
 

  

Abstract—The research on electricity consumption pattern 

recognition generally encounters some prominent problems such 

as poor similarity, poor accuracy, and low efficiency of existing 

clustering algorithms. Therefore, this paper utilizes elbow 

judgment (EJ), gap statistic (GS), and DTW (dynamic time 

warping) to develop a DTW-based adaptive K-means (DAKM) 

clustering algorithm for electricity consumption pattern 

recognition. The algorithm includes three main aspects. First, 

the DTW distance with the Sakoe-Chiba band global constraint 

is used to find the optimal alignment between the two load 

curves by matching the shapes with local stretching or 

compression sequences. Second, gap statistic and elbow are used 

to obtain the optimal number of clusters for high clustering 

efficiency automatically. Third, a max-min DTW distance 

(MMDD) method is presented to optimize the initial cluster 

centers of the K-means algorithm. The comparative 

experimental results demonstrate that the proposed DAKM 

algorithm achieved best evaluation values of 0.7055 for DBI, 

0.0237 for SSE, 132.0435 for CHI, 0.6649 for SC, and 1.1670 for 

DI, respectively, which proves that the proposed DAKM 

algorithm is far superior to other clustering algorithms. 

 
Index Terms—Dynamic time warping, K-means, pattern 

recognition, gap statistic, elbow judgment 

 

I. INTRODUCTION 

ITH the development of advanced information 

technology, a large amount of data is generated in 

various fields every day. It is crucial to collect and 

differentiate these big data to help service providers improve 

their operational performance and gain a competitive 

advantage in the fierce market. In the competitive electric 

power market, it is highly desirable for power utilities to know 
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the electricity consumption patterns for improving the 

demand management service and achieving reliable and 

economical operation [1]. The widespread development of 

smart meters has enabled consumers’ electricity data to be 

collected and recorded at regular intervals (15 min., or 5 min.), 

which provides convenience to reveal the load patterns on the 

demand side [2]. These load data help to classify the 

consumption behavior of electricity users, also known as load 

curve patterns. As a result, electricity end-users can respond 

to electricity price signals by understanding their own 

electricity consumption patterns and reduce electricity bills 

[3], while electricity utilities can achieve effective peak 

shaving and flexible pricing through electricity consumption 

patterns [4]. 

Given the significant time-varying nature characteristics of 

electricity consumption, it is crucial to select an appropriate 

clustering algorithm for daily load curve pattern extraction. 

At present, various classic clustering algorithms are 

commonly used [5], including K-medoid [6], K-means [7], 

hierarchical clustering (HC) [7], and Support Vector 

Clustering (SVC) [8], etc. These classical clustering 

algorithms suffer from poor accuracy and low efficiency in 

the electric load curve clustering. Among these algorithms, 

the K-means algorithm has attracted increasing attention in 

load curve clustering [9], [10], [11], as it has outstanding 

advantages such as simplicity, efficiency, and validity. 

Figueiredo et al. [12] used the K-means algorithm to identify 

electricity consumption patterns after reducing the 

dimensionality of the initial dataset through self-organizing 

mapping, and concluded that the K-means algorithm 

performed very well in comparative experiments on datasets 

with continuous attributes. J. Kwac, et al. [13] presented an 

improved K-means algorithm with a mean squared error 

threshold to find representative load shapes, and used a 

traditional hierarchical clustering algorithm to improve the 

optimal distance between cluster centers. Moreover, Jiang et 

al. [14] considered the special characteristics of load curves 

such as high dimensionality and big volume, and proposed a 

fused K-means algorithm based on discrete wavelet transform 

(DWT) to identify load curve patterns. This fused clustering 

algorithm first used DWT to reduce the dimensionality of 

daily load curves, and then used the K-means algorithm to 

achieve load curve clustering, which effectively reduced the 

computational complexity. The optimal number of clusters is 

determined by the simplified Silhouette width criterion. 

However, those K-means algorithms mentioned above did not 

consider the optimization of some key parameters that affect 

the clustering performance, such as the optimal number of 

clusters and initial cluster centers. Furthermore, there is no 
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comparative validation of the superiority of the K-means 

algorithm in the literature. 

