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Abstract—This paper presents an optimal output feedback
tracking control scheme for a single-link robot arm (SLRA)
model, utilizing reinforcement learning (RL). Initially, a neural
network (NN) state observer is developed to accurately estimate
the system state. Then, an optimal output feedback controller
is constructed based on the RL algorithm and the optimal
backstepping control (OBC) method to effectively control the
SLRA system. Subsequently, employing Lyapunov stability
theory, it is demonstrated that all signals in the closed-loop
system are guaranteed to remain bounded. In conclusion, a
simulation case is presented to demonstrate the efficacy of the
proposed approach.

Index Terms—Single-link robot arm (SLRA), Neural network
state observer, Optimal backstepping control, Reinforcement
learning

I. INTRODUCTION

W ITH the rapid advancement of the robotics industry,
the standalone robotic system featuring a Single-

Link Robot Arm (SLRA) has gained widespread utilization
across various industrial sectors [1, 2]. Renowned for its
robustness and resilience in diverse industrial settings, SLRA
is extensively employed in service robots, space exploration
robots, and as operational units in other manufacturing
domains. These robotic arms are particularly well-suited for
high-precision tasks such as welding, processing, and quality
control, playing an indispensable role in ensuring operational
accuracy and reliability [3–5]. Furthermore, their exceptional
adaptability and scalability enable customization to meet
specific requirements across diverse industrial applications.

In recent years, there have been numerous successful
adaptive control outcomes for intricate nonlinear systems
such as SLRA [6–8]. It is widely recognized that unidentified
system faults in industrial operations may lead to a deterio-
ration in control system performance and result in unstable
or even catastrophic incidents [9, 10]. Consequently, fault-
tolerant control has emerged as a pivotal area of investigation
within the realm of control theory [11]. A primary challenge
lies in the accurate estimation of unknown faults within
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the controlled system when it encounters unforeseen time-
varying system faults, with the aim of achieving optimal
control performance. To tackle this challenge, an effective
approach is to design a fault estimator and reconstruct the
fault signal through the fault estimator, thereby designing
a fault-tolerant control scheme [12–14]. This scheme can
effectively eliminate the influence of fault signals on system
state and system output. The accuracy of the fault estimator
will directly affect the rationality of the controller. Therefore,
the design of the fault estimator is particularly important in
fault estimation research.

At the same time, it is difficult to maximize or minimize
the performance index of the control system in practice
due to the influence of the environment and the limitations
of the engineering system [15]. Therefore, the optimization
problem is a difficult problem in the current control field and
has gradually become the focus of attention [16]. Finally,
the optimal control problem of the nonlinear system was
transformed into the solution of Hamilton-Jacobi-Bellman
(HJB) partial differential equations. In [17], the identifier-
Actor-critic architecture was proposed, where the actor neural
network performs control actions, the critic neural network
is used to estimate these actions, and then the evaluation
is returned to the actor, and the dynamic process of the
uncertain system can be approximated by the neural network
identifier [18]. According to [19], for a class of nonlinear
large-scale systems with strict feedback structure. In [20],
a fuzzy distributed adaptive optimal control method is pro-
posed and FLS is used to identify the uncertain nonlinear
function of the system. In [21], the output feedback adaptive
neural network optimization control problem is solved for
a quarter of the vehicle active electric suspension system.
However, none of the above studies have discussed how to
handle unknown system failures, so it will be a meaningful
topic to design an optimal control strategy for the SLRA
system that can handle unknown system failures.

Given this, drawing on the aforementioned research, this
paper aims to develop an optimal output feedback controller
based on a fault estimator for the SLRA model. This will
ensure that the dynamic process of the system can be
reconstructed even in the presence of an unknown fault,
while simultaneously optimizing the performance index of
the controlled system.

The remaining sections of the paper are structured as
follows: Section II provides a problem description and
background knowledge, Section III presents the principal
findings, Section IV offers an in-depth stability analysis,
Section V demonstrates a simulation example, and finally,
the conclusion section summarizes the key outcomes.
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II. PROBLEM FORMULATION AND
PRELIMINARIES

For single-link robot arm, as shown in Fig. 1, its dynamic
behavior can be described by the following equations:

Mq̈ +
1

2
mgl sin(q) = τ + ζ(t) (1)

where q is the angle position, q̇ is the angular velocity, q̈
is the angular acceleration, g = 9.8m/s2 is the acceleration
due to gravity, M is the inertia, l is the length of the link,
m is the mass of the link, and τ is the control force.

࢒
ࢗ

Fig. 1: Model diagram of a single-link robot arm.

