

1) Relation Between AT and Some Transforms: This
section presents the relation between AT and other popular
transforms.

• Laplace transform
Assume that L[ψ (η)] =

∫∞
0
e−δηΨ(η) dη is the

Laplace transform of ψ (η), then A [ψ (η)] =
1
δ L[ψ (η)].

Proof:

A [ψ (η)] =
1

δ

(∫ ∞

0

e−δη ψ (η) dη

)
=

1

δ
L [ψ (η)]

=
1

δ
Ψ(δ).

(9)
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• Sumudu transform
If S[ψ (η)] = 1

δ

∫∞
0
e

−η
δ ψ (η) dη is the Sumudu trans-

form of ψ (η), then A [ψ (η)] = δ2 S [ψ (η)].
Proof:

A [ψ (η)] =
1

δ

∫ ∞

0

e−δη ψ (η) dη = Ψ(δ) . (10)

Moreover

Ψ

(
1

δ

)
= δ

∫ ∞

0

e−
η
δ ψ

(
1

δ

)
dη

= δ2
1

δ

∫ ∞

0

e−
η
δ ψ

(
1

δ

)
dη

= δ2Ψ

(
1

δ

)
.

• Elzaki transform
If E [ψ (η)] = δ

∫∞
0
e

−η
δ ψ (η) dη is the Elzaki trans-

form of ψ (η), then A
[
ψ
(
1
δ

)]
= E [ψ (η)].

Proof:

A [ψ (η)] =
1

δ

∫ ∞

0

e−δη ψ (η) dη = Ψ(δ) . (11)

Moreover

Ψ

(
1

δ

)
= δ

∫ ∞

0

e−
η
δ ψ

(
1

δ

)
dη = E [ψ (η)] .

• Mohand transform
If M [ψ (η)] = δ2

∫∞
0
e−δηψ (η) dη is the Mohand

transform of ψ(η), then: A [ψ (η)] = 1
δ3 M [ψ (η)].

Proof:

A [ψ (η)] =
1

δ

∫ ∞

0

e−δη ψ (η) dη = Ψ(δ) . (12)

Moreover,

A [ψ (η)] =
1

δ3
δ2

∫ ∞

0

e−δη ψ (η) dη =
1

δ3
M [ψ (η)] .

• Formable transform
If B (δ, u) = δ

∫∞
0
e−δη ψ (uη) dη is the formable

transform of ψ (uη),then A [ψ (η)] = 1
δ2B (δ, 1).

Proof:

A[ψ (η)] =
1

δ

∫ ∞

0

e−δη ψ (η) dη

=
1

δ2

(
δ

∫ ∞

0

e−δη ψ (η) dη

)
=

1

δ2
B (δ, 1) .

(13)

B. SAT for Derivatives

If Ψ(δ) = A [ψ (η)], then
i.

A[ψ′ (η)] = δΨ(δ)− ψ′ (0)
δ

. (14)

ii.

A[ψ′′ (η)] = δ2Ψ(δ)− ψ (0)− ψ′ (0)

δ
. (15)

iii.

A[ψ(n) (η)] = δ(n)Ψ(δ)
n−1∑
k=0

ψk (0)

δ2−n+k
. (16)

The proof of (i), can be obtained as:

A [ψ′ (η)] =
1

δ

∫ ∞

0

e−δη ψ′(η) (η) dη. (17)

Using integration by parts, we have:
u = e−δη and dv = ψ′(η) then du = −δe−δη , v = ψ (η).
Then, the equation 17 becomes

A[ψ′ (η)] = 1

δ
e−δη ψ (η)

∣∣∣∣∞
0

+ δ

∫ ∞

0

e−δηψ (η) dη

=
1

δ
(0− ψ (0)) + δA [ψ (η)]

= A [ψ (η)]− 1

δ
ψ (0) .

(18)

The proof of (ii): we have A [ψ′′ (η)] = A[(ψ′ (η))
′
] using

part (i), we get

A
[
(ψ′ (η))

′
]
= δA [ψ′ (η)]− 1

δ
ψ (0)

= δ

[
δA [ψ (η)]− 1

δ
ψ (0)

]
− 1

δ
ψ (0)

= δ2 A [ψ (η)]− 1

δ
ψ′(0) − ψ (0) .