To improve the clustering performance, various improved 

K-means algorithms have been proposed in the literature. For 

example, the effectiveness of the K-means algorithm is 

improved by finding the initial centroid point [15], and an 

adaptive K-means clustering under-sampling algorithm is 

presented by considering the variations in dataset type and 

sampling features to calculate the optimal K value [16]. 

However, these K-means algorithms cannot achieve 

high-quality pattern recognition of electric load curves, as 

they are not suitable for time series classification problems. 

Therefore, this paper proposes a DTW-based adaptive 

K-means (DAKM) algorithm for electricity consumption 

pattern recognition. The main contributions of this research 

are as follows: 

 (ⅰ) This paper presents dynamic time warping (DTW) 

distance with the Sakoe-Chiba band global constraint as a 

similarity distance measure for the K-means algorithm to 

explore the best match between different electric load curves. 

 (ⅱ) Gap statistic (GS) and elbow judgment (EJ) are used to 

calculate the optimal K value for the K-means algorithm 

automatically.  

(ⅲ) A max-min DTW distance (MMDD) method is 

presented to find the optimal initial cluster centers for the 

K-means algorithm.  

(ⅳ) The DAKM algorithm is presented to extract electric 

load curve patterns. 

The rest of the paper is summarized as follows: Section Ⅱ 

introduces the traditional K-means algorithm, and Section Ⅲ 

proposes the DTW-based adaptive K-means algorithm. In 

Section Ⅳ, the effectiveness of the proposed DAKM 

clustering algorithm is demonstrated through comparative 

experiments. Finally, Section Ⅴ provides the conclusion. 

II. K-MEANS ALGORITHM 

A. Basic Principle  

K-means algorithm is a simple and popular unsupervised 

clustering algorithm for big data analysis. It can divide the 

dataset by making the data samples within the same class have 

higher similarity and the data samples between different 

classes have dissimilarity [9]. Assuming that a numerical 

dataset  1 2, , , , ,i nG g g g g=  represents the set of 

clustered objects in a d-dimensional Euclidean space dR , and 

 1 2, , , , ,k KC c c c c=  is K cluster centers. 
ED
ikd  denotes 

the Euclidean distance between ig  and kc .  ik n K
U u


=  is 

the affiliation matrix, where iku  is a binary variable (i.e. 

 0, 1iku  ) that determines whether ig  belongs to the k-th 

cluster. Hence, the K-means algorithm can achieve iterative 

learning by minimizing its objective function ( , )J U C  to 

update the equations of cluster centers and membership 

degrees. 
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The calculation flowchart of the traditional K-means 

algorithm is shown in Fig. 1, and its detailed clustering 

process is described as follows. 

 

Start

Randomly select initial cluster centers

Calculate the Euclidean distance 

between other data and K cluster centers

Divide other data into the class with the 

closest cluster center

Update new cluster centers

Parameter initialization

End

N

Y

 
Fig. 1.  Calculation flowchart of the traditional K-means algorithm. 

 

1) Firstly, randomly select K samples from the dataset as 

initial cluster centers. 

2) Secondly, calculate the Euclidean distance between 

other samples and initial cluster centers separately, and use 

these samples as the category of their closest cluster center. 

3) Thirdly, calculate the average value of each category for 

the classified samples mentioned above, and determine their 

new cluster centroids. 

4) Then, compared with the K cluster centroids obtained 

from the previous calculation. If the centroid of the cluster is 

not changed, proceed to the next Step 5; otherwise, return to 

Step 2.  

5) Finally, end and output the final clustering result when 

each newly generated cluster is consistent and all sample 

points will not transfer from one cluster to another. 

B. Disadvantages Analysis  

In the K-means algorithm, some prominent challenges 

cannot achieve satisfactory clustering results. It mainly 

includes three aspects of issues:  

(ⅰ) Since the K-means algorithm requires a pre-set K value 

for the number of clusters, but it is generally not clear in 

advance how many clusters the dataset should be divided into. 

Therefore, choosing the optimal K value is very difficult and 

important. 

(ⅱ) The initial cluster centers of the K-means algorithm are 

randomly selected, which may lead to errors in clustering 

results or slow convergence. This poses some uncertain risks 
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for good clustering performance. 