According to Equation (1), its dynamic equation can be
transformed into a state space of the following form

ẋ1 = x2

ẋ2 = bu+ f(x) + ζ(t)

y = x1

(2)

where x = [x1, x2]
T ∈ R2 denotes the state variables,

and x1 is a measurable state, x2 is an unmeasured state.
u and y are the control input and output, respectively.
f(x) = 1

2Mmgl sin(q) is a known continuous function, and b
is a known control gain constant. In order to be controllable
(2), the requirement is that b ̸= 0. ζ(t) represents the time-
varying fault of the unknown system.

Definition 1 For system (2), if the control protocol u is
continuous and satisfies u(0) = 0, then u ∈ Ωu is admissible
control and u makes system (2) stable while ensuring that the
performance cost function is finite. Ωu denotes an admissible
control set.

Control Objective: For the machine arm system (2), a fault
estimator-based output feedback optimal control strategy is
proposed to ensure that: 1) the output signal y can track the
reference signal yr; 2) while saving communication resources
and minimizing the cost function, all signals in system (2)
are bounded.

To achieve the above control objectives, the following
lemmas and assumptions need to be introduced.

Lemma 1 [22] (Young’s inequality) For ∀γ1, γ2 ∈ R, one
has

γ1γ2 ≤ ϖι

ι
|γ1|ι +

1

oϖo
|γ2|o (3)

where ϖ > 0, ι > 1, o > 1 and (ι− 1)(o− 1) = 1.
Lemma 2 [23] Let f(x) be a continuous function defined

on a compact set Ωx. Then for ∀ε > 0, there exist the NN
WTΨ(x) such that

sup
x∈Ωx

|f(x)−WTΨ(x)| ≤ ε (4)

where W = [W1,W2, . . . ,Wm]T ∈ Rm is the weight
vector and Ψ(x) = [ψ1(x), ψ2(x), . . . , ψm(x)]T is the NN
basis function with m > 1 is the number of NN rules.
ψi(x) = exp[−∥x−ξi∥2/ϑ2i ], i = 1, 2, . . . ,m is the Gaussian
function, where ϑi and ξi = [ξi1, ξi2, . . . , ξim]T represent the
width and center, respectively. The optimal parameter vector
W ∗ of NN is defined as

W ∗ = arg min
W∈Rm

{ sup
x∈Ωx

|f(x)−WTΨ(x)|} (5)

Therefore, the continuous function f(x) can be expressed
as

f(x) =W ∗TΨ(x) + ε(x) (6)

where ε(x) is the NN approximation error, which can be
bounded by |ε(x)| ≤ ε, where ε is a positive constant. It
should be pointed out that since W ∗ is an analytical quantity,
it needs to be estimated later for practical use.

Lemma 3 [24] Let V (t) ∈ R be a positive continuous
function. If it satisfies the inequality V̇ (t) ≤ −βV (t) + c,
where β, c ∈ R+, then the following inequality holds:

V (t) ≤ e−βtV (0) +
c

β
(1− e−βt) (7)

Assumption 1. The reference signal yr and its derivative ẏr
are bounded.
Assumption 2. The Gaussian function Ψ(x) satisfies the
following global Lipschitz continuity condition:

∥Ψ(x)−Ψ(x)∥ ≤ LΨ∥x− x∥ (8)

where LΨ is the Lipschitz constant.

III. MAIN RESULT

In this section, we assume that the state x2 in system
(2) is unmeasurable, and then we establish a neural network
observer with an intermediate variable fault estimator. Then,
an optimal controller is constructed based on a reinforcement
learning algorithm.

A. Design of NN state observer and fault estimator

With the help of Lemma 2, it follows that the nonlinear
terms in system (2) can be approximated by f̂(x̂|Ŵ ) =
ŴT

f Ψf (x̂) and f̂(x̂|W ∗) = W ∗T
f Ψf (x̂), where x̂ and

Ŵ represent the estimations of x and W ∗, respectively.
Define the variables errors δf = f(x) − f̂(x̂|Ŵ ) and
εf = f(x) − f̂(x̂|W ∗), and there exist positive constants
δf and εf such that |δf | ≤ δf and |εf | ≤ εf .

Define the state observer as follows:
˙̂x1 = x̂2 + l1(y − x̂1)

˙̂x2 = bu+ f̂(x̂|Ŵ ) + ζ̂(t) + l2(y − x̂1)

ŷ = x̂1

(9)

where ζ̂(t) is estimate of ζ(t) and li, i = 1, 2 represent the
design parameters. Define the observer error x̃ = x − x̂,
the NN approximation error W̃f =W ∗

f − Ŵf , and the fault
estimation error ζ̃(t) = ζ(t)− ζ̂(t). It follows from (2) and
(12) that

˙̃x = Ax̃+
n∑

i=1

B(δf + ζ̃(t)) (10)
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where A =

[
−l1 1
−l2 0

]
, B = [0, 1]T . A suitable choice of

parameter li ensures that the matrix A is a strict Hurwitz
matrix and there exist any positive definite matrices P and
Q such that ATP + PA = −Q.