(19)

The proof of (iii), can be obtained by mathematical induction,
as n = 1, we get part (i).
Now suppose its true for n = k, then

A
[
ψ(k) (η)

]
= δkΨ(δ)− ψ (0)

δ2−k
− ψ′ (0)

δ3−k
−−ψ

(k−1)(0)

δ
.

(20)
To show its true for n = k + 1, use the formula in
(i).A

[
ψ(k+1)(η)

]
= A

[
ψ(k) (η)

]
A
[
ψ(k+1)

]
= A

[(
ψ(k) (η)

)′
]

= δk+1Ψ(δ)− 1

δ1−k
ψ (0)− ψ′ (0)

δ2−k

− ψ′′ (0)

δ3−k
− . . . .

ψk(0)

δ

= δ(n)Ψ(δ)−
n−1∑
k=0

ψk (0)

δ2−n+k
.

(21)

.

III. AT FOR SOLVING SYSTEM OF ODES

Now we present AT for solving systems of ODEs. To do
so, let’s take the system of ODEs, below:

dψ1

dη
= b11ψ1 (η) + b12ψ2 (η) + b13ψ3 (η) + . . .

+ b1nψn (η) + ϕ1 (η) ,

dψ2

dη
= b21ψ1 (η) + b22ψ2 (η) + b23ψ3 (η) + . . .

+ b2nψn (η) + ϕ2 (η) ,

...
dψn
dη

= bn1 ψ1 (η) + bn2ψ2 (η) + bn3ψ3 (η) + . . .

+ bnnψn (η) + ϕn (η) .

(22)
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with the initial conditions:

ψ1 (0) = r1 , ψ2 (0) = r2 , . . . , ψn (0) = rn, (23)

where b11, b12, b13, . . ., bnn are constants , and
ψ1 (η) , ψ2 (η) , . . . , ψn (η) are unknown continuous func-
tions,and ϕ1 (η) , ϕ2 (η) , . . . , ϕn (η) are continuous given
functions.

The system (22) can be expressed in matrix form with (23)
as

dψ

dη
= Bψ (η) + ϕ (η) ,withψ (0) = R, (24)

where

dψ

dη
=


dψ1

dη
dψ2

dη
...

dψn

dη

 , B =


b11, b121, · · · , b1n
b21, b22, · · · , b2n
...

...
. . .

...
bn1, bn2, · · · , bnn

 ,

ψ (η) =


ψ1 (η)
ψ2 (η)

...
ψn (η)

 , ϕ (η) =

ϕ1 (η)
ϕ2 (η)

...
ϕn (η)

 , ψ (0) =


ψ1(0)
ψ2(0)

...
ψn(0)

 ,

and

R =


r1
r2
...
rn

 .

By applying AT to system (22), we have

A
{
ψ1 (η)

′}
= b11A {ψ1 (η)}+ b12A {ψ2(η)}+ . . .

+ b1nA {ψn(η)}+A {ϕ1 (η)} ,
A
{
ψ2 (η)

′}
= b21A {ψ1 (η)}+ b22A {ψ2 (η)}
+ . . .+ b2nA {ψn (η)}+A { ϕ2 (η)} ,

...

A
{
ψn (η)

′}
= bn1A {ψ1 (η)}+ bn2A {ψ2 (η)}+ . . .

+ bnnA {ψn (η)}+A {ϕn (η)} .


(25)

Then, we get

δA {ψ1 (η)} −
1

δ
ψ1 (0) = b11A {ψ1 (η)}+ b12A {ψ2 (η)}

+ . . .+ b1nA {ψn (η)}+A {ϕ1 (η)} ,

δA {ψ2 (η)} −
1

δ
ψ2 (0) = b21A {ψ1 (η)}+ b22A {ψ2 (η)}

+ . . .+ b2nA {ψn (η)}+A { ϕ2 (η)} ,
...

δA {ψn (η)} − 1

δ
ψ

n
(0) = bn1A {ψ1 (η)}+ bn2A {ψ2 (η)}

+ . . .+ bnnAψn (η) +A {ϕn (η)} .