(ⅲ) The Euclidean distance is commonly regarded as the 

default distance metric in the K-means algorithm, which 

makes it difficult to implement time series pattern recognition 

problems such as the electric load curves.  

As shown in Fig. 2, the defect dataset of a certain product 

based on the K-means algorithm has four distinct clusters with 

relatively concentrated data distributions. However, due to 

the influence of cluster centers and the number of clusters, the 

defect database of this product is divided into three different 

clusters by the traditional K-means algorithm. It is obvious 

that the two different clusters at the bottom are mistakenly 

divided into the same elliptical cluster. 
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Fig. 2.  Clustering of product defect dataset based on K-means. 

 

III. DTW-BASED ADAPTIVE K-MEANS ALGORITHM 

To obtain high-quality clustering results of electricity 

consumption pattern recognition, DTW distance with global 

constraint of S-C band, optimal number of clusters based on 

GS-EJ, and MMDD-based initial cluster centers are used 

together to create a DTW-based adaptive K-means (DAKM) 

algorithm. 

A. DTW Distance with Global Constraints 

DTW is a classical elastic measure of time series similarity 

measures, which can reflect the overall similarity between 

different electric load curves. For any given two load curve 

time series 1 2[ , , , ]nX x x x=  and 1 2[ , , , ]mY y y y= , we 

can define a warping path to reflect their overall similarity 

between time series. A warping path 1 2[ , , ,W w w=  

, , ]l rw w  is composed of adjacent elements in the distance 

matrix n mD R  , where r  is the total number of elements in 

the warping path. ( , )lw i j=  is the coordinate of the l-th 

element on the path W. The following three constraints should 

be satisfied in the warping path W [17]. 

(1) Boundary conditions: The warping path W starts from 

1 1( , )x y  and ends with ( , )n mx y . 1 (1,1)w = and ( , )rw n m= .  

(2) Continuity constraint: There must be an upward, 

downward or diagonal adjacency between the two elements. 

Denoted by ( ) ( ) ( ) 1 0,1 , 1, 0 , 1,1l lw w+ −  . 

(3) Monotonicity constraint: The elements of the warping 

path W  increase monotonously in the time dimension, which 

means 1l li i +  and ( )1 , 1, 2, ,l lj j l r+   . 

To improve the DTW calculation speed and accuracy, the 

S-C band is usually introduced to help DTW find an optimal 

warping path W  [18]. The principle is shown in Fig.3, ulL  

and llL  are denoted as the upper and lower boundary lines in 

the the S-C band, where u  and l  are the coefficients of 

allowed warping. 

:ul u

m
L y x m

n
= +                                (5) 

:ll l

m
L y x m

n
= −                                (6) 
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Fig. 3.  DTW warping path under the global constraint of the S-C band. 

 

The DTW distance ( , )gc
DTWD X Y  with global constraints of 

the S-C band can be calculated by constructing a cumulative 

cost matrix L based on the dynamic programming method. 

1, 1 , 1 1,( , ) ( , ) min( , , )gc

dtw ed n m n m n m n mD X Y d x y L L L− − − −= +         (7) 

( , )
( , ) i j l i j u

ed i j

m
d x y m x y m

d x y n

otherwise

 


 − 
= 

+

       (8) 

, 1, 1 , 1 1,( , ) min( , , )i j ed i j i j i j i jL d x y L L L− − − −= +         (9) 

Where, ( , )gc
DTWD X Y  is the DTW distance with the global 

constraint of S-C band between load curves X and Y; 

( , )ed i jd x y  is the Euclidean distance between load curves 

elements ix  and jy ; ,i jL  represents the element in the i-th 

row and j-th column of the cumulative cost matrix L , where 

,0 0,i jL L= = +  and 0,0 0L = . 

B. Optimized Number of Clusters 

It is well known that the optimal number of clusters is very 

important in clustering algorithms. but artificially preset value 

may lead to poor performance in load curve patterns. 

Therefore, an optimized method combining gap statistic (GS) 

method and elbow judgment (EJ) method is proposed to find 

the optimal number of clusters automatically. According to 

Fig. 4, the basic idea of this method is to comprehensively 

utilize the unique advantages of GS and EJ in determining 

different numbers of clusters [1, 2, , ]K z= , where [1, ]z n . 