The intermediate variable Ξ(t) with tuning parameters η
is defined as follows:

Ξ(t) = ζ(t)− ηx2 (11)

where η > 0. In addition, Ξ(t) and ζ(t) are replaced by Ξ
and ζ next for ease of writing.

The derivative of the intermediate variable Ξ yields

Ξ̇ = ζ̇ − ηẋ2

= ζ̇ − η
(
bu+ f(x) + ζ(t)

) (12)

The adaptation law Ξ̂ for the intermediate variable is
designed as follows:

˙̂
Ξ = −η

(
bu+ f̂(x̂|Ŵ ) + ζ̂

)
(13)

It can be obtained from (12) and (13) that the error be-
tween the intermediate variable and its estimate are denoted
by:

˙̃Ξ = ζ̇ − η(δf + ζ̃)

= ζ̇ − η(δf + Ξ̃ + ηx̃2)
(14)

Define the intermediate variable error as Ξ̃ = Ξ − Ξ̂.
Subsequently, consider the following Lyapunov function:

V0 = x̃TPx̃+
1

2
Ξ̃2 (15)

Then, the derivative of V0 is equal to

V̇0 = ˙̃xTPx̃+ x̃TP ˙̃x+ Ξ̃ ˙̃Ξ

=x̃T (ATP + PA)x̃+ 2x̃TPB(δf + ζ̃)

+ Ξ̃
(
ζ̇ − η(δf + Ξ̃ + ηx̃2)

)
=− x̃TQx̃+ 2x̃TPB(δf + ζ̃) + Ξ̃ζ̇

− ηδf Ξ̃− ηΞ̃2 − η2x̃2Ξ̃

(16)

According to Young’s inequality, it follows that

2x̃TPBδf ≤ ∥x̃∥2 + ∥P∥2δ2f
2x̃TPBζ̃ ≤ (∥P∥2 + 2η2)∥x̃∥2 + 2Ξ̃2

Ξ̃ζ̇ ≤ 1

2
Ξ̃2 +

1

2
ζ
2

−ηδf Ξ̃ ≤ 1

2
η2δ

2

f +
1

2
Ξ̃2

−η2x̃2Ξ̃ ≤ 1

2
η4∥x̃∥2 + 1

2
Ξ̃2

(17)

Substituting (17) into (16) can be obtained

V̇0 ≤ −
(
λmin(Q)− 1− ∥P∥2 − 2η2 − 1

2
η4
)
∥x̃∥2

− 7

2
Ξ̃2 + (∥P∥2 + 1

2
η2)δ

2

f +
n∑

i=1

1

2
ζ
2

≤ −τ∥x̃∥2 − 7

2
Ξ̃2 + σ0

(18)

where

τ =λmin(Q)− 1− ∥P∥2 − 2η2 − 1

2
η4,

σ0 =(∥P∥2 + 1

2
η2)δ

2

f +
n∑

i=1

1

2
ζ
2
.

(19)

B. Optimized backstepping controller design

In the following, a optimized output feedback algorithm is
developed based on the NN state observer (9) and the inter-
mediate variable (11). The optimized backstepping control is
designed by the following two steps. Consider the tracking
error coordinate transformation as follows:

z1 = x1 − yr

z2 = x2 − α̂∗
1

(20)

Among them, yr serves as the reference signal, while
α1 and α∗

1 represent the virtual control and optimal virtual
control correspondingly.

Step 1: From (2) and (20), the derivative of z1 can be
calculated

ż1 = ẋ1 − ẏr = x2 − ẏr (21)

The optimal performance index function is chosen as

J1(z1) =

∫ ∞

t

h1

(
z1(v), α1

(
z1(v)

))
dv (22)

where h1(z1, α1) = z21 +α2
1 is the cost function, and let the

optimal virtual control α∗
1 replace α1 in (22), the optimal

performance index function can be obtained

J∗
1 (z1) =

∫ ∞

t

h1(z1(v), α
∗
1(z1(v)))dv

= min
α1∈Ω

{
∫ ∞

t

h1

(
z1(v), α1

(
z1(v)

))
dv}

(23)