(26)

Now, using the ICs (23), the system (26) becomes

(δ − b11)A [Ψ1(η)]− b12A [Ψ2(η)]− . . .− b1nA [Ψn(η)]

= A [ψ1 (η)] +
r1
δ
,

−bn1A [Ψ1(η)] + (δ − b22)A [Ψ2(η)]− . . .

− b2nA [Ψn(η)] = A [ψ2 (η)] +
r2
δ
,

...
−bn1A [ψ1(η)]− bn2A [ψ2(η)]− . . .

+ (δ − bnn)A [ψn(η)] = A [ψn (η)]

+
rn
δ
.


(27)

Cramer’s rules are used now to solve system (25) as:

[ψ1(η)] =

∣∣∣∣∣∣∣∣∣
A [ψ1 (η)] +

r1
δ

−b12 · · · −b1n
A [ψ2 (η)] +

r2
δ

(δ − b22) · · · −b2n
...

...
. . .

...
A [ψn (η)] + rn

δ
−bn2 · · · (δ − bnn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(δ − b11) −h12 · · · −b1n
−b21 (δ − b22) · · · −b2n

...
...

. . .
...

−bn1 −hn2 · · · (δ − bnn)

∣∣∣∣∣∣∣∣
,

A [ψ2(η)] =

∣∣∣∣∣∣∣∣∣
(δ − b11) A [ψ1 (η)] +

r1
δ

· · · −b1n
−b21 A [ψ2 (η)] +

r2
δ

· · · −b2n
...

...
. . .

...
−bn1 A [ψn (η)] + rn

δ
· · · (δ − bnn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(δ − b11) −h12 · · · −b1n
−b21 (δ − b22) · · · −b2n

...
...

. . .
...

−bn1 −hn2 · · · (δ − bnn)

∣∣∣∣∣∣∣∣
,

...

A [ψn(η)] =

∣∣∣∣∣∣∣∣∣
(δ − b11) −b1n · · · A [ψ1 (η)] +

r1
δ

−b21 −b2n · · · A [ψ2 (η)] +
r2
δ

...
...

. . .
...

−bn1 (δ − bnn) · · · A [ψn (η)] + rn
δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(δ − b11) −h12 · · · −b1n
−b21 (δ − b22) · · · −b2n

...
...

. . .
...

−bn1 −hn2 · · · (δ − bnn)

∣∣∣∣∣∣∣∣
.

Now applying the inverse AT of A[ψ1 (η)], A[ψ2 (η)], · · · ,
A[ψn (η)], then we get the value of ψ1 (η), ψ2(η), · · · ,
ψn(η).
Example 3.1. Let us system of ODEs:

dψ1

dη
= ψ3 (η) ,

dψ2

dη
= −ψ3 (η) ,

dψ3

dη
= −ψ1 (η)−ψ2 (η) .


(28)

with ICs

ψ1 (0) = 0, ψ2 (0) = 1 and ψ3 (0) = 0. (29)

Sol. The system (28) with the ICs (29) can be written:

dψ

dη
= Bψ (η) + ϕ (η) , with ψ (0) = R, (30)
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where

dψ

dη
=


dψ1

dη
dψ2

dη
dψ3

dη

 , H =

 0 0 1
0 0 −1
−1 −1 0

 , ψ (η) =

ψ1 (η)
ψ2 (η)
ψ3 (η)

 ,

ϕ (η) =

00
0

 , ψ (0) =

ψ1 (0)
ψ2 (0)
ψ3 (0)

 , and, R =

01
0

 .
By applying AT to the system (28), we get:

A [ψ′
1 (t)]−A [ψ3 (t)] = 0,

A[ψ
′
2(t)] +A[ψ3(t)] = 0,

A[ψ1 (t)] +A[ψ2(t)] +A[ψ′
3(t)] = 0.

 (31)

Running AT to the system (31) and using the ICs (29)

δA[ψ1(η)]−
1

δ
ψ1(0)−A[ψ3(η)] = 0,

δA[ψ2(η)]−
1

δ
ψ2(0)−A[ψ3(η)] = 0,

A[ψ1 (η)] +A[ψ2(η)] + δA[ψ′′3(η)]−
1

δ
ψ3 (0) = 0.