Specifically, GS is used to calculate whether the value of K is 

1 [19], otherwise, EJ is adopted to calculate the optimal 

number of clusters greater than 1. 

Step 1: GS-based optimal number of clusters 1K = . 
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GS has excellent performance when the number of clusters 

is 1, so it is only used to determine whether the value of K is 1 

by the following equations. Otherwise, it will automatically 

proceed to the next step. 

( ) ( 1) ( 1)Gap K Gap K s K + − +                        (10) 

K1    2      3         4            5

logZ(1)

logZ(2)

logZ(3)

logZ(4)

θ(1)

θ(2)

θ(3)

θ(4)

1
(2) arctan

log (1) log (2)Z Z
 =

−

(2) arctan(log (2) log (3))Z Z = −

logZ(K)

 
Fig. 4.  The optimal number of clusters based on GS and EJ. 
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* * 2

1 1

1 1 1
( ) 1 (log ( ) log ( ))

H H

h h

h h

s K Z K Z K
H H H= =

= +  −      (13) 

Where, ( )Gap K is the estimated gap in the cluster K ; *( )hZ K  

and ( )Z K  are the within-dispersion measurements in the 

reference and real datasets, respectively; ( )Z K  is the 

within-dispersion measurement; h  is the number of Monte 

Carlo sampling, where [1, 2, , ]h H= ; rn  is the number of 

samples in the r-th cluster; rc  is the r-th cluster center in the 

cluster C ; ix  and jy  are two curves in the r-th cluster; 

( )s K  is the simulation error. 

Step 2: EJ-based optimal number of clusters 1K  . 

EJ is used to calculate the optimal number of cluster K 

when it is larger than 1. Fig. 4 shows that when 1K  , the 

elbow angle ( )K  at each inflection point of the curve is 

composed of three parts: ( )K , ( )K , and 2 . The value 

of K is considered as the optimal number of clusters if it 

satisfies Eq. (14) [20]. 

( ) ( 1)K K  +                                (14) 

( ) 2 ( ) ( )K K K    = + +                     (15) 

1
( ) arctan

log ( 1) log ( )
K

Z K Z K
 =

− −
           (16) 

( ) arctan(log ( ) log ( 1))K Z K Z K = − +           (17) 

C. Optimized Initial Clustering Center 

In order to reduce the undesirable effects of randomly 

selecting initial clustering centers., a max-min DTW distance 

(MMDD) method is presented to find the optimal initial 

cluster centers for higher clustering quality. Its basic strategy 

is to select two load curve samples with the minimum DTW 

distance and use any one of them as the first initial cluster 

center 
*
1c , and then select the one with the maximum DTW 

distance from 
*
1c as the second cluster center 

*
2c . When the 

value of K is greater than 2, other new initial cluster centers 

can be obtained by the following formula [21]. 

,1 , , 1max[min[ , , , , ]]DTW DTW DTW DTW
i i k i K Cd d d D−       (18) 

* *
1

1

1 K
DTW
C k k

k

D c c


+

=

= −                         (19) 

Where, ,
DTW
i kd is the DTW distance with the global constraint 

between the centroid k  and sample i;   is the constant 

coefficient; DTW
CD is the average DTW distance between all 

different centroids;   is the total number of combinations of 

any two cluster centers; *
kc  is the k-th initial cluster center. 

D. The Proposed DAKM Algorithm 

Based on the three key parameters established above, the 

DAKM algorithm is developed for electric load curve pattern 

extraction. The detailed program steps of DAKM algorithm 

are described in Algorithm 1. In DAKM algorithm, the basic 

parameters are first initialized, such as the sample sets G, the 

coefficients of allowed warping λu and λl, the threshold for 

initial cluster centers θ, and the number of iterations T. The 

DTW distance ( , )gc
DTWD X Y  is calculated in advance by Eq. 

(7)-(9), and then the value of the number of clusters K is 

increased from 1 and the optimal value is determined by Eq. 