Replace x2 in (21) with the optimal virtual control α∗
1, and

subsequently define the HJB equation associated with (21)
and (23) as

H1(z1, α
∗
1,

dJ∗
1

dz1
) = z21 + α∗

1
2 +

dJ∗
1

dz1
(α∗

1 − ẏr) = 0 (24)

The optimal virtual control α∗
1 can be computed by solving

∂H1/∂α
∗
1 = 0 as

α∗
1 = −1

2

dJ∗
1 (z1)

dz1
(25)

According to (9) and (20), z1 = x1 − yr can be estimated
as ẑ1 = x̂1 − yr, so replacing z1 with ẑ1 yields dJ∗

1 (ẑ1)
dẑ1

. To
achieve the fixed-time optimal control objective, dJ∗

1 (ẑ1)
dẑ1

is
estimated and decomposed into

dJ∗
1 (ẑ1)

dẑ1
= 2ϱ1ẑ1 + Jo

1 (ẑ1) (26)

where ϱ1 > 7
4 is design parameter. Jo

1 (ẑ1) = −2ϱ1ẑ1 +
dJ∗

1 (ẑ1)
dẑ1

∈ R is a continuous function, and substituting (26)
into (25) has

α∗
1 = −ϱ1ẑ1 −

1

2
Jo
1 (ẑ1) (27)

Since Jo
1 (ẑ1) is continuous unknown function, it can be

approximated by NN as follows:

Jo
1 (ẑ1) =W ∗T

J1 ΨJ1(ẑ1) + εJ1(ẑ1) (28)

where W ∗
J1 ∈ Rm1 represents the ideal weight vector,

ΨJ1(ẑ1) ∈ Rm1 is the basis function vector, and εJ1(ẑ1) ∈ R
represents the approximation error bounded by ∥εJ1(ẑ1)∥ ≤
εJ1 as arbitrarily small. Then, (26) and (27) can be reorga-
nized as

dJ∗
1 (ẑ1)

dẑ1
= 2ϱ1ẑ1 +W ∗T

J1 ΨJ1(ẑ1) + εJ1 (29)
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α∗
1 = −ϱ1ẑ1 −

1

2
W ∗T

J1 ΨJ1(ẑ1)−
1

2
εJ1 (30)

Since W ∗
J1 is unknown constant vector, the optimal virtual

control (30) is not available for the controlled system. To
derive the effective optimized virtual control, the following
RL algorithm with critic and actor is performed.

dĴ∗
1 (ẑ1)

dẑ1
= 2ϱ1ẑ1 + ŴT

c1ΨJ1(ẑ1) (31)

α̂∗
1 = −ϱ1ẑ1 −

1

2
ŴT

a1ΨJ1(ẑ1) (32)

where dĴ∗
1 (ẑ1)
dẑ1

and α̂∗
1 are the estimates of dJ∗

1 (ẑ1)
dẑ1

and α∗
1,

respectively. ŴT
c1ΨJ1(ẑ1) ∈ Rm1 and ŴT

a1ΨJ1(ẑ1) ∈ Rm1

are the NN weight vectors of critic and actor, respectively.
Following this, the weight vectors of the neural networks

for both the critic and actor are trained according to the
respective adaptive laws outlined below.

˙̂
Wc1 = −κc1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵc1 (33)

˙̂
Wa1 =−ΨJ1(ẑ1)Ψ

T
J1(ẑ1)

(
κa1(Ŵa1

− Ŵc1) + κc1Ŵc1

) (34)

where κc1 > 0 and κa1 > 0 represent critic and actor design
parameters, while κc1 and κa1 satisfy κa1 > 1

2 , κa1 > κc1

2 .
Using x2 = x̃2 + x̂2, (21) can be rewritten as

˙̂z1 = x̃2 + x̂2 − ẏr = ẑ2 + α̂∗
1 + x̃2 − ẏr (35)

Substituting (32) into (35) to get

˙̂z1 =− ϱ1ẑ1 + ẑ2 −
1

2
ŴT

a1ΨJ1(ẑ1) + x̃2 − ẏr (36)

For the first backstepping step, the Lyapunov function V1
is designed as follows:

V1 =
1

2
ẑ21 +

1

2
W̃T

c1W̃c1 +
1

2
W̃T

a1W̃a1 (37)

where W̃c1 = W ∗
J1 − Ŵc1 and W̃a1 = W ∗

J1 − Ŵa1 are the
estimation errors of the critic and the actor, respectively.