(32)

Simplifying the system (32), we obtain

δA[ψ1 (η)]−A[ψ3 (η)] = 0,

δA[ψ2(η)] +A[ψ3(η)] =
1

δ
,

A[ψ1 (η)] +A[ψ2(η)] + δA[ψ3(η)] = 0.

 (33)

Using Cramer’s rule to solve A[ψ1(η)], A [ψ2 (η)] and
A[ψ3(η)] on the system (33), we get

A [ψ1 (η)] =

∣∣∣∣∣∣
0 0 −1
1
δ δ 1
0 1 δ

∣∣∣∣∣∣∣∣∣∣∣∣
δ 0 −1
0 δ 1
1 1 δ

∣∣∣∣∣∣
=

−1

δ4
, (34)

A [ψ2 (η)] =

∣∣∣∣∣∣
δ 0 −1
0 1

δ 1
1 0 δ

∣∣∣∣∣∣∣∣∣∣∣∣
δ 0 −1
0 δ 1
1 1 δ

∣∣∣∣∣∣
=

1

δ4
+

1

δ2
, (35)

A[ψ3 (η)] =

∣∣∣∣∣∣
δ 0 0
0 δ 1

δ
1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
δ 0 −1
0 δ 1
1 1 δ

∣∣∣∣∣∣
= − 1

δ3
. (36)

By applying the inverse AT on equations (34), (35) and (36),
then we have

ψ1 (η) = A−1

[
−1

δ4

]
=

−η2

2
, (37)

ψ2 (η) = A−1

[
1

δ4
+

1

δ2

]
= 1 +

η2

2
, (38)

ψ3 (η) = A−1

[
−1

δ3

]
= −η. (39)

Equations (37), (38) and (39) give the solution of system
(28) with the ICs (29). Example 3.2. Consider the following
system of ODEs:

dψ1

dη
= ψ2(η) + η,

dψ2

dη
= ψ1(η).

 . (40)

With the conditions

ψ1 (0) = 1, ψ2 (0) = 0. (41)

The system (40) with the ICs (41) can be written:

dψ

dη
= Bψ (η) + ϕ (η) , with ψ (0) = R, (42)

where:

dψ

dη
=

[
dψ1

dη
dψ2

dη

]
, H =

[
0 −1
1 0

]
, ψ(η) =

[
ψ1(η)
ψ2(η)

]
,

ρ (η) =

[
η
0

]
, ψ (0) =

[
ψ1 (0)
ψ2 (0)

]
and R =

[
1
0

]
By applying AT to the system (40), we get:

A [ψ′
1 (η)] +A [ψ2 (η)] = A [η] ,

A[ψ2(η)]−A[ψ1(η)] = 0.

}
(43)

Running AT to the system (43) and using the ICs (41)

δA [ψ1(η)]−
1

δ
ψ1 (0) +A [ψ2(η)] =

1

δ3
,

δA[ψ2(η)]
1

δ
ψ2 (0)−A[ψ1(η)] = 0.

 (44)

Simplifying the system (44), we obtain

δA [ψ1(η)] +A [ψ2(η)] =
1

δ
+

1

δ3
,

δA[ψ2(η)]−A[ψ1(η)] = 0.

 (45)

Using Cramer’s rule to solve A[ψ1 (η)] and A[ψ2 (η)] on the
system (45):

A [ψ1 (η)] =

∣∣∣∣ 1δ + 1
δ3 1

0 δ

∣∣∣∣∣∣∣∣ δ 1
−1 δ

∣∣∣∣ =
1

δ2
, (46)

A[ψ2 (η)] =

∣∣∣∣ δ 1
δ +

1
δ3

−1 0

∣∣∣∣∣∣∣∣ δ 1
−1 δ

∣∣∣∣ =
1

δ3
. (47)

By applying the inverse AT on equations (46) and (47), then
we have

ψ1(η) = A−1

[
1

δ2

]
= 1, (48)

ψ2 (η) = A−1

[
1

δ3

]
= η. (49)

Equations (48) and (49) give the solution of system (40) with
the ICs (41).