(10)-(17). Subsequently, the optimal initial cluster center ck is 

determined by Eq. (18) and (19). Finally, if the algorithm 

calculates that the center of clusters is not changing, and then 

outputs the adaptive cluster number K and load curve pattern 

assignment matrix S. Otherwise, it continues with the iterative 

calculation. 

 

Algorithm 1 DAKM clustering algorithm  

Input: G, λu, λl, θ, T 

Output:
 

C, S
 

Step 1: Calculate the DTW distance:  
First, perform global constraints ulL and llL  by 

Eqs. (5)-(6), and then Calculate DTW distance 

( , )gc
DTWD X Y by Eqs. (7)-(9). 

Step 2： Calculate the optimal number of clusters K:  
First, judge if the cluster number K is 1 by Eqs. 

(10)-(13), otherwise calculate the cluster number 

K (K>1) by Eqs. (14)-(17). 

Step 3: Calculate the initial cluster center kc : 
 

Calculate initial cluster centers C by Eqs. (18) 

-(19). 

Step 4: Run DAKM algorithm 

 for t = 1 →T do 

 Calculate ( , )gc
DTW i kD x a  between xi and ak. 

 Divide xi into the nearest cluster class. 

 Update cluster center matrix C and matrix U 

by Eqs. (3)-(4). 

 if (t ≥ T || ( 1) ( )k ka t a t + −  ) then 

 break 

 else 

 Continue to iterate in the loop. 

 end if 

 end for 

Step 5: Return Adaptive cluster number K and load 

curve pattern assignment matrix S. 
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IV. EXPERIMENTAL ANALYSIS 

A. Data Description 

The electric load data of a certain zone in Chongqing city 

from April 23, 2023 to July 31, 2023 were selected as 

experimental data. In this zone, there are two small 

kitchenware factories, 25 electric vehicle (EV) charging 

points, and 2000 residential users. A sample of 82 daily 

electric load curve profiles is shown in Fig. 5. Data 

preprocessing is required before data clustering, which 

involves removing erroneous data and filling in missing data. 

 

 
Fig. 5.  82 sampled daily electric load curve profiles. 

 

To verify the effectiveness of the proposed DAKM 

algorithm more comprehensively, three comparative 

experiments were conducted: (i) Clustering results and 

comparative analysis between DAKM and traditional 

DTW-based adaptive K-means (TDAKM), (ⅱ) Comparison 

of clustering validity, and (iii) Comparison of clustering 

efficiency. In the experiments, we initialized the relevant 

parameters based on experiential knowledge: 

 0.1, 0.2, , 1u l  =， , T=100, and  )0.5, 1  . The 

experimental environment was a computer equipped with an 

Intel® Core (TM) i5-8300H CPU @ 2.30GHz and 16.0 GB 

memory, running with MATLAB R2020a. 

B. Results and Analysis 

(1) Clustering Results and Comparative Analysis 

In the load clustering experiment, GS-EJ was used to 

calculate the optimal number of clusters K. Firstly, GS 

method was used to determine whether K was 1 or not. When 

K = 1, the value of Gap(1) was smaller than the difference 

between Gap(2) and s(2), so the optimal number of clusters 

was not 1. Then, EJ method was used to calculate K between 2 

and 8. From the elbow curve in Fig. 6, when K = 3, the decline 

of the elbow curve became significantly gentle. And the 

elbow angle satisfies Eq. (14). In summary, the optimal 

number of clusters was chosen as 3. 

 

 
Fig. 6.  Optimal number of clusters based on EJ method. 

The corresponding clustering results of the daily electric 

load curve were shown in Fig. 7, and three types of load curve 

patterns were workday pattern (cluster “a”), weekend pattern 

(cluster “b”), and holiday pattern (cluster “c”), respectively. 