Then, the derivative of V1 is

V̇1 =ẑ1
(
− ϱ1ẑ1 + ẑ2 −

1

2
ŴT

a1ΨJ1(ẑ1) + x̃2 − ẏr
)

+ κc1W̃
T
c1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵc1 + W̃T

a1ΨJ1(ẑ1)

×ΨT
J1(ẑ1)

(
κa1(Ŵa1 − Ŵc1) + κc1Ŵc1

) (38)

The Young’s inequality yields the following results:

ẑ1ẑ2 ≤ 1

2
ẑ21 +

1

2
ẑ22

ẑ1x̃2 ≤ 1

2
ẑ21 +

1

2
∥x̃∥2

−ẑ1ẏr ≤ 1

2
ẑ21 +

1

2
ẏ2r

−1

2
ẑ1Ŵ

T
a1ΨJ1(ẑ1) ≤

1

4
ẑ21 +

1

4
ŴT

a1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)Ŵa1

(39)
Along with (38) and (39), we can calculate:

V̇1 ≤− (ϱ1 −
7

4
)ẑ21 + κc1W̃

T
c1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵc1

+ κa1W̃
T
a1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵa1 +

1

2
∥x̃∥2

+ (κc1 − κa1)W̃
T
a1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵc1

+
1

4
ŴT

a1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)Ŵa1 +

1

2
ẑ22 +

1

2
ẏ2r

(40)

Based on W̃c1 = W ∗
J1 − Ŵc1, W̃a1 = W ∗

J1 − Ŵa1 and
Young’s inequality, we have

W̃T
c1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵc1 =

1

2
W ∗T

J1 ΨJ1(ẑ1)Ψ
T
J1(ẑ1)W

∗
J1

− 1

2
W̃T

c1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)W̃c1

− 1

2
ŴT

c1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)Ŵc1

W̃T
a1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵa1 =

1

2
W ∗T

J1 ΨJ1(ẑ1)Ψ
T
J1(ẑ1)W

∗
J1

− 1

2
W̃T

a1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)W̃a1

− 1

2
ŴT

a1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)Ŵa1

W̃T
a1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵc1 ≤− 1

2
W̃T

a1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)W̃a1

− 1

2
ŴT

c1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)Ŵc1

(41)
Subsequently, we can acquire

V̇1 ≤− (ϱ1 −
7

4
)ẑ21 − κc1

2
W̃T

c1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)W̃c1

− (κa1 −
κc1
2

)W̃T
a1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)W̃a1

− κa1
2
ŴT

c1ΨJ1(ẑ1)Ψ
T
J1(ẑ1)Ŵc1 − (

κa1
2

− 1

4
)

× ŴT
a1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)Ŵa1 +

1

2
ẑ22 +

1

2
∥x̃∥2

+
1

2
ẏ2r +

κc1 + κa1
2

W ∗T
J1 ΨJ1(ẑ1)Ψ

T
J1(ẑ1)W

∗
J1

(42)

The following inequality holds when λmin
ΨJ1

is the minimum
eigenvalue of ΨJ1(ẑ1)Ψ

T
J1(ẑ1).

− W̃T
c1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)W̃c1 ≤ −λmin

ΨJ1
W̃T

c1W̃c1

− W̃T
a1ΨJ1(ẑ1)Ψ

T
J1(ẑ1)W̃a1 ≤ −λmin

ΨJ1
W̃T

a1W̃a1

(43)

According to the design parameters κa1 > κc1

2 and κa1 >
1
2 , as well as (43), it can yield

V̇1 ≤− (ϱ1 −
7

4
)ẑ21 − κc1

2
λmin
ΨJ1

W̃T
c1W̃c1

− (κa1 −
κc1
2

)λmin
ΨJ1

W̃T
a1W̃a1 +

1

2
∥x̃∥2

+
1

2
ẑ22 + σ1

(44)

where σ1 = 1
2 ẏ

2
r +

κc1+κa1

2 W ∗T
J1 ΨJ1(ẑ1)Ψ

T
J1(ẑ1)W

∗
J1. Since

all the terms in σ1 are bounded, there exists a positive
constant σ1 such that |σ1| ≤ σ1.

Step 2 : The derivative of z2 is calculated in a similar
manner.