Example 3.3. Consider the following system of ODEs:

dψ1

dη
= ψ2 (η) ,

dψ2

dη
= ψ1 (η) .

 . (50)
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with

ψ1 (0) = 1 and ψ2 (0) = 1. (51)

Sol. The system (50) with the ICs (51) can be written:

dψ

dη
= Bψ (η) + ϕ (η) ,withψ (0) = R, (52)

where:

dψ

dη
=

[
dψ1

dη
dψ2

dη

]
, H =

[
0 −1
1 0

]
,

ψ(η) =

[
ψ1(η)
ψ2(η)

]
, rho (η) =

[
0
0

]
, ψ (0) =

[
ψ1 (0)
ψ2 (0)

]
and

R =

[
1
1

]
.

By applying AT to the system (50), we get:

A[ψ′
1 (η)]−A[ψ2 (η)] = 0,

A[ψ′
2 (η)]−A[ψ1 (η)] = 0.

}
(53)

Running AT to the system (53) and using the ICs (51)

δA[ψ1 (η)]−
1

δ
ψ1 (0)−A[ψ2 (η)] = 0,

δA[ψ2 (η)]−
1

δ
ψ2 (0)−A[ψ1 (η)] = 0.

 (54)

Simplifying the system (54), we obtain

δA[ψ1 (η)]−A[ψ2 (η)] =
1

δ
,

δA[ψ2 (η)]−A[ψ1 (η)] =
1

δ
.

 (55)

Using Cramer’s rule to solve Aψ1 (η) and Aψ2 (η) on the
system (55)

A[ψ1 (η)] =

∣∣∣∣ 1δ −1
1
δ δ

∣∣∣∣∣∣∣∣ δ −1
−1 δ

∣∣∣∣ =
1 + 1

δ

δ2 − 1
=

1

δ(δ − 1)
, (56)

A[ψ2 (η)] =

∣∣∣∣ δ 1
δ

−1 1
δ

∣∣∣∣∣∣∣∣ δ −1
−1 δ

∣∣∣∣ =
1

δ(δ − 1)
. (57)

By applying the inverse AT on equations (56) and (57), then
we have

ψ1 (η) = A−1

[
1

δ(δ − 1)

]
= eη, (58)

ψ2(η) = A−1

[
1

δ(δ − 1)

]
= eη. (59)

Equations (58) and (59) give the solution of system (50) with
the ICs (51).

IV. APPLICATION

This part of the research comprises an application of
physical chemical problem for estimating the concentrations
C1, C2 and C3 of the reactants Q, P and S of a chemical
reaction of first order in batches given by the succeeding
ODEs.

dC1

dt
= −γ1C1,

dC2

dt
= γ1C1 − γ2C2,

dC3

dt
= γ2C2,


. (60)

with
C1 (0) = ε, C2 (0) = 0 and C3 (0) = 0. (61)

C1 = C1 (t) = Concentration of a chemical reactant Q
at time t,

C2 = C2 (t) = Concentration of a chemical reactant P
at time t,

C3 = C3 (t) = Concentration of a chemical reactant S
at time t,


where γ1, γ2 = rate constant > 0.

C1(0) = ϵ = Concentration of a chemical reactant Q
at time t = 0,

C2(0) = 0 = Concentration of a chemical reactant P
at time t = 0,

C3(0) = 0 = Concentration of a chemical reactant S
at time t = 0,


The system (60) with the ICs (61) can be expressed as:

dC

dt
= BC + ϕ (t) ,with C (0) = R, (62)

where

dC

dt
=


dC1

dt
dC2

dt
dC3

dt

 , B =

−γ1 0 0
γ1 −γ1 0
0 V2 0

 , C (t) =

C1(t)
C2(t)
C3(t)



ϕ (t) =

00
0

 , C (0) =

C1 (0)
C2 (0)
C3 (0)

 , and R =

ε0
0

 .
By apply AT to the system (60), we get:

A [C ′
1 (t)] + γ1A [C1 (t)] = 0,

A [C ′
2 (t)]− γ1A [C1 (t)] + γ2A [C2 (t)] = 0,

A [C ′
3 (t)]− γ2A [C2 (t)] = 0.