In Fig. 7, the cluster “a” was workday electricity consumption 

pattern with 54 daily load curves, and the main characteristics 

of the load curves included obvious three different peaks. The 

three peaks appeared at 10:00 am, 3:50 pm, and 8:00 pm, 

respectively. In this electricity consumption pattern, the 

electric power obviously fluctuated, which clearly reflected 

that the three time periods electricity consumption 

characteristics were mainly caused by EV charging and 

factory operation. The cluster “b” was weekend electricity 

consumption pattern with 20 daily load curves, and this load 

pattern characteristic had two peaks occurred at 11:00 am and 

5:00 pm. This load curve pattern clearly reflected two time 

periods electricity consumption characteristics of the entire 

regional electric users during the weekend period. The cluster 

“c” was holiday electricity consumption pattern with 8 daily 

load curves, which had obvious low-stability peak power 

consumption characteristics. This pattern showed that the 

factories complied with national holiday requirements and 

stopped production, which greatly reduced electricity 

consumption. In summary, the proposed DAKM algorithm 

achieved accurate clustering results of daily electric load 

curves with high-dimensional and complex time series 

characteristics. 

To verify the accuracy of the proposed DAKM algorithm in 

electricity consumption pattern recognition, Fig. 8 illustrates 

the clustering results of three load curve patterns based on 

TDAKM algorithm, as well as the differences compared with 

the clustering results using the proposed DAMK algorithm in 

Fig. 7. To clearly explore the specific differences in clustering 

results between DAMK algorithm and TDAKM algorithm, 

each cluster in Fig. 7 was set as a benchmark, and two 

different colors (blue and red) were used to indicate the 

differences between the clusters (“a” and “b”) in Fig. 7 and 

Fig. 8. Four load curves highlighted in blue within cluster “a” 

in Fig. 7 were surprisingly recognized as clusters “b” in Fig. 8. 

Then, two load curves highlighted in red within cluster “b” in 

Fig. 7 were surprisingly recognized as clusters “a” in Fig. 8. 

The comparison results fully demonstrated that the DAMK 

algorithm was far superior to the TDAKM algorithm. In 

addition, it also verified the proposed DTW distance with 

global constraints had the greatest impact on improving 

clustering performance. 

(2) Comparison of Clustering Validity 

To better illustrate the advantages of the proposed DAKM 

algorithm, five evaluation indicators, such as Davies-Bouldin 

index (DBI), Sum of Squared Error (SSE), Calinski-Harabasz 

index (CHI), Silhouette coefficient (SC), and Dunn Index (DI) 

[22], [23], [24], were used to compare it with five other 

clustering algorithms, such as TDAKM, adaptive K-means 

(AKM), DTW-based K-means (DKM), traditional 

DTW-based K-means (TDKM), and traditional K-means 

(TKM). The above five indicators comprehensively 

compared six methods from their respective perspectives, 

thus verifying the effectiveness of DTW distance with global 

constraints and adaptive algorithm in load curve 

classification. 
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Fig. 7.  The optimal three load curve clustering results based on DAKM. 

 

 
Fig. 8.  The optimal three load curve clustering results based on TDAKM 

 

Table I shows a detailed clustering performance 

comparison of six different K-means algorithms by using five 

evaluation indicators. For evaluation indicators, the symbol 

↑ represents that the higher the evaluation value, the better 

the clustering performance, while the symbol ↓ indicates the 

opposite. The value highlighted in bold represents the best 

data obtained for the optimal algorithm. 

 
TABLE I 

PERFORMANCE EVALUATION USING DIFFERENT VALIDATION INDICATORS 

Algorithm DBI ↓ SSE ↓ CHI ↑ SC ↑ DI ↑ 

DAKM 0.7055 0.0237 132.0435 0.6649 1.1670 

TDAKM 0.7241 0.0942 115.2167 0.6630 1.1104 

AKM 0.7983 0.6482 81.3077 0.6581 0.9293 

DKM  0.7834 0.1344 102.3546 0.6612 0.9633 

TDKM 0.8042 0.4649 96.2456 0.6588 0.5631 

TKM 1.2704 2.7957 41.1549 0.3357 0.4256 

 

Table Ⅰ clearly indicates that the performance of DAKM 

algorithm in electricity consumption pattern recognition is 

superior to the other five algorithms, because it achieved the 

best values on five clustering evaluation indicators, namely 

0.7055 for DBI, 0.0237 for SSE, 132.0435 for CHI, 0.6649 

for SC, and 1.1670 for DI. From the comparison of DAKM, 

TDAKM, and AKM in five clustering indicators, it can be 

directly obtained that the clustering performance of DTW 

distance measures with global constraints is better than 

traditional DTW distance and Euclidean distance. DAKM 

algorithm with adaptive algorithms performs better than 

DKM algorithm without adaptive algorithms. In addition, Fig. 