ż2 = ẋ2 − ˙̂α∗
1

= bu+ f(x) + ζ − ˙̂α∗
1

(45)

The selection of the most suitable integral cost function is
detailed as follows:

J∗
2 (z2) =

∫ ∞

t

h2

(
z2(v), u

∗(z2(v)))dv
= min

u∈Ω
{
∫ ∞

t

h2

(
z2(v), u

(
z2(v)

))
dv}

(46)

where h2(z2, u) = z22+u
2 is the cost function, u∗ represents

the optimal controller.
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Based on (46), the HJB equation is constructed as

H2(z2, u
∗,

dJ∗
2

dz2
) =z22 + u∗2 +

dJ∗
2

dz2

(
u∗ + f(x)

+ ζ − α̂∗
1

)
= 0

(47)

The same as before, we can solve for ∂H2/∂u
∗ = 0 as

u∗ = −1

2

dJ∗
2 (z2)

dz2
(48)

The tracking error z2 can be estimated as ẑ2 = x̂2 − ˙̂α∗
1,

where z2 is substituted with ẑ2, resulting in

u∗ = −1

2

dJ∗
2 (ẑ2)

dẑ2
(49)

Then, dJ∗
2 (ẑ2)
dẑ2

can be factored as

dJ∗
2 (ẑ2)

dẑ2
= 2ϱ2ẑ2 + 2f(x̂) + 2ζ̂ + Jo

2 (ẑ2) (50)

where ϱ2 > 9
4 is design parameter. Jo

2 (ẑ2) = −2ϱ2ẑ2 −
2f(x̂)− 2ζ̂ +

dJ∗
2 (ẑ2)
dẑ2

∈ R. Using NN, we can approximate
f(x̂) as W ∗T

f Ψf (x̂) + εf (x̂), the optimal controller u∗ can
be expressed as

u∗ = −ϱ2ẑ2 −W ∗T
f Ψf (x̂)− εf − ζ̂ − 1

2
Jo
2 (ẑ2) (51)

Since Jo
2 (ẑ2) is unknown continuous term, it can also be

approximated using NN as follows:

Jo
2 (ẑ2) =W ∗T

J2 ΨJ2(ẑ2) + εJ2(ẑ2) (52)

where W ∗
J2 ∈ Rm2 is the ideal weight vector, ΨJ2(ẑ2) ∈

Rm2 is the NN basis function vector, and the NN approxi-
mation error εJ2(ẑ2) ∈ R is bounded.

Similarly, we can derive the following conclusion

dJ∗
2 (ẑ2)

dẑ2
=2ϱ2ẑ2 + 2ζ̂ + 2W ∗T

f Ψf (x̂)

+W ∗T
J2 ΨJ2(ẑ2) + ε2

(53)

u∗ =− ϱ2ẑ2 − ζ̂ −W ∗T
f Ψf (x̂)

− 1

2
W ∗T

J2 ΨJ2(ẑ2)−
1

2
ε2

(54)

where ε2 = 2εf + εJ2.
The optimal control (54), however, remains unattainable,

necessitating the execution of an RL algorithm featuring both
a critic and an actor to acquire viable control signal.

dĴ∗
2 (ẑ2)

dẑ2
=2ϱ2ẑ2 + 2ζ̂ + 2ŴT

f ΨJ2(x̂) + ŴT
c2ΨJ2(ẑ2)

(55)

û∗ =
1

b

(
− ϱ2ẑ2 − ζ̂ − ŴT

f ΨJ2(x̂)−
1

2
ŴT

a2ΨJ2(ẑ2)
)
(56)

where dĴ∗
2 (ẑ2)
dẑ2

is the estimate of dJ∗
2 (ẑ2)
dẑ2

, and û∗ is the
final actual optimal controller. ŴT

c2ΨJ2(ẑ2) ∈ Rm2 and
ŴT

a2ΨJ2(ẑ2) ∈ Rm2 are the NN weight vectors of critic
and actor, respectively.

As with the previous steps, the corresponding three adap-
tive update laws are designed as follows:

˙̂
Wf = ΓfΨJn(x̂)ẑ2 − κfŴf (57)

˙̂
Wc2 = −κc2ΨJ2(ẑ2)Ψ

T
J2(ẑ2)Ŵc2 (58)

˙̂
Wa2 = −ΨJ2(ẑ2)Ψ

T
J2(ẑ2)

(
κa2(Ŵa2 − Ŵc2) + κc2Ŵc2

)
(59)

where Γf > 0, κf > 0, κc2 > 0 and κa2 > 0 are design
parameters, while κc2 and κa2 satisfy κa2 > 1