 (63)

Running AT to the system (63) and using the ICs (61), we
have

δA [C1 (t)]−
1

δ
C1 (0) + γ1A [C1 (t)] = 0,

δA [C2 (t)]−
1

δ
C2 (0)− γ1A [C1 (t)] + γ2A [C2 (t)] = 0,

δA [C3 (t)]−
1

δ
C3 (0)− γ2A [C2 (t)] = 0.


(64)
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Simplifying the system (64), we obtain

(δ + γ1)A [C1 (t)] =
ε

δ
,

(δ + γ2)A [C2 (t)]− γ1A [C1 (t)] = 0,

δA [C3 (t)]− γ2A [C2 (t)] = 0.

 (65)

Using Cramer’s rule to solveA {C1 (t)}, A {C2 (t)} and
AC3 (t) on the system (65)

A[C1 (t)] =

∣∣∣∣∣∣
δ + γ1

ε
δ 0

−γ1 0 0
0 0 δ

∣∣∣∣∣∣∣∣∣∣∣∣
δ + γ1 0 0
−γ1 δ + γ2 0
0 −γ2 δ

∣∣∣∣∣∣
=

ε(δ + γ2)

δ3 + δ2γ2 + δ3γ1 + δγ1γ2
,

(66)

A [C2 (t)] =

∣∣∣∣∣∣
δ + γ1

ε
δ 0

−γ1 0 0
0 0 δ

∣∣∣∣∣∣∣∣∣∣∣∣
δ + γ1 0 0
−γ1 δ + γ2 0
0 −γ2 δ

∣∣∣∣∣∣
=

εγ1
δ3 + δ2γ2 + δ3γ1 + δγ1γ2

,

(67)

A [C3 (t)] =

∣∣∣∣∣∣
δ + γ1 0 ε

δ
−γ1 δ + γ2 0
0 −γ2 0

∣∣∣∣∣∣∣∣∣∣∣∣
δ + γ1 0 0
−γ1 δ + γ2 0
0 −γ2 δ

∣∣∣∣∣∣
=
εγ1γ2
δ

(
1

δ3 + δ2γ2 + δ3γ1 + δγ1γ2

)
.

(68)

By applying the inverse AT on equations (66), (67) and (68),
then we have

C1 (t) = A−1

[
ε(δ + γ2)

δ3 + δ2γ2 + δ3γ1 + δγ1γ2

]
= εe−γ1t,

(69)

C2 (t) = A−1

[
εγ1

δ3 + δ2γ2 + δ3γ1 + δγ1γ2

]
=

(
εγ1

γ2 − γ1

)(
e−γ1t − e−γ2t

)
,

(70)

C3(t) = A−1

[
εγ1γ2
δ

(
1

δ3 + δ2γ2 + δ3γ1 + δγ1γ2

)]
= ϵ

(
1−

(
γ2

γ2 − γ1

)
e−γ1t +

(
γ1

γ2 − γ1

)
e−γ2t

)
.

(71)

Equations (69), (70) and (71) give the solution of system (60)
with the ICs (61). The values of concentrations C1, C2 and
C3 are conformed to different values with time t and for
different multiplications between, and they are determined
and presented in Table II, and some graphical figures. Table
II evinces that as time t augments from 0 to 6 sec.s, the
concentration C1 (t) of a chemical substance Q declines for

either combination of values of ε and γ1, namely

ε = 1

(
kg

m3

)
, γ1 = 1

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.2

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.3

(
sec−1

)
.


Table II shows that as the rate constant γ1 intensifies from 1
to 1.2sec−1, the concentration C1 (t) of a chemical substance
Q exhausts for the values of time t, spanning from 1 to
5 secs. Moreover, Table III delineates that for larger time,
the value of C1 (t) of a substance Q changes to 0

(
kg
m3

)
.

The results presented in Table II are confirmed by Figure
1. Table III presents the concentration C2(t) of a chemical
substance P , that decreases when t increases: 0 to 8 sec.s
for all combinations of ε , γ1 and γ2.