9 also shows the intuitive differences between six different 

K-means clustering algorithms in terms of each evaluation 

indicator, which also proves that the proposed DAKM 

algorithm outperforms the other five algorithms. Combining 

Table I and Fig. 9, it is more clearly demonstrated that the 

proposed DAKM algorithm is the best, followed by TDAKM 

algorithm, then DKM algorithm, and the worst is TKM 

algorithm, while AKM and TDKM have similar clustering 

validity scores. This fully demonstrates that the adaptive 

algorithms and DTW distance measures with global 

constraints effectively improved the clustering performance, 

while only adaptive algorithms or DTW distance measures 

with global constraints did not achieve the best performance. 

(3) Comparison of Clustering Efficiency 

Regarding the clustering efficiency, Fig. 10 shows a 

comparison of iterative convergence among six different  

 

 

 

 

 

 

 

 

 

 
Fig. 9.  Comparison of different algorithms using evaluation indicators. 
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algorithms. The specific data are shown in Table II, the 

minimum number of convergence iterations (6), while the 

iteration times of other algorithms were 8 for TDAKM, 12 for 

AKM and DKM, 15 for TDKM, and 25 for TKM. However, 

the iteration time required for the proposed DAKM algorithm 

was 0.2297 seconds, which was slightly slower than 0.1249s 

of TDAKM, 0.0767s of AKM, and 0.0934s of TKM, but still 

faster than DKM and TDKM algorithms. Overall, the 

iteration time of these algorithms was less than 1 second, 

which had a very fast speed, especially for the DAKM 

algorithm with an iteration time of less than 0.3 seconds. The 

root cause for the difference in clustering efficiency between 

DAKM and other algorithms are that the MMDD method, GS, 

and EJ are very helpful in improving the iteration times of 

K-means, but the DTW with global constraints increases the 

iteration time. 

 

 
Fig. 10.  Comparison of convergence among different algorithms. 

 
TABLE Ⅱ 

COMPARISONS OF CONVERGENCE AMONG DIFFERENT ALGORITHMS 

Algorithm Iteration number Iteration time (s) 

DAKM 6 0.2297 

TDAKM 8 0.1249 

AKM 12 0.0767 

DKM 12 0.5205 

TDKM 15 0.3376 

TKM 25 0.0934 

 

From the previous experimental results illustrated in Tables 

I and II, as well as Fig. 9 and 10, it can be observed that the 

proposed DAKM algorithm is far superior to the other five 

algorithms, which also fully demonstrates that the DAKM 

algorithm is effective and efficient for electricity consumption 

pattern recognition. Therefore, the DAKM algorithm in this 

paper is a new choice of clustering algorithm for electric load 

curve pattern extraction, which can play a significant role in 

electricity demand response design and others. 

V. CONCLUSION 

A novel DAKM algorithm is proposed for electricity 

consumption pattern recognition, which is different from the 

traditional K-means algorithm. Its main contributions include 

four aspects:  

(ⅰ) To improve the similarity measurement of time series, 

DTW distance with the global constraint of the S-C band is 

presented to replace the Euclidean distance in traditional 

K-means algorithm. 

(ⅱ) To reduce the adverse effect of random initial cluster 

centers, the MMDD method is adopted to obtain the optimal 

initial cluster centers.  

(ⅲ) To improve the clustering performance, GS and EJ are 

used to calculate the optimal number of clusters K 

automatically.  

(ⅳ) the DAKM algorithm is presented for electric load 

curve pattern extraction.  

The experiment results clearly indicated that the proposed 

DAKM algorithm obtained the best values in five clustering 

evaluation indicators of DBI, SSE, CHI, SC, and DI, with 

values of 0.7055, 0.0237, 132.0435, 0.6649, and 1.1670, 

respectively, which proves that the DAKM algorithm is 

superior to AKM and TKM algorithms. The DAKM 

algorithm is also effective and feasible in solving the 

clustering problem of electric load curves. 
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