2 , κa2 > κc2

2 .
According to the actual optimal control (56), the ˙̂z2 can

be expressed as follows

˙̂z2 =bû∗ + W̃T
f Ψf (x̂) + ŴT

f Ψf (x̂) + εf + ζ − ˙̂α∗
1

=− ϱ2ẑ2 + ζ̃ − 1

2
ŴT

a2ΨJ2(ẑ2) + W̃T
f Ψf (x̂) + εf − ˙̂α∗

1

(60)
Subsequently, the nth step Lyapunov function should be

selected as

V2 =
1

2
ẑ22 +

1

2Γf
W̃T

f W̃f +
1

2
W̃T

c2W̃c2 +
1

2
W̃T

a2W̃a2 (61)

where W̃f = W ∗
f − Ŵf , W̃c2 = W ∗

J2 − Ŵc2 and W̃a2 =

W ∗
J2 − Ŵa2.
Combining (56)-(60), the derivative of (61) can be calcu-

lated as

V̇2 =ẑ2
(
− ϱ2ẑ2 + ζ̃ − 1

2
ŴT

a2ΨJ2(ẑ2) + W̃T
f Ψf (x̂)

+ εf − ˙̂α∗
1

)
+ κfW̃

T
f Ŵf + κc2W̃

T
c2ΨJ2(ẑ2)

×ΨT
J2(ẑ2)Ŵc2 + W̃T

a2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)

×
(
κa2(Ŵa2 − Ŵc2) + κc2Ŵc2

)
(62)

Using the Young’s inequality, we have

ẑ2εf ≤ 1

2
ẑ22 +

1

2
ε2f

ẑ2ζ̃ ≤ 1

2
ẑ22 + 2Ξ̃2 + 2η2∥x̃∥2

−ẑ2 ˙̂α∗
1 ≤ 1

2
ẑ22 +

1

2
˙̂α∗2
1

−1

2
ẑ2Ŵ

T
a2ΨJ2(ẑ2) ≤

1

4
ẑ22 +

1

4
ŴT

a2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)Ŵa2

(63)
Meanwhile, according to the previous steps, the following

results hold:

W̃fŴf ≤− 1

2
W̃T

f W̃f +
1

2
W ∗T

f W ∗
f

W̃T
c2ΨJ2(ẑ2)Ψ

T
J2(ẑ2)Ŵc2 =

1

2
W ∗T

J2 ΨJ2(ẑ2)Ψ
T
J2(ẑ2)W

∗
J2

− 1

2
W̃T

c2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)W̃c2

− 1

2
ŴT

c2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)Ŵc2

W̃T
a2ΨJ2(ẑ2)Ψ

T
J2(ẑ2)Ŵa2 =

1

2
W ∗T

J2 ΨJ2(ẑ2)Ψ
T
J2(ẑ2)W

∗
J2

− 1

2
W̃T

a2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)W̃a2

− 1

2
ŴT

a2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)Ŵa2

W̃T
a2ΨJ2(ẑ2)Ψ

T
J2(ẑ2)Ŵc2 ≤− 1

2
W̃T

a2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)W̃a2

− 1

2
ŴT

c2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)Ŵc2

(64)
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Substituting (63) and (64) into (62) yields

V̇2 ≤− (ϱ2 −
7

4
)ẑ22 − κf

2
W̃T

f W̃f − κc2
2
W̃T

c2ΨJ2(ẑ2)

×ΨT
J2(ẑ2)W̃c2 − (κa2 −

κc2
2

)W̃T
a2ΨJ2(ẑ2)

×ΨT
J2(ẑ2)W̃a2 −

κa2
2
ŴT

c2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)Ŵc2

− (
κa2
2

− 1

4
)ŴT

a2ΨJ2(ẑ2)Ψ
T
J2(ẑ2)Ŵa2 + 2η2∥x̃∥2

+ 2Ξ̃2 +
1

2
ε2f +

1

2
˙̂α∗2
1 +

κf
2
W ∗T

f W ∗
f +

κc2 + κa2
2

×W ∗T
J2 ΨJ2(ẑ2)Ψ

T
J2(ẑ2)W

∗
J2

≤− (ϱ2 −
7

4
)ẑ22 − κf

2
W̃T

f W̃f − κc2
2
λmin
ΨJ2

W̃T
c2W̃c2

− (κa2 −
κc2
2

)λmin
ΨJ2

W̃T
a2W̃a2 + 2η2∥x̃∥2 + 2Ξ̃2 + σ2

(65)
where σ2 = 1

2ε
2
f + κc2+κa2

2 W ∗T
J2 ΨJ2(ẑ2)Ψ

T
J2(ẑ2)W

∗
J2 +

κf

2 W
∗T
f W ∗

f + 1
2
˙̂α∗2
1 is bounded, and there exists a posi-

tive constant σ2 that ensures the existence of |σ2| ≤ σ2.
Additionally, λmin

ΨJ2
represents the minimum eigenvalue of

ΨJ2(ẑ2)Ψ
T
J2(ẑ2).