ε = 1

(
kg

m3

)
, γ1 = 1.0

(
sec−1

)
, γ2 = 0.5

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.0

(
sec−1

)
, γ2 = 1.1

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.0

(
sec−1

)
, γ2 = 1.4

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.2

(
sec−1

)
, γ2 = 0.5

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.2

(
sec−1

)
, γ2 = 1.1

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.2

(
sec−1

)
, γ2 = 1.4

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.3

(
sec−1

)
, γ2 = 0.5

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.3

(
sec−1

)
, γ2 = 1.1

(
sec−1

)
,

ε = 1

(
kg

m3

)
, γ1 = 1.3

(
sec−1

)
, γ2 = 1.4

(
sec−1

)
.

Table III shows that the value of rate constant γ1 raises from
1 to 1.3 sec−1, the concentration C2(t) of a substance’s
chemical P has been raised, and it is diminished subse-
quently when the time t is increasing from 0 to 6 sec.s.
Additionally, the table manifests that since the value of rate
constant γ2 goes from 0.6 to 1.4 sec−1, the value of a
chemical substance’s concentration P drops for all time t
values.

Table IV illustrates the concentration C3(t) of a sub-
stance’s chemical S increase when the time increases from
0 to 8 sec.s for some combinations of ε, γ1 and γ2 namely.

ε = 1

(
kg

m3

)
, γ1 = 1.0

(
sec

−1
)
, γ2 = 0.5

(
sec

−1
)
,

ε = 1

(
kg

m3

)
, γ1 = 1.0

(
sec

−1
)
, γ2 = 1.1

(
sec

−1
)
,

ε = 1

(
kg

m3

)
, γ1 = 1.0

(
sec

−1
)
, γ2 = 1.4

(
sec

−1
)
,

ε = 1

(
kg

m3

)
, γ1 = 1.2

(
sec

−1
)
, γ2 = 0.5

(
sec

−1
)
,

ε = 1

(
kg

m3

)
, γ1 = 1.2

(
sec

−1
)
, γ2 = 1.1

(
sec

−1
)
,

ε = 1

(
kg

m3

)
, γ1 = 1.2

(
sec

−1
)
, γ2 = 1.4

(
sec

−1
)
,

ε = 1

(
kg

m3

)
, γ1 = 1.3

(
sec

−1
)
, γ2 = 0.5

(
sec

−1
)
.
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TABLE II
VALUES OF C1(t) AT TIME t FOR DIFFERENT COMBINATIONS OF CONSTANTS ϵ AND γ1 .

t (sec) C1(t)
(

kg
m3

)
ϵ = 1 kg/m3, ϵ = 1 kg/m3, ϵ = 1 kg/m3,
γ1 = 1 sec−1 γ1 = 1.2 sec−1 γ1 = 1.3 sec−1

0 1.00 1.00 1.00
1.0 0.37 0.30 0.27
2.0 0.14 0.09 0.07
3.0 0.05 0.03 0.02
4.0 0.02 0.01 0.01
5.0 0.01 0.00 0.00
6.0 0.00 0.00 0.00
7.0 0.00 0.00 0.00
8.0 0.00 6.77 3.04

Fig. 1. Concentration C1(t) of a Q at time t multi values.

Table IV ensures that for high time t values, the concentra-
tion C3(t) of a substance’s chemical S changes to 1 kgm3 . The
graph presented in Figure 3 introduces the results discussed
in Table IV.

V. CONCLUSION

In this research, we presented the AT, and we proved
the basic properties and we showed the relation between
it and some other integral transforms. Moreover, we solved
some examples of systems of ODEs by AT. In the appli-
cation section, the we looked at a problem from the field
of physical chemistry to determine the concentration of
chemical reactants of a chemical reaction in a chain and
successfully solve them by the presented transform. The
results of this research showed that AT solved the critical
problem of focus determination of chemical reactants into
a first-order chemical reaction respectively, at the time of
the chemical reaction performance. The outcomes of the
proposed research are beneficial to increase the production of
things, by removing needless substances at the suitable time
of the reaction. As a future work, AT can be utilized to solve
the concentration of reactants in other chemical reactions.
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