IV. STABILITY ANALYSIS

Theorem 1 If the optimal control strategy proposed in
this paper is applied to the SLRA system with unknown
fault (2), where the state observer is (9), the intermediate
variable disturbance observer and its adaptive law are (13),
the observer, critic, and actuator parameters are adaptive laws
(57) and (33), (58) and (34), the optimal virtual controller
is (32), and the fixed-time optimal actual controller is (56),
then the control strategy can ensure that the control signal
in the closed-loop system is always consistently ultimately
bounded, and the reference signal can track the expected
target.

Proof: Construct a Lyapunov function V =
2∑

i=0

Vi, and

by integrating the preceding steps, we can compute

V̇ ≤− (τ − 1

2
+ 2η2)∥x̃∥2 − 3

2
Ξ̃2 − (ϱ1 −

7

4
)ẑ21

− (ϱ2 −
9

4
)ẑ22 − κf

2
W̃T

f W̃f −
2∑

i=1

κci
2
λmin
ΨJi

W̃T
ciW̃ci

−
2∑

i=1

(κai −
κci
2

)λmin
ΨJi

W̃T
aiW̃ai + σ0 + σ1 + σ2

≤− τ̆∥x̃∥2 − 3

2
Ξ̃2 − (ϱ1 −

7

4
)ẑ21 − (ϱ2 −

9

4
)ẑ22

− κf
2
W̃T

f W̃f −
2∑

i=1

κci
2
λmin
ΨJi

W̃T
ciW̃ci

−
2∑

i=1

(κai −
κci
2

)λmin
ΨJi

W̃T
aiW̃ai + σ

(66)
where τ̆ = τ − 1

2 + 2η2 and σ = σ0 + σ1 + σ2. As all the
terms in a are bounded, there exists a constant c > 0 such
that |σ| < c.

In accordance with Lemma 3, the subsequent inequality
can be deduced via algebraic manipulation.

V̇ ≤− βV + c (67)

where β = min{ τ
λmax(P ) ,

3
2 , ϱ1 −

7
4 , ϱ2 −

9
4 ,

κf

2 ,
κci

2 λ
min
ΨJi

,

(κai − κci

2 )λmin
ΨJi

, i = 1, 2}.
Then, there was the following:

V ≤e−βtV (0) +
c

β
(1− e−βt) (68)

The proof of Theorem 1 is completed.
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Fig. 2: The trajectories of x1 and yr.
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Fig. 3: The trajectories of x̃1 and x̃2.

V. SIMULATION EXAMPLE

Subsequently, a numerical simulation example will be used
to confirm the effectiveness of the suggested approach. The
corresponding system parameters are selected as m = 10 kg,
M = 0.5 kg/m2, l = 1m, and the reference signal is
selected as yr = 0.3 sin t, and time-varying fault ζ(t) =
0.5 sin(0.6t) + 0.4 cos(0.4t) + 0.2.

In addition, the control parameters are designed as ρ1 =
12, ρ2 = 15, l1 = 16, l2 = 18, κf = 0.5, κc1 = 10,
κc2 = 10, κa1 = 12, κa2 = 12 and η = 4.

The initial values of the system are set as x1(0) =
x2(0) = 0.2, x̂1(0) = 0.1, x̂2(0) = 0.2, Ξ̂(0) = 0,
Ŵf (0) = [0.2, . . . , 0.2]T ∈ R6×1, Ŵc1(0) = Ŵa1(0) =
[0.5, . . . , 0.5]T ∈ R6×1 and Ŵc2(0) = Ŵa2(0) =
[0.4, . . . , 0.4]T ∈ R6×1.
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Fig. 4: The trajectory of the fault estimation error ζ̃.
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Fig. 9: Cost functions h1 and h2.
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The simulation result graph is shown in Figs. 2-9. This
indicates that the proposed control scheme has excellent
tracking performance and is able to estimate and reconstruct
unknown faults while ensuring that the optimal performance
index is minimized.

Fig. 4 illustrates that the error between the actual and
estimated fault values can converge to a region near zero.
Figs. 5-7 demonstrate that the adaptive law derived from
the reinforcement learning algorithm achieves asymptotic
convergence. Figs. 8 and 9 present the response curves of
both the optimal controller and the minimum performance
function.

VI. CONCLUSION

For the single-link robot arm model, an adaptive output
feedback optimal control strategy based on neural networks
for fault estimation is proposed. This scheme can effectively
estimate and suppress unknown system faults when they
occur. At the same time, by combining optimal inverse
dynamics techniques and reinforcement learning algorithms,
the optimal virtual iscontrol signal and controller for the
system were found, greatly saving control resources. As a
result, this approach plays a crucial role in enhancing the
performance of the single-link robotic arm system.